Asymmetric Cryptography

SIO

deti universidade de aveiro departamento de eletrónica, telecomunicações e informática

João Paulo Barraca

Asymmetric (Block) Ciphers

- Use key pairs
 - One private key: personal, not transmittable
 - One public key: available to all
- Allow
 - Confidentiality without any previous exchange of secrets
 - Authentication
 - Of contents (data integrity)
 - Of the data origin (source authentication, or digital signature)

Operations of an asymmetric cipher

João Paulo Barraca, André Zúquete

Use cases: confidential communication

• Secure communication with a target (Bob)

Alice encrypts plaintext P with Bob's public key K_{pub_Bob}

Alice: C = {P}K_{pub_Bob}

- Bob decrypts cyphertext **C** with his private key **K**_{prv_Bob}

Bob: P'= {C}K_{prv_Bob}

- P' should be equal to P (requires checking using integrity control)
- K_{pub_Bob} needs to be known by Alice

Use cases: authenticated communication

- Authenticate the communication from Alice
 - Alice encrypts plaintext P with her private key K_{prv_Alice}

Alice: C = {P}K_{prv_Alice}

- Anyone can decrypt cyphertext **C** with Alices' Public key K_{pub Alice}

Anyone: P'= {C}K_{pub_Alice}

— If P' = P, then C is Alice's signature of P

 $- K_{pub_Alice}$ needs to be known by the message verifiers

Asymmetric ciphers

Issues

- Advantages
 - They are a fundamental authentication mechanism
 - They allow to explore features that are not possible with asymmetric ciphers

Disadvantages

- Performance: 2 or 3 orders of magnitude over AES
- Very inefficient and memory consuming: Large keys
- Problems
 - Trustworthy distribution of public keys: how to know if the public key is the correct one?
 - Lifetime of key pairs: How to make sure that we can deal with lost/deprecated/leaked keys?

Asymmetric ciphers

Overview

- Approaches: complex mathematic problems
 - Discrete logarithms of large numbers
 - Integer factorization of large numbers
- Most common algorithms
 - RSA
 - ElGamal
 - Elliptic curves (ECC)
- Other techniques with asymmetric key pairs
 - Diffie-Hellman (key agreement)

Rivest, Shamir, Adelman, 1978

- Keys: Private: (d, n) Public: (e, n)
- Public key encryption (confidentiality) of P
 - $-C = P^{e} \mod n$
 - $P = C^d \mod n$
- Private key encryption (authenticity) of P
 - $-C = P^d \mod n$
 - $P = C^{e} \mod n$

P, C are numbers! Message is converted to/from numbers

0 ≤ P, C < n

RSA

Rivest, Shamir, Adelman, 1978

- Computational complexity: Discrete logarithm and Integer factoring
- Key selection
 - Large n (hundreds or thousands of bits)
 - n = p × q with p and q being large (secret) prime numbers
 - Chose an e co-prime with (p-1) × (q-1)
 - Compute d such that $e \times d \equiv 1 \pmod{(p-1) \times (q-1)}$
 - Discard p and q
 - The value of d cannot be computed out of e and n
 - Only from **p** and **q**

coprime \rightarrow gcd(a, b) = 1 $\times \rightarrow$ multiplication mod \rightarrow modulo operation $\equiv \rightarrow$ modular congruence $a \equiv b \mod n \text{ iff rem}(a,n) = rem(b,n)$

Playing with RSA

- p = 5 q = 11 (prime numbers) - $n = p \times q = 55$ - $(p-1) \times (q-1) = 40$
- e = 3 (public key = e, n) - Coprime of 40
- d = 27 (private key = d, n) - e x d = 1 (mod 40) -> d x e mod 40 = 1 -> (27 x 3) mod 40 = 1
- For a message to encrypt, P = 26
 - $C = P^e \mod n = 26^3 \mod 55 = 31$
 - $P = C^d \mod n = 31^{27} \mod 55 = 26$

(notice that P, C \in [0, n-1])

Hybrid Encryption

- Combines symmetric with asymmetric cryptography
 - Use the best of both worlds, while avoiding problems
 - Asymmetric cipher: Uses public keys (but it is slow)
 - Symmetric cipher: Fast (but with weak key exchange methods)

- Method:
 - Obtain K_{pub} from the receiver
 - Generate a random K_{sym}
 - Calculate $C1 = E_{sym}(K_{sym}, P)$
 - Calculate C2 = E_{asym} (K_{pub}, K_{sym})
 - Send **C1 + C2**
 - C1 = Text encrypted with symmetric key
 - C2 = Symmetric key encrypted with the receiver public key
 - May also contain the IV

Randomization of asymmetric encryptions

• RSA is a deterministic algorithm: equal messages result in equal outputs

- What we need: Non-deterministic result of asymmetric encryptions
 - N encryptions of the same value, with the same key, should yield N different results
 - Goal: prevent the trial & error discovery of encrypted values

- Approaches
 - Concatenation of value to encrypt with two values
 - A fixed one (for integrity control)
 - A random one (for randomization)

Randomization of asymmetric encryptions

OAEP (Optimal Asymmetric Encryption Padding)

- iHash: digest over Label
- seed: random value
- PS: zeros
- M: plaintext
- MGF: Mask Generation Function
 - Similar to Hash, but with variable size

Diffie-Hellman Key Agreement (1976)

Diffie-Hellman Key Agreement (1976)

Elliptic Curve Cryptography (ECC)

- Elliptic curves are specific functions
 - They have a generator (G)
 - A private key K_{prv} is an integer with a maximum of bits allowed by the curve
 - A public key K_{pub} is a point $(x,y) = K_{prv} \times G$
 - Given K_{pub} , it should be hard to guess K_{prv}

- Curves
 - NIST curves (15)
 - P-192, P-224, P-256, P-384, P-521
 - B-163, B-233, B-283, B-409, B-571
 - K-163, K-233, K-283, K-409, K-571

Other curves

- Curve25519 (256 bits)
- Curve448 (448 bits)

ECDH: DH with ECC

ECC public key encryption

Combines hybrid encryption with ECDH

- Obtain K_{pub_recv} from the receiver
- Generate a random K_{prv_send} and the corresponding K_{pub_send}
- Calculate K_{sym} = K_{prv_send} K_{pub_recv}
- C = E(P, K_{sym})
- Send C + K_{pub_send}
- Receiver calculates K_{sym} = K_{pub_send} K_{prv_recv}
- P = D(C, K_{sym})

Digital signatures

Operations with Private Keys

- Authenticate the contents of a document
 - Ensure its integrity (it was not changed)
- Authenticate its author
 - Ensure the identity of the creator/originator
- Prevent repudiation of the encrypted payload
 - Non-repudiation
 - Genuine authors cannot deny authorship
 - Only the identified author could have generated a given payload
 - Because only the author has the private key

Digital signatures

- Authenticate the contents of a document
 - Ensure its integrity (it was not changed)
- Authenticate its author
 - Ensure the identity of the creator/originator
- Prevent repudiation of signatures
 - Non-repudiation property
 - Genuine authors cannot deny authorship
 - Only the identified author could have generated a given signature

Practical Considerations

- Encryption with private key is vital for authentication
 - Only the author can make it, everyone can verify it

- But... sending secure authenticated texts will require two (slow) encryptions
 - Remember: Asymmetric ciphers are slow and inefficient

• Preferred Approach: Encrypt Hash(T), creating Digital Signatures

Digital Signatures

- Approaches
 - Digest function of the Text (only for performance)
 - Asymmetric encryption/decryption or signature/verification

Signing: A_x(doc) = info + E(K_x⁻¹, digest(doc + info)) A_x(doc) = info + S(K_x⁻¹, digest(doc + info)) info = signing context, signer identity, K_x

Verification: D(K_x, A_x(doc)) ≡ digest(doc + info) V(K_x, A_x(doc), doc, info) → True / False

Encryption / decryption signatures

Encryption / decryption signatures

Digital Signature on a mail message

Multipart content, signature w/ certificate

From - Fri Oct 02 15:37:14 2009
[...]
Date: Fri, 02 Oct 2009 15:35:55 +0100
From: User A <usera@domain.com>
MIME-Version: 1.0
To: User B <userb@domain.com>
Subject: Teste
Content-Type: multipart/signed; protocol="application/x-pkcs7-signature"; micalg=sha1; boundary="-----ms050405070101010502050101"

This is a cryptographically signed message in MIME format.

-----ms050405070101010502050101 Content-Type: multipart/mixed; boundary="-----060802050708070409030504"

This is a multi-part message in MIME format. ------060802050708070409030504 Content-Type: text/plain; charset=ISO-8859-1 Content-Transfer-Encoding: quoted-printable

Corpo do mail

----------060802050708070409030504-------ms050405070101010502050101 Content-Type: application/x-pkcs7-signature; name="smime.p7s" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="smime.p7s" Content-Description: S/MIME Cryptographic Signature

MIAGCSqGSIb3DQEHAqCAMIACAQExCzAJBgUrDgMCGgUAMIAGCSqGSIb3DQEHAQAAoIIamTCCBUkwggSyoAMCAQICBAcnIaEwDQYJKoZIhvcNAQEFBQAwdTELMAkGA1UEBhMCVVMxGDAWBgNV […] KoZIhvcNAQEBBQAEgYCofks852BV77NVuww53vSx01XtI2JhC1CDlu+tcTPoMD1wq5dc5v40Tgsaw0N8dqgVLk8aC/CdGMbRBu+J1LKrcVZa+khnjjtB66HhDRLrjmEGDNttrEjbqvpd2Q02 vxB3iPT1U+vCGXo47e6GyRydqTpbq0r49Zqmx+IJ6Z7iigAAAAAAA== ------ms050405070101010502050101--

Digital Signatures at kernel.org

S Index of /pub/linux/ker	mel/v6.x × +		\sim	-		×
< > С 命 口	😋 mirrors.edge.kernel	2 🦁 🛛 🗾	۵ ۵	⊻ □	<;	≡
patch-6.7.9.xz		06-Mar-2024 1	15:09	703K		
patch-6.7.xz		08-Jan-2024 0	06:00	8M		
<pre>patch-6.8.1.xz</pre>		15-Mar-2024 1	19:04	5992		
<u>patch-6.8.10.xz</u>		17-May-2024 1	10:24	730K		
<u>patch-6.8.11.xz</u>		25-May-2024 1	14:46	740K		
<pre>patch-6.8.12.xz</pre>		30-May-2024 0	07:59	878K		
patch-6.8.2.xz		27-Mar-2024 0	05:24	241K		
patch-6.8.3.xz		03-Apr-2024 1	13:44	374K		
patch-6.8.4.xz		04-Apr-2024 1	18:39	366K		
<u>patch-6.8.5.xz</u>		10-Apr-2024 1	14:49	461K		
<u>patch-6.8.6.xz</u>		13-Apr-2024 1	11:27	498K		
patch-6.8.7.xz		17-Apr-2024 0	09:38	537K		
patch-6.8.8.xz		27-Apr-2024 1	15:28	583K		
<u>patch-6.8.9.xz</u>		02-May-2024 1	14:54	643K		
patch-6.8.xz		10-Mar-2024 2	21:45	M		
patch-6.9.1.xz		17-May-2024 1	10:28	3336		
<u>patch-6.9.10.xz</u>		18-Jul-2024 1	11.57	603K		
patch-6.9.11.xz		25-Jul-202+0	08:15	647K		
patch-6.9.12.xz		27-Jul 2024 0	09:48	652K		
patch-6.9.2.xz		25-May-2024 1	14:54	16K		
patch-6.9.3.xz		30-May-2024 0	07:55	151K		
patch-6.9.4.xz		12-Jun-2024 0	09:49	263K		
patch-6.9.5.xz		16-Jun-2024 1	12:04	306K		
patch-6.9.6.xz		21-Jun-2024 1	12:54	388K		
patch-6.9.7.xz		27-Jun-2024 1	12:04	465K		
patch-6.9.8.xz		05-Jul-2024 0	07:53	521K		
patch-6.9.9.xz		11-Jul-2024 1	11:08	572K		
patch-6.9.xz		13-May-2024 0	05:20	7М		
sha256sums.asc		10-Oct-2024 1	11:05	102K		

 Image: mirrors.edge.kernel.org/pub/lin
 ×

 \checkmark \bigcirc \frown ×

 \checkmark \bigcirc \bigcirc \bigcirc \frown ×

 \checkmark \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \checkmark
 \checkmark \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \checkmark
 \checkmark \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
 \checkmark \bigcirc \bigcirc

----BEGIN PGP SIGNED MESSAGE-----

Hash: SHA256

3f6690efe8dc49751e33fbcc45d35fa9048f75e03bfeaaa2a28e1037ca8d85cf ChangeLog-6.0 7eb504c0d87687a37753fbfe13e54ea979648b987e6f3f49c7f8f947bee7df3e ChangeLog-6.0.1 38a40e43b4daeb3de10ad21c414c5e969f600ed4105883cab885392ada0b24c2 ChangeLog-6.0.2 1252dbe12a2bfc4320bc8721ffa6ac9755d21b355456189453949c3e34b40a30 ChangeLog-6.0.3 ed8991c1d0c78cb907af07648eacd889a8d05ce2c752fefbac52faa7a5e76e3c ChangeLog-6.0.4 a135968b2ba483877b1e0d6c29f022df2ea2202b83b2d7a6367b1d218c402822 ChangeLog-6.0.5 23982b4a283f50f9eff4cdfc5a92e3cf188373e928fdfbd529a0355b2f03e591 ChangeLog-6.0.6 685098787f5099393813af01dbf42be53d4cf66439101819e9d6812f9ea18b0d ChangeLog-6.0.7 75ab6be0d282b450c847e4fd8d16a900c55b02dd1c2d4d367a0d72d6fa3ea6c0 ChangeLog-6.0.8 40c049dfd11dea11d06d9fa38268e6a4f1c46168ff6afa374d8977db75e4bc15 ChangeLog-6.0.9 ec14449d5d5f11d0c80cf1c1c33f2628333e1c4cf00779cd1dec66fcba934626 ChangeLog-6.0.10 d1aec42501f371cb0d46e428c56fd1b9e785a3b7ad884f641505486a1721a517 ChangeLog-6.0.11 5a7cc6b10574bf4ee627977173f6de69c150ed3a7ff039b1cc2ab2e9aea3045f ChangeLog-6.0.12 05a014d458f50fda29cb92bffb99f7ff13506d245d21124e4b836e28f0b8197a ChangeLog-6.0.13 44728440fadf4711f85d4bbc59cf43614f720c6d1aa7c9235c9497371ca55536 ChangeLog-6.0.14 ChangeLog-6.0.15 05b2597d94fe9674d5c575bb008953d1b548939a55f12709fdc6b0ce69abc211 2b269f51babfd89937206aa0fcac6f93c94cdf2f24d7e54ebc304a93cf9e4929 patch-6.11.2.xz

202697510a07089937206aa07cac6793c94cd7272407654e0c304a93c79e4929 patch-6.11.2.xz 4c808f6dd8814ab55a343649a2e2b925895b7f97044d15fa3424e5cf69349c3e patch-6.11.3.xz ----BEGIN PGP SIGNATURE----

Version: GnuPG v2.0.22 (GNU/Linux)

iQIcBAEBCAAGBQJnB7TpAAoJEGMtOgZYnaax9wUP/izFOfkROCdC0YdH5pmlNQMq cBhqieYbwVm8lIOgUndjvcRRe/k7JaZKA73w7yGr456QGSIbU2jOvgytmdbQ2QSG iGu1LF6npRNo41qWb5cHd1L2UTEEf0qDgqtBEnvsAWHgozoopfj/2VhfdJ5H4n/n tVjGHQeXm00EVWV0rOhLKfR31YvRMbQwNDcB79Hxazd7qpCL6/yT1K5S8wUQe6B6 Nt5m9dgjR3WN0x1u9Wrg5akC3sSE388lP+TR/g4KhvhUzWzWAAPDHyXdv50/QEE5 0rr5XowtKkHFc2DENGf/b9egx0ojdy637JtV4kK2FbquRTAwgDNVVZv3p8M95KG2 v+8XEkPpTEthuvDI259Rfk6Q0D+aI/4uMnVGK1RzpFBz0Q9qwJGrWUF9nj1mT6Ud GV0DegxenkFwoe8dUxR61HNtFHL1TloXiZ3YZk9Xq518N5l+uUydkuGkAWlchQZo 6qIS2dvVMmHnqC99rSxaYr/Qnn5WooCTd+u4iflmcqT7ss5aBnI5hgWN30vSwkZk mJuPK8gCHBaPrXfb9G0d6esDBFP+szNBbpUn4K1nHKmrMQT7prGfDTmMJlFckIax xTuHfjGgFZeGeg6BIGEZ37Mh5k+GmnztOK/RxUS55iytkXZOs2rYHvu069KIJWCb uda11uRrg0Z4hoWWlwhD

=s9Ry

-----END PGP SIGNATURE-----