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Digest Functions

Overview

• Produce a digital summary of data called a message digest
─ Data is a text or any binary information

• The message digest length is fixed
─ independently of the text length

• Both a 200 bytes and a 200 TB data items will result in a digest with the same length

• The message digest value strongly depends on the data

• Two digests are typically very different
─ Even if the original data is extremely similar
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Digest Functions

Properties

• Preimage resistance
─ Given a digest, it is unfeasible to find an original text producing it

─ That is: we cannot go back from a digest to the data (we cannot “decrypt” it)

• 2nd-preimage resistance
─ Given a text, it is unfeasible to find another one with the same digest

─ That is: if we have a text, we cannot find another one with the same digest

• Collision resistance
─ It is unfeasible to find any two texts with the same digest

─ That is: given two unique texts, they will result in a different digest
• Relates to the Birthday paradox: Collision probability P = 2n/2 where the typical n is >=256
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Digest Functions

Lets check: Size independence

• Considering the similar, yet different texts:
─ T1: “Hello User_A!”

─ T2: “Hello User_XPTO! Welcome to this lecture”

• Different algorithms will create digests with different lengths, but independent from 
the dimension of the text
─ MD5 (128 bits): 

• T1: 70df836fdaf02e0dfc990f9139762541

• T2: 18f12f09c45d880ce738afe4780c2f3e

─ SHA-1 (160 bits):
• T1: f591aa1eabcc97fb39c5f422b370ddf8cb880fde

• T2: 622f7832e204f2d70161cf42480c4bf0f13e7324

─ SHA-256 (256 bits):
• T1: 9649d8c0d25515a239ec8ec94b293c8868e931ad318df4ccd0dffd67aff89905

• T2: 6453be3f643d0a7e9b5890eed76bb63df8b6b071b30d5f97269a530c289b9839
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Digest Functions

Lets check: Content dependency

• Considering the similar, yet different texts (1 bit difference ‘B’ -> ‘C’):
─ T1: “Hello User_B!”, [0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x20, 0x55, 0x73, 0x65, 0x72, 0x5f, 0x42, 0x21]

─ T2: “Hello User_C!”, [0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x20, 0x55, 0x73, 0x65, 0x72, 0x5f, 0x43, 0x21]

• A small difference in the text (1 bit) results in a completely different digest
─ MD5: 

• T1: c32e0f62a7c9c815063d373acac80c37

• T2: 324a1bfc3041259480c6ad164cf0529f

─ SHA-1:
• T1: bab31eb62f961266758524071a7ad8221bc8700b

• T2: bd758d82899d132cd2af66dc3402b948d98de62d

─ SHA-256:
• T1: e663a01d3bec4f35a470aba4baccece79bf484b5d0bffa88b59a9bb08707758a

• T2: 69f78345da90c6b8d4785b769cd6ae09e0531716fe5f5a392fde1bdc70a2bb7d
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Digest Functions

Approaches

• Merkle-Damgård construction
─ Collision-resistant, one-way compression functions

• Can be a block cipher!

─ Iterative compression

─ Length padding

─ Digest size is the last block

─ Can be resumed!

• Digest is the state at Tn

─ Algorithms: MD5, SHA1, SHA2
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Digest Functions

Approaches
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• Sponge functions
─ Data split in r sized blocks

─ Absorbing phase: chained f(r) calls

─ Squeezing: extract bits for digest value

─ Algorithms: SHA3
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Message Integrity Code (MIC)

• Provide the capability to detect arbitrary changes to data
ꟷ Communication/storage errors from a random process or without integrity control

ꟷ Humans/Attackers can change the Text and calculate a new MIC!

• MIC is a simple calculation of a digest over some data: MIC=H(T)
ꟷ Sender calculates MIC and sends along with the Text

ꟷ Receiver calculates new MIC’ from received message (T’) and compares it with MIC
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Example usage at kernel.org to validate file integrity
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Message Authentication Code (MAC)

• Provide the capability to detect deliberate changes to data
ꟷ Any change to data, even if from attackers!

• MAC is a keyed calculation of a digest over some data: MIC=H(T, K)
ꟷ Parties agree with Key K, which is kept private to participants

ꟷ Sender calculates MAC using K and sends along with the Text

ꟷ Receiver calculates new MAC from received message (T’) and K and compares it with MAC
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Example usage in JWT
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https://jwt.io/#debugger-io?token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ._sytI9TdagSl-vSnVExnCuD46OQVKX7BxQR1YomY9cA

Cookie provided
in webpage to

Clients

Clients cannot change
Cookie due to MAC

Algorithm

Data in cookie

MAC calculated
with secret_key.
Key is private to server

https://jwt.io/#debugger-io?token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ._sytI9TdagSl-vSnVExnCuD46OQVKX7BxQR1YomY9cA
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Message Authentication Code (MAC)

Approaches

• Encryption of an ordinary digest (e.g. from SHA3)
─ Using, for instance, a symmetric block cipher

• Using encryption with feedback & error propagation
─ CBC-MAC or GCM

• Adding a key to the hashed data
─ Keyed-MD5 (128 bits)

• MD5(K, keyfill, text, K, MD5fill)

─ HMAC (output length depends on the function H used)
• H(K, opad, H(K, ipad, text)) 

• ipad = 0x36 B times opad = 0x5C B times B = size of H input block

▪ HMAC-MD5, HMAC-SHA-1, etc.
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Message Authentication Code (MAC)

When used with encryption
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• Encrypt-then-MAC: MAC is computed from cryptogram: M = C | MAC(C, K2), C=E(T, K1)
─ Allows verifying integrity before decryption
─ MAC calculation is frequently faster than decryption

• Encrypt-and-MAC: MAC is computed from plaintext: M = E(T, K1) | MAC(T, K2)
─ May give information regarding original text (if similar to other text)
─ Receiver will find that text was manipulated only after decryption plus MAC calculation (slower)
─ Manipulated ciphertext may attack the decryption algorithm without detection

• MAC-then-Encrypt: MAC is computed from plaintext: M = E( T | MAC(T, K2), K1)
─ MAC is encrypted (which is not bad)
─ Receiver will find that text was manipulated only after decryption plus MAC calculation (slower)
─ Manipulated ciphertext may attack the decryption algorithm without detection

B
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Example: GCM (Galois Counter Mode)
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Key derivation

Motivation
• Cipher algorithms require fixed dimension keys

─ 56, 128, 256… bits

• We may need to derive keys from multiple sources
─ Shared secrets

─ Passwords generated by humans

─ PIN codes and small length secrets

• Original source may have low entropy
─ Reduces the difficulty of a brute force attack

─ Although we must have some strong relation into a useful key

• Sometimes we need multiple keys from the same material
─ While not allowing to find the material (a password, another key) from the new key
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Key derivation

Purposes

• Key reinforcement: increase the security of a password
─ Usually defined by humans

─ To make dictionary attacks impractical

• Key expansion: increase/decrease the length of a key
─ Expansion to a size that suits an algorithm

─ Eventually derive other related keys for other algorithms (e.g. MAC)
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Key derivation

• Key derivation requires the existence of:
ꟷ A Salt which makes the derivation unique

ꟷ A difficult problem

ꟷ A chosen level of complexity

• Computational difficulty
ꟷ Transformation requires relevant computational resources

• Memory difficulty
ꟷ Transformation requires relevant storage resources

ꟷ Limits attacks using dedicated hardware accelerators
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Key derivation

Simple Approach: A Digest function

• Arguments:
─ Salt = A random value

─ Password = a secret (provided by humans)

─ H = An adequate Digest Function

key = H(password, salt)

• Advantages:
─ Key has a large length, and can be truncated to the adequate length

─ Two passwords will result in diferent keys

─ Finding the key will not lead to the password

• Issues: simple, enabling brute force/diccionary attacks
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Key derivation

Password Based Key Derivation Function (PBKDF2)

• Produces a key from a password, with a chosen difficulty

• K = PBKDF2(PRF, Salt, rounds, dim, password)
─ PRF: Pseudo-Random-Function: a digest function

─ Salt: a random value

─ Rounds: the computational cost (hundreds of thousands)

─ Dim: the size of the result required

• Operation: calculate ROUNDS x DIM operations of the PRF using the 
SALT and Password
─ Higher number of rounds will increase the cost of brute force/diccionary attacks
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Key derivation

Password Based Key Derivation Function (PBKDF2)
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Key derivation

scrypt

• Produces a key with a chosen computation and storage cost

• K = scrypt(password, salt, n, p, dim, r, hLen, Mflen)
─ Password: a secret

─ Salt: a random value

─ N: the cost parameter

─ P: the parallelization parameter. p ≤ (232− 1) * hLen / MFLen

─ Dim: the size of the result

─ R: the size of the blocks to use (default is 8)

─ hLen: the size of the digest function (32 for SHA256)

─ Mflen: bytes in the internal mix (default is 8 x R)
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Key Derivation: scrypt

• Produces a key with a chosen storage cost

• K = scrypt(password, salt, n, p, dim, r, hLen, Mflen)
ꟷ Password: a secret

ꟷ Salt: a random value

ꟷ N: the cost parameter

ꟷ P: the parallelization parameter. p ≤ (232− 1) * hLen / MFLen

ꟷ Dim: the size of the result

ꟷ R: the size of the blocks to use (default is 8)

ꟷ hLen: the size of the digest function (32 for SHA256)

ꟷ Mflen: bytes in the internal mix (default is 8 x R)
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Key derivation

scrypt
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