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Foreword

Welcome to the 7th International Natural Language Processing and
Cognitive Science workshop, which is part of a series of workshops
previously organised in Porto (2004), Miami (2005), Paphos (2006),
Funchal (2007), Barcelona (2008) and Milan (2009}. As in the past,
this event is organised by INSTICC in cooperation with the ICEIS
(12th International Conference on Enterprise Information Systems),
the AAAI (Association for the Advancement of Artificial Intelli-
gence) and ACM's SIGAI (Special Interest Group on Artificial In-
telligence).

The aim of this workshop is to bring together researchers and prac-
titioners in Natural Language Processing (NLP) working within the
paradigm of Cognitive Science. Research into NLP involves con-
cepts and methods from many fields including artificial intelligence,
linguistics, computational linguistics, statistics, computer science,
and most importantly cognitive science.

29 papers were received from 17 countries, 9 were selected for
presentation as full papers and 8 as posters. Patrick W. Hanks,
from Charles University in Prague Czech Republic, gave the keynote
speech entitled “How People Use Words to Make Meanings”. The
selected presentations covered arrange of themes namely context ac-
commodation and language model for human language processing,
segmentation and lexicalist grammar for machine translation, tools
for language learning and vocabulary grounding, multi-document
relations using machine learning, sentence reduction and detect-
ing novel information for summarisation, morphological analyser for
highly inflected languages, domain ontology generation, tool for vo-
cabulary learning for hearing impaired students.

A special issue of the International Journal of Speech Technology
(Vol. 11 Nos. 3-4 December 2008) was devoted to a selection of the
best papers presented at NLPCS over the last few years.

We would like to thank both, reviewers and authors for contribut-
ing to the success of NLPCS. We are also very indebted to all those
who have helped us organise and host this event.

We hope that all participants will enjoy the workshop program we
have put together.
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Abst_rallgt. This paper explores support vectors as a too! for vocabulary
acquisition in robots. The intention is to investigate the language grounding
process at the single-word stage. A social language grounding scenario is
gie&gned, where a robotic agent is taught the names of the objects by a human
instructor. The agent grounds the names of these objects by associating them
with tpeir respective  sensor-based category deseniptions. A system for
groumlimg vocabulary should be incremental, adaptive and support gradual
evolu_nop. A novel learning model based on single-class support vector data
descriptions (SVDD), which conforms to these requirements, is presented. For
robustness and flexibility, a kemnel based implementation of support vectors
was rf:a]ized. For this purpose, a sigmoid kemel using histogram pyramid
mz‘ml:hmg has been developed. The support vectors are trained based on an
orlg}nal approach using genetic algorithms. The raodel is tested over a series of
scmi-automated experiments and the results are Teported.

1 Introduction

The meanings of words lie in concomitance with the entities of the world they refer to
(Barsalou 1999; Harnad 1990). Supported by the studies carried out on populations of
robots — to study origins, evolution and transfer of language — a new view is emerging
that considers language a cultural product (Love 2004; Roy and Pentland 2002:
Seabra_Lopes and Chauhan 2007, 2008; Steels and Kaplan 2002). Here the language;
grou.t_mdlng process is considered distributed in nature, where the language symbols are
acquired (and transferred) through social interactions (Cowley 2007; Loreto and
Steels 2008; Steels 2007). It can be inferred from this argument that there are two key
factors that influence language acquisition. On the one hand, language is acquired
through social inleractions, leading to a set of shared language symbols. On the other
hand, the meaning formation of these symbols is an internal cognitive task, where the
symbols refer to the real world entities. ’

In the past decade, a significant amount of work has been carried out on designing
robotic agents that acquire their vocabulary through social interactions with humans.
Many approaches have been designed that use humans to teach robots the names of
v1sua‘l concepts. This paper discusses a similar approach, where a robotic agent
acquires 1ts vocabulary through interaction with a human instructor, The agent is
embodied with a camera for visual perception and grounds the words laught by lhé
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instructor in their respective visual descriptions.

Similar works have been reported in literature where these approaches differ from
each other based on the choice of methods for leaming visual concepts. Gold et al
{2009} explore an approach based on dynamic decision trees; Levinson et al (2003)
investigate Hidden Markov Models for the similar purpose; Roy and Pentland (2002)
used neural networks and density match in their CELL model; Seabra Lopes and
Chauhan (2007) used support vector data description (SVDD) (Tax 200!} based
approach and later investigated multiple other classifiers and classifier combinations
(2008); and Skocaj et al (2007) use the single most suitable prototype lo describe a
visual concept. The number of words leamed in these approaches ranges between 3
and several tens of categories.

The learning algorithm for this work is SVDD. The motivation behind this
preference is to imitate the language development process in children at the single-
word stage. Studies in cognitive language development literature indicate that
children predominantly leamn from positive examples only (Bloom, 2000; Markman,
1989). A learning methodology to imitate child like word grounding should support
similar process. SVDD is a single-class classifier that has been shown to be robust at
novelty detection tasks using only a few positive examples (Tavakkoli et al 2008; Tax
2001). However, in its original form SVDD is neither incremental, nor can it handle a
multitude of outliers, making it unsuitable for the open-ended processes like
vocabulary acquisition,

In this paper, a novel strategy is presented where the SVDD optimization process
has been modified so as to make it more efficient for inctemental, online and open-
ended processes. A new method based on a genetic approach has been designed for
optimizing various magic parameters of the SVDD. The genetic approach for
optimizing parameters has previously been shown to improve the SVDD performance
{Tavakkoli et al 2008). But the approach of Tavakkoli was nol incremental.
Incremental learning brings different challenges and the approach in this paper has
been specifically designed for such learning processes.

The rest of the paper is organized as follows. Next section describes the approach
for social language transfer between the robot and its instructor. Section 3 details the
learning and categorization methodology. Section 4 reports and discusses the
experiments and the final section concludes the paper.

2 Interaction Approach for Social Language Transfer

Any two individuals (robots or humans) can share a language if they ground the same
words to the same entities, regardless of their respective process of meaning
formation. With this in mind, a social language scenario is designed where a human
instructor teaches the robotic agent the names of the objects present in their visually

shared environment.
The robotic agent is embodied with a camera to visually perceive its world.

This camera is mounted over a table which becomes a shared environment between a
human instructor and the robot. The names taught by the instructor are grounded by
the robotic agent in visual descriptions, leading to a vocabulary shared with its
instructor.



Fig. 1. Robot’s visual scene and an extracted object as selected by the user.

The instructor selects (by mouse-clicking on the visual scene) an object from the
robot’s visible scene (Fig.1). The selected object is extracted from the visual scene
and further processed to compute a set of shape features. The shape of the object in
this implementation is expressed using the vector of normalized-radii features
{described in Seabra Lopes and Chauhan 2007). This feature vector has previously
been shown to be a robust shape descriptor and faithfully captures the shape of a
segmented object, invariant 1o size, translation and rotation. Once the object has been
extracted from the scene, the instructor can interact with the robot through the
following instructions (using a menu-based interface):

- Teach the category name of the selected object;

. Ask the category name of the selected object;

. If the category predicted in the previous case is wrong, send a correction.

. Provide a category name and ask the robot to locate an instance of that category;

. If the object identified by the robot in the previous case does not belong to,the
requested category, provide the true category.

th o b o—

The rc:bot can respond to the human instructions in either of the following ways:
1. Ll'ngulsnc response: provide the classification results to the user;
2. Visual response: visually report the results of a “search/locate” task.

Simulated Instructor Agent. Teaching vocabulary to the robotic agent can be an
extremely exhaustive task for the human user. Therefore, a simulated user has been
developed for the purposes of the experiments reported in this paper. The actions of
this agent are limited to the following actions of the human user: teaching, asking and
correction.

From many previous experiments a database of ~7000 images (from 69 categories)
?as been collected. The extracted object in Fig. 1 can give an idea of the type of
images in this database. Most of these images (and their category names) were
collected during a long duration experiment, where a human user followed a teaching

protocol to teach the category names to the robotic agent (Seabra Lopes and Chauhan
2008).

3 Learning and Categorization

This paper presents a novel methodology for category leaming and classification
based on the single-class SVDD (Tax 2001). For a given set X of positive examples,
the SVDD approach tries to locate the data points x; (i.e. the support veclors) that
form a closed description around the data. In a regular case, this approach will give a
closed spherical description around all the data points. Tax showed that by mapping
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the data points to a better feature space (by applying a kernel function £ on the data),
a much more robust and flexible data description can be achieved. Such a description
is referred as a hypersphere. The optimization process used to determine the center
and the support vectors attempts to minimize two errors: Empirical error — percentage
of misclassified training samples; Structural error — radius R, of the hypersphere
which must be minimized with respect to the center a with certain constraints. Tax
gives the final error L to be minimized as:

L =Za,—K(x,-,xj) - Za,-ajK(Jc,-,xj) 0
i ij
with the following constraints on the Lagrange multipliers a;
Vi OSafﬁl;aiE(},Za,-:l;and a=Za,-x;~ @)

i

Minimization of L with these constrains is a classic quadratic optimization
problem. To find optimal support vectors many optimization approaches have been
developed (e.g. SMO (Platt 1998) and the genetic approach of (Tavakkoli et al
2008)). For the SVDD, the genetic approach of Tavakkoli et al led to a more robust
and efficient optimization in compatison to other methods. However, their approach
was neither incremental nor online. For an open-ended domain like vocabulary
acquisition, a learning process needs to be incremental, online and cpen-ended. Such
process requires continual assessment and updates of the support vectors when the
new data gets introduced. The SVDD parameter optimization used in this paper is
also based on using genetic algorithms, but the methodology has been designed to
take the open-ended nature of vocabulary learning into account.

An instance based approach has been used for category representations, where a
category is described by a set of known instances belonging to that category. An
instance is added to a category description when an instructor teaches the name of a
selected instance {teaching actions) or provides a correction in case of an incorrect
prediction by the robot (correction action). Each time a new instance is added to a
category description a new chromosome is created with as many genes as the number
of instances in the description. A new gene is also added to the existing
chromosomes. These new genes contain a randomly chosen value of o; and all the
existing genes are modified to be in the range listed in equation (2). In this
implementation, the number of chromosomes is limited to 20, while there is no limit
on the number of genes added. At any certain moment in time, the best chromosome
for a category description is used as its Lagrange multipliers. Before describing the
Lagrange parameter optimization, both the kemel function and the classification
methodology have to be elaborated.

Although the choice of kernel is data dependent, in most applications the Gaussian
kernel produces good results (Tax 2001). This is also the choice for the experiments
reported here. The kernel K used in this paper is defined as:

K(xi,x,) =nxp(j%w] 3)
where x; and x; are the /" and /" instances describing a category; ¢ is the standard
deviation of the data; and Py (x;x;) is the normalized pyramid match and is given as
P(x,x;)/Max_Match, where P(x;x;) is the pyramid match (Grauman and Darrel 2007)
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found on the feature vectors x;,and x;. The highest value (Max_Match) that a pyramid
match can achieve on any two sets of egual sized features is the number of elements
contained in a feature vector (in our case 40).

Given an instance z to be classified, Tax (2001) describes its membership to a
category C with the hypersphere radius R,(C} as:

D(C,z) < (R, (C))? 4

where, D(C\z) = l+za,-a,-K(x.-,x,-)—ZZa;K(z,x,-)
if i

D(Cz) is the distance of the inpul instance z from the hypersphere center. If the
distance is less than the squared radius of a category description, the instance is
considered to belong to that category. To accommodate multiple category
descriptions, the distance of instance z from the hypersphere boundary is calculated
and the category description giving lowest boundary distance s predicted as the
category of that instance. This boundary distance is given as:

Bu(C.z) = (R{(C))*- D(C,2) (%)

/f Gy 15 the input category description
n = 1; #Chromosome index
repeat {
i=1; //Category index
fimess(cr,) =0;
repeat {
X;» = randomly chosen instance from C,,;
x; = randomly chosen instance from Cj;
if (C; == C;,) continue;
{1 Test whether using cr, interferes with the recognition capagity
/f of existing categories
if {(Bi(Cy, x)) > By(C,y x)) /! No interference
fitness(cr,) «+ fitness(cr,) + 0.5;
else fitness(cr,) «— fimess(cr,) - 0.5;
#f Test whether using cr, improves the recognition capacity of
{/ instances belonging to C,,
if (By(Cin x5) > B C,, x3,)) /V Correct recognition
fitness(cr,) « fitness(cr,) + 0.5;
else fimess(cr,) « fitness(cr,) - 0.5;
fe=i+1;
} until (f > number of categories)

fitness{cr,) « fitness{cr,) / (total number of categories — 1);
He—n+l;

} until {fimess(cr,)) > 95% OR all chromosomes have been evaluated)

Fig. 2. The core function to evaiuate the fitness of a chromasome.
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Fig. 3. The possible crossover and mutation capabilities of the system (the Fonstraints
mentioned in equation (2) are always maintained). Similar operations are carried out to
optimize ¢ values,

Given a category description, the optimization process attempts to itera_tively
evolve the set of chromosomes uniil the best chromosome has been found, without
affecting the boundary descriptions of other category descriptions. In the .current
implementation the number of iterations used was 300 (usually the best solution was
reached much eatlier). Fig.2 describes the function designed to evaluate the fitness of
the chromosomes for a given category. This function is called for each o.f the
iterations. If no chromosome reached the desired fitness (85%) in a particular
iteration, all the chromosomes are randomly mutated or crossed over (see the
illustration in Fig.3). -

The key advantage of this strategy is that the optimization procedure, mst«?aq of
minimizing the error L {equation (1)), tries to find the best set of Lagrange n}ultl.phers
using the classification success of each chromosome while irying to maintain the
classification performance over existing category descriptions. This makes _thc
optimization process feasible for incremental, online, open-ended and multiple
category scenarios.

4 Experimental Evaluation

Experiments were conducted to evaluale the performance of thf; new learning system
on vocabulary acquisition using an experimental protocol. This protocol (“tcachmg
protocol” (Seabra Lopes and Chauhan 2007)) is generic engugh to be apphcc‘i to any
incrementa! and open-ended class learning domain. An instructor, following this
protocol, performs either “teach”, “ask” or “correct” actions. As the protocol
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progresses, the robot accumulates new words. The protocel dictates that, at the
introduction of a new category, the recognition performance over the previous|
learned categories should be tested and the next category should be introduced on[y
when the performance of the overall learning system is above a set threshold (66 67“}{
for reported experiments). The classification precision measure {computed o;rer )
ﬁxed number of most recent question-correction iterations) is used to analyze thz
impact of‘ a new category on the leaming system, from initial instability to final
recovery in system's performance. An experiment is concluded when the robot i
unable to recover from the initial instability at the introduction of a new class @ )
whep .the breakpoint is reached). One more evaluation measure ~ overall s ste.:n-
precision, calculated as an average over all the classification precision values fi:r all

hc queS i T-COIT i n i T liOn h S be 1= [+ 1 te t]l V
t 418 CCL1O lte al 5 - na b €N us d 1o eva ua
) €0 el‘all performancﬂ

Table 1. Summary of experiments,

i System precision
# Quest C‘iass. # Avg, 4 P
Exp # #cats at ‘,CS” ecl;g: precision at instances f bcfon:e the
breakpoint terations breakpoint per category introduction of the
(%) at breakpoint last category
)
1 33 1519 62 17.3 71
2 20 1036 60 208 61
3 29 1345 58 18.6 70
4 29 1621 60 22 66
5 27 1246 33 18.3 65

aus

L

»n

1 1oa
ETTY a0l Ao moL el TAAL 801 EOol 1081 1101 1331 18021

[}4 EVOIUthﬂ. f claSSiﬁCatlou ¥ N ver i ¥ 1 t
F. . 4. Q PIecCLsLo) sus numb: T Of uesti i i
] hi | iment. q TU'COITCC 10n interactions

Experiments were conducted using the simulated instructor agenl. For each
new/lemed category, the instructor randomly selects an instance of tilat catego
_from the image database, preserving the essence of natural interactions When aligtlz
;lmagf.!-)s of particular category have been used or if all the categories ir'a the database
nz‘\;ecafzgoe:;l‘:austed, the human user is called to show a new image or to introduce a

in total 5 experiments were conducted, where the robot was able to leam
some\fvhere between 19-32 categories. Table 1 provides a summary of the
experiments when the breakpoint was reached. The last column of Table 1 gives t}?:
overall system precision over the question/correction iterations right beforegthe final
category was introduced. Thus the system precision is used here to show the
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performance of the leaming methodology over the set of categories that were
successfully leamed.

Fig.4 illustrates the evolution of classification precision in the third experiment. In
this experiment, the robot learned 28 categories (and category names). In general, the
introduction of a new category to the agent led Lo the deterioration in classification
precision followed by gradual recovery. Each such introduction can affect the
classification performance over other categories, since any new data can lead to the
confusion between different boundary descriptions. The depressions in the graph
normally indicate the period after the introduction of a new category. At each
misclassification on any learned category, the optimization process is carried out (o
derive the fittest chromosome. This leads to a gradual system recovery, eventually
improving the complete system performance. This process continues until the system
starts to confuse the category descriptions to an extent that it can no longer recover.
For an example, on the introduction of 29" category in expetiment 3, the precision
remained around 57% (for ~500 iterations) without showing signs of recovery. All the
reported experiments showed similar classification precision evolution pattern.

8§ Conclusions

This paper presented a novel approach to grounding vocabulary in robotic systems,
This approach is inspired by the studies on grounding vocabulary through social
interactions. A scenario has been designed where a human instructor can teach the
robot the names of objects present in their visual environment. The robot grounds
these words in its visual-sensor based descriptions.

The key contribution of this paper has been the use of single-class SVDD for
vocabulary learning. The SVDD has been modified so as to be able to function in
incremental, online, open-ended and multiple category scenarios. A novel genetic
approach has been designed that modifies the optimization criteria of the SVDD.
Instead of considering the optimization of Lagrange parameters as a quadratic
optimization problem, the new approach tries to optimize these multipliers based on
the classification success of a category on its own instances. The fitness function has
been designed to maximize sclf categorization, without affecting the existing category
descriptions.

The robot was able to incrementally learn between 19 and 32 categories in 5
different experiments. The evolution process of the classification precision in
different experiments clearly shows that the proposed strategy is capable of
incremental learning in open-ended scenarios. On the other hand, the number of
categories learned was very limited. We believe, however, that the approach is
promising. There are perhaps many arcas where improvements can be made. But the
fitness strategy itself will be the key to better performance. Future work will primarily
entail refining the optimization process by investigating more robust fitness functions,
while maintaining the optimization criteria.
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Abstract, To speak fluently is a complex skill. If reaching this goal in one’s
mother tongue is already quite a feat, to do so in a foreign language can be
overwhelming, One way to overcome the expression problem when going
abroad is to use a dictionary or a phrascbook. While neither of them ensurcs
fluency, both of them are useful translation tools. Yet, neither can teach you to
speak. We will show here how this can be done in the case of a phrasebook.
Being interested in the leaming of foreign languages, we have started to build a
multilingual phrasebook (English, French, Japanese, Chinese) whose sentence
elements, typically words or expressions, are clickable items, This fairly simple
feature allows extending considerably the potential of the resource. Rather than
learning merely a list of concrete instances (sentences), the user may learn in
addition the underlying principles (patterns), that is, the generative mechanism
capable to produce guickly analogous, but more or less different sentences. A
similar feature may be used to extend the resource, by mining a corpus for sen-
tences built according to the same principle, i.e. based on the same pattern, but
this is work for the future. Two of the main goals of this paper are to present a
method helping learners to acquire the skill of speaking (patterns augmented
with rules), and to allow experts (teachers) to add information either to extend
the database or to add a new language. We've started from English and Japa-

nese, adding very quickly French and Chinese.

1 Introduction

No doubt, speaking a language is a difficult task and doing so in another one is even
more of a challenge as one has not only to juggle many constraints —(determine what
to say, find the corresponding words, perform the required morphological adjust-
ments, and continue to plan the next segment while articulating, i.e. externalizing, the
result produced so far)— but also learn how to do this in a new language. This latter
task requires not only the learing of a lot of new knowledge (words, rules), but also
the acquisition of skills, i.e. ‘know-how’ or ‘procedural knowledge’ (Levelt, 1975;
deKeyser, 2007a). The focus of this paper will be on learning, or, more precisely,
achieving fluency in speaking a foreign language. The tool is generic and will be



