
Secure Software Development
SIO

João Paulo Barraca

SIO

The Software Development Life Cycle (SDLC)

Requirements
and Use cases

Design Development Tests / QA Production Maintenance

Implemented following popular models: Agile, Lean, Waterfall, Iteractive, Spiral, DevOps…..

SIO

The DevOps model

3João Paulo Barraca, André Zúquete

SIO

Secure Software Development

The Problem

• Software is developed towards a functional objective
▪ Considering use cases, requirements and features (in an agile process)

• Security is frequently an afterthought
▪ Unless security brings business value, use cases are typically feature oriented

As it is not effective to develop a random software and then add the
desired features … it is not effective to develop a software and then

make it secure

João Paulo Barraca, André Zúquete 4

SIO

Secure Software Development

The Problem

• Software development is complex
▪ Involves several collaborators/teams, several software packages and dependencies
▪ Results in multiple artifacts, deployed over a potentially wide ecosystem
▪ Easy for development to derail towards wrongly implemented features

As the software becomes more complex, the exposition and
opportunities to attackers increase, becoming hard remove leaked

information or to ensure a secure development chain

João Paulo Barraca, André Zúquete 5

SIO

Secure Software Development

The Problem

• Software increasingly deals with sensitive information
▪ Private information from users
▪ Confidential information from users or businesses
▪ Classified information from governments

Leaking or manipulation of information can result in high impact
incidents for software users. Recovery, if possible, may be highly

expensive

João Paulo Barraca, André Zúquete 6

SIO

Secure Software Development

The Problem

• Software may interact with the real world
▪ IoT in homes and offices
▪ OT in critical utilities
▪ Automata in industries
▪ Autonomous agents in business processes and systems (Cars)

Leaking or manipulation of information can result in high impact
incidents for users. Recovery may be highly expensive and may be

impossible

João Paulo Barraca, André Zúquete 7

SIO

Why AppSec

• Software is at the center of most activities

• Wide range of threats with more complex techniques

• Applications are actively explored for vulnerabilities and Fraud

• Impact is broad: brand, financial, reputation, clients

• Regulatory and Legal ramifications

• Increased demand by clients and requirements to access market

João Paulo Barraca, André Zúquete 8

SIO

The Secure DevOps model in practice

9João Paulo Barraca, André Zúquete

People Processes Technology

Collaborators
Contractors
Suppliers
Operators
Support

Regulatory compliance
Development practices
Client requirements

Development tools
Organization tools
Support tools
Operational systems
Dependencies

SIO

The Secure Software Development Life Cycle (SDLC)

Requirements
and Use cases

Design Development Tests / QA Production Maintenance

Security
Requirements

Normative and Legal

Abuse Cases

Risk Assessment

Security by Design

Privacy by Design

Design Review

Threat Modelling

Secure Coding

Code Review

Security Gateways

SAST / DAST

Secure Deployment

System Hardening

Security Assessment

Updates

Monitoring

Defect Management

Response and
Recovery

SIO

The Secure Software Development Life Cycle (SDLC)

Requirements
and Use cases

Design Development Tests / QA Production Maintenance

Security
Requirements

Normative and Legal

Abuse Cases

Risk Assessment

Security by Design

Privacy by Design

Design Review

Threat Modelling

Secure Coding

Code Review

Security Gateways

SAST / DAST

Secure Deployment

System Hardening

Security Assessment

Updates

Monitoring

Defect Management

Response and
Recovery

Shift Left: more effort towards secure requirements and design

SIO

Overall SDLC Maturity

OWASP Software Assurance Maturity Model (SAMM)

• Effective and measurable way to analyze and improve the secure development lifecycle.
▪ SAMM supports the complete software lifecycle and is technology and process agnostic.
▪ SAMM is evolutive and risk-driven in nature, as there is no single recipe that works for all organizations.
▪ Aligned with NIST CiberSecurity Framework 2.0 (NIST CSF2)
▪ Ranges from Organization Strategy to Operations

• Companies can identify their location
and build a path towards improving their posture

• https://owaspsamm.org/

João Paulo Barraca, André Zúquete 12

SIO

Overall SDLC Maturity

OWASP Software Assurance Maturity Model (SAMM)

João Paulo Barraca, André Zúquete 13

SIO

Planning and Requirements

Legal and Normative Compliance needs

• Specific operational areas have legal requirements
▪ Processing of credit card information (a payment processor): PCI-DSS
▪ Processing of user data (a shop): GDPR
▪ Public sector: DL65/2021 and NIS2
▪ Telecommunications: EECC, GDPR, NIS, Digital Services Act
▪ Health Data (UK): HIPAA
▪ Financial Sector: Digital Operational Resilience Act (DORA)
▪ Others: ISO 27001, ISO 2000, Cyber Resilience Act

• Software planning must consider the legal requirements for the target market
▪ Fulfilling legal framework may invalidate software for a given target security posture, functionality and value

João Paulo Barraca, André Zúquete 14

SIO

Planning and Requirements

Legal and Normative Compliance needs

• Requirements are focused on product value, but must consider security aspects
▪ Security Requirements

• Multi-layer security protecting Confidentiality, Integrity and Availability

▪ Avoid fraud and abuse
▪ Allow updates and observability

• Requirements must include software and organization wide practices
▪ Which tools are use
▪ Who supplies them
▪ How are system deployed/operated
▪ How product support operates

João Paulo Barraca, André Zúquete 15

SIO

Planning and Requirements

Use and Abuse Case

• Abuse Case: A way to use a feature that was not expected by the implementer,
allowing an attacker to influence the feature or outcome of use of the feature
based on the attacker action (or input).

• A Business Feature may result in a list of Abuse Cases
▪ Each Define:

• The Abusive Action
• Source Reference
• Risk Score (CVSS)
• Applicable Countermeasure
• Action to be taken

▪ Abuse cases are registered but may be accepted
• Accepting risk consists in operating with its existence

João Paulo Barraca, André Zúquete 16

SIO

Planning and Requirements

Use and Abuse Case

João Paulo Barraca, André Zúquete 17https://cheatsheetseries.owasp.org/cheatsheets/Abuse_Case_Cheat_Sheet.html

SIO

Planning and Requirements

Use and Abuse Case

• Feature: Allow user to upload a compressed document along a message

▪ Abuse-01: Upload Office file with malicious macro in charge of dropping a malware
• CVSS: 6.3
• Countermeasure: Parse the document for Macros
• Handling Decision: Risk accepted

▪ Abuse-02: Upload a Zip Bomb
• CVSS: 9
• Countermeasure: Scan file with a tool before decompression
• Handling Decision: To be addressed

João Paulo Barraca, André Zúquete 18https://cheatsheetseries.owasp.org/cheatsheets/Abuse_Case_Cheat_Sheet.html

SIO

Planning and Requirements

Security Requirements

• Specific measures to be met to protect data, resources, and users.
▪ Derived from applicable laws, industry standards, and the organization's security policies.
▪ Security requirements are essential for ensuring the confidentiality, integrity, and availability of

information.

• Which security requirements can we set for a service?
▪ Will they be enough?
▪ Will they be aligned with current risks?
▪ Will they align with the business requirements of the application?
▪ Will they be aligned with the quality of competing solutions?
▪ Are they suitable for the legal/regulatory environment?
▪ Can they be used to secure the supply chain?

João Paulo Barraca, André Zúquete 19https://cheatsheetseries.owasp.org/cheatsheets/Abuse_Case_Cheat_Sheet.html

SIO

Planning and Requirements

OWASP Application Security Verification Standard

• Level 1: The minimum for any application
▪ Completely testable from the outside without documentation
▪ Partially testable by SAST and DAST applications
▪ Considers the most common vulnerabilities and attacks

• Level 2: The right fit for any application
▪ Defined for data-sensitive applications
▪ Areas such as B2B transactions, Commerce, Gaming
▪ Want to protect application from expert attackers

• Level 3: What is needed for critical applications
▪ Defined for applications with very sensitive data
▪ Areas such as military environments, healthcare, critical infrastructure

João Paulo Barraca, André Zúquete 20

SIO

Planning and Requirements

ASVS

João Paulo Barraca, André Zúquete 21

Identification

Description

Section

Requireme
nt Applicable Levels

References to other
sources

SIO

Design

Security By Design
• Products are built in a way that reasonably protects against malicious cyber actors successfully

gaining access to devices, data, and connected infrastructure

• Some core principles (from CISA):
▪ Take Ownership of Customer Security Outcomes
▪ Embrace Radical Transparency and Accountability
▪ Build Organizational Structure and Leadership to Support Security Goals

• Some methods:
▪ Document Conformance to Secure SDLC Frameworks
▪ Implement Vulnerability Management
▪ Utilize Open Source Software Responsibly
▪ Provide Secure Defaults for Developers
▪ Foster a Security-Conscious Developer Workforce

João Paulo Barraca, André Zúquete 22U.S. Cybersecurity and Infrastructure Security Agency (CISA)

SIO

Design

Threat Modelling

• To model and analyse technology systems and services to better understand how that
system or service might be attacked or otherwise fail.
▪ Identify boundaries to sub-domains
▪ Identify Interactions
▪ Identify potential locations for controls

• Steps:
▪ Identify Assets and their relations (Scope)
▪ Identify Attacks/Vulnerabilities/What could go wrong
▪ Identify counter measures and mitigations
▪ Evaluate

João Paulo Barraca, André Zúquete 23U.S. Cybersecurity and Infrastructure Security Agency (CISA)

SIO

Design

Threat Modelling
• STRIDE model facilitates finding security threats

▪ Spoofing: Pretending to be something or someone other than yourself
▪ Tampering: Modifying something on disk, network, memory, or elsewhere
▪ Repudiation: Claiming that you didn't do something or were not responsible;
▪ Information disclosure: Someone obtaining information they are not authorized to access
▪ Denial of service: Exhausting resources needed to provide service
▪ Elevation of privilege: Allowing someone to do something they are not authorized to do

• Potential damage of a threat is analyzed using an Attack Tree
▪ Explores the possible chain of actions exploring threats
▪ System Designers can build mitigations
▪ Mitigation prevent further exploration along the attack tree

João Paulo Barraca, André Zúquete 24Source: Wikimedia foundation

SIO

Design

Threat Modelling

João Paulo Barraca, André Zúquete 25

A startup ecosystem based on mobile
applications and APIs that manage
peer to peer car rentals.

A customer can use a mobile app to unlock
and start the car. The owner of the car has its
own mobile app to manage rentals.

It has AI linked to its APIs and supports
augmented reality features.

The APIs also allows to change radio stations
which are stored in the cloud on a flat file
for legacy reasons.

https://github.com/OWASP/threat-model-cookbook

SIO

Design

Threat Modelling

João Paulo Barraca, André Zúquete 26

https://github.com/OWASP/threat-model-cookbook

SIO

Development

• Development is made through Versioned systems (e.g. GIT)
▪ With strong Access Control in place and Signed Commits

• Prevent injection of malicious code by a third party

▪ Artifacts are extracted from Repository and built automatically
• Commit hashes can be used to replicate the build process, detecting anomalies

▪ Allows facilitated Code Review and Attribution

• As collaborative environments, repositories shall not have secrets
▪ Passwords and API keys
▪ Custom configurations from each developer

João Paulo Barraca, André Zúquete 27
https://github.com/home-assistant/core/commit/a74247be934855f0d6a78e76adc722de9ffd4f34

SIO

Development

Dependency Management

• Constitutes a major issue for a secure SDLC
▪ Compromising a dependency is a proven method to subvert software

• Dependencies are easily injected
▪ Each bringing both value and risk
▪ Frameworks can rapidly inject Tens of libraries

• Dependency tracking and verification is vital
▪ Includes applying tests and following the dependency development
▪ Software and systems, while not dependencies should also be analyzed
▪ Open Source model is especially vulnerable as dependencies are

developed by small number of developers

“Further, 94% of projects had fewer than ten developers accounting for more than 90% of the LOC added. These findings are counter to the typically held
belief that thousands or millions of developers are responsible for developing and maintaining FOSS projects. At a higher level, it was found that 136
developers were responsible for more than 80% of the LOC added to these 50 FOSS projects”, Census II of Free and Open Source Software,

João Paulo Barraca, André Zúquete 28https://xkcd.com/2347/

SIO

Development

Attacks to dependencies

• Typo squatting: Deploys dependencies with names similar to original packages

• Dependency confusion: Deploys dependencies with same names as private
dependencies

• Dependency takeover: Getting ownership of dependency and/or its domain

• Dependency compromise: Compromising dependency library or software

João Paulo Barraca, André Zúquete 29

SIO

Development

João Paulo Barraca, André Zúquete 30https://www.bleepingcomputer.com/news/security/the-solarwinds-cyberattack-the-hack-the-victims-and-what-we-know/

SIO

Development

XZ Supply Chain Attack

João Paulo Barraca, André Zúquete 31

SIO

Development

The Polyfill attack

João Paulo Barraca, André Zúquete 32https://censys.com/july-2-polyfill-io-supply-chain-attack-digging-into-the-web-of-compromised-domains/

SIO

Testing

SAST

• Static application security testing
▪ Analyses source code, identifying potential anti-patterns

▪ Strongly linked with CWEs

▪ Frequently included in CI/CD pipelines or IDEs

▪ Typically, tools are language specific

• Other uses:
▪ Dependency tracking

▪ Secret Detection

João Paulo Barraca, André Zúquete 33
https://sonarcloud.io/project/issues?impactSeverities=HIGH&sonarsourceSecurity=sql-
injection&issueStatuses=OPEN%2CCONFIRMED&id=jpbarraca_sqli-wordpress&open=AZJ7EX9Litd4gtZogF2B

SIO

Testing

DAST

• Dynamic Application Security Testing
▪ Analyses app behavior, identifying potential anomalies
▪ Strongly linked with behavior analysis and error handling

• Involves active testing with application running
▪ With test vectors for known typical vulnerabilities

• XSS, XXE, SQLI…

▪ With fuzzing: automated software testing technique that
involves providing invalid, unexpected, or random data as inputs

▪ Used to software in QA or production
▪ Humans and AIs can enhance DAST conducting specialized

attacks
• Replicate Attack Chains or typical exploits

João Paulo Barraca, André Zúquete 34

SIO

Testing

DAST

• AFL++
▪ Coverage-based fuzzing

• Keeps track of what areas of the binary are executing or coverage
• Applies variation with a genetic algorithm

▪ Enables figuring out which inputs lead to which parts of the code executing

João Paulo Barraca, André Zúquete 35

SIO

Production

• Production considers providing the service from a client facing environment
▪ May be internet facing
▪ May consider systems outside organization (e.g. public clouds)
▪ Constitutes a product, whose actions have relevant impact
▪ Defects may result in a CVE

João Paulo Barraca, André Zúquete 36

Requirements
and Use cases

Design Development Tests / QA Production Maintenance

SIO

Production

Relevant security mechanisms

• Inventory and asset tracking
▪ Enumerate and track assets relevant for service provisioning
▪ Includes OS version, update level, support contracts, location and ownership

• Configuration hardening
▪ Impose a set of configuration guidelines to increase the security

• Use of passwords vs keys, user permissions, installed packages….

▪ Hardening should follow internal policies plus best practices
• CIS Benchmarks / CIS Controls

Defense Information Systems Agency (DISA) Security Technical Implementation Guides (STIGs)
• NIST SP 800-53
• Payment Card Industry Data Security Standard

João Paulo Barraca, André Zúquete 37

SIO

Production

Relevant security mechanisms

• Configuration assessment against expected policies
▪ OVAL - Open Vulnerability And Assessment Language
▪ XCCDF - eXtensible Configuration Checklist Description Format

• Artifact Integrity validation
▪ Software signing of binaries produced
▪ Validation of artifacts to specific source code repository releases
▪ Reverse Engineer to check for additional injects
▪ Common Criteria Assessment

João Paulo Barraca, André Zúquete 38

SIO

Maintenance

• Process of changing, modifying, and updating software to keep up with customer needs

• Includes
▪ Monitoring exposition to internet
▪ Deployment of observability capabilities to analyze operation
▪ Monitoring features, use cases and abuse cases
▪ Product support
▪ Incident Response of issues found

• At this stage, issues can result in security defects

• Security Issues may have legal and brand impact

João Paulo Barraca, André Zúquete 39

SIO

Maintenance

• Defects are handled according to a risk based approach
▪ E.g. CVSS Based considering Temporal and Environmental factors
▪ Scoring allows defining a Service Level Agreement for defects to be handled

João Paulo Barraca, André Zúquete 40

Internal Assets Interface Assets External Facing Assets

Emergency 30 10 10

Critical 60 30 10

High 120 60 30

Medium 240 120 60

Low Not Considered

	Slide 1: Secure Software Development
	Slide 2: The Software Development Life Cycle (SDLC)
	Slide 3: The DevOps model
	Slide 4: Secure Software Development
	Slide 5: Secure Software Development
	Slide 6: Secure Software Development
	Slide 7: Secure Software Development
	Slide 8: Why AppSec
	Slide 9: The Secure DevOps model in practice
	Slide 10: The Secure Software Development Life Cycle (SDLC)
	Slide 11: The Secure Software Development Life Cycle (SDLC)
	Slide 12: Overall SDLC Maturity
	Slide 13: Overall SDLC Maturity
	Slide 14: Planning and Requirements
	Slide 15: Planning and Requirements
	Slide 16: Planning and Requirements
	Slide 17: Planning and Requirements
	Slide 18: Planning and Requirements
	Slide 19: Planning and Requirements
	Slide 20: Planning and Requirements
	Slide 21: Planning and Requirements
	Slide 22: Design
	Slide 23: Design
	Slide 24: Design
	Slide 25: Design
	Slide 26: Design
	Slide 27: Development
	Slide 28: Development
	Slide 29: Development
	Slide 30: Development
	Slide 31: Development
	Slide 32: Development
	Slide 33: Testing
	Slide 34: Testing
	Slide 35: Testing
	Slide 36: Production
	Slide 37: Production
	Slide 38: Production
	Slide 39: Maintenance
	Slide 40: Maintenance

