
Digests, Integrity Control and Key Derivation

SIO

João Paulo Barraca

SIO

Digest Functions

Overview

• Produce a digital summary of data called a message digest
─ Data is a text or any binary information

• The message digest length is fixed
─ independently of the text length

• Both a 200 bytes and a 200 TB data items will result in a digest with the same length

• The message digest value strongly depends on the data

• Two digests are typically very different
─ Even if the original data is extremely similar

João Paulo Barraca, André Zúquete 2

SIO

Digest Functions

Properties

• Preimage resistance
─ Given a digest, it is unfeasible to find an original text producing it

─ That is: we cannot go back from a digest to the data (we cannot “decrypt” it)

• 2nd-preimage resistance
─ Given a text, it is unfeasible to find another one with the same digest

─ That is: if we have a text, we cannot find another one with the same digest

• Collision resistance
─ It is unfeasible to find any two texts with the same digest

─ That is: given two unique texts, they will result in a different digest
• Relates to the Birthday paradox: Collision probability P = 2n/2 where the typical n is >=256

João Paulo Barraca, André Zúquete 3

SIO

Digest Functions

Lets check: Size independence

• Considering the similar, yet different texts:
─ T1: “Hello User_A!”

─ T2: “Hello User_XPTO! Welcome to this lecture”

• Different algorithms will create digests with different lengths, but independent from
the dimension of the text
─ MD5 (128 bits):

• T1: 70df836fdaf02e0dfc990f9139762541

• T2: 18f12f09c45d880ce738afe4780c2f3e

─ SHA-1 (160 bits):
• T1: f591aa1eabcc97fb39c5f422b370ddf8cb880fde

• T2: 622f7832e204f2d70161cf42480c4bf0f13e7324

─ SHA-256 (256 bits):
• T1: 9649d8c0d25515a239ec8ec94b293c8868e931ad318df4ccd0dffd67aff89905

• T2: 6453be3f643d0a7e9b5890eed76bb63df8b6b071b30d5f97269a530c289b9839

João Paulo Barraca, André Zúquete 4

SIO

Digest Functions

Lets check: Content dependency

• Considering the similar, yet different texts (1 bit difference ‘B’ -> ‘C’):
─ T1: “Hello User_B!”, [0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x20, 0x55, 0x73, 0x65, 0x72, 0x5f, 0x42, 0x21]

─ T2: “Hello User_C!”, [0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x20, 0x55, 0x73, 0x65, 0x72, 0x5f, 0x43, 0x21]

• A small difference in the text (1 bit) results in a completely different digest
─ MD5:

• T1: c32e0f62a7c9c815063d373acac80c37

• T2: 324a1bfc3041259480c6ad164cf0529f

─ SHA-1:
• T1: bab31eb62f961266758524071a7ad8221bc8700b

• T2: bd758d82899d132cd2af66dc3402b948d98de62d

─ SHA-256:
• T1: e663a01d3bec4f35a470aba4baccece79bf484b5d0bffa88b59a9bb08707758a

• T2: 69f78345da90c6b8d4785b769cd6ae09e0531716fe5f5a392fde1bdc70a2bb7d

João Paulo Barraca, André Zúquete 5

SIO

Digest Functions

Approaches

• Merkle-Damgård construction
─ Collision-resistant, one-way compression functions

• Can be a block cipher!

─ Iterative compression

─ Length padding

─ Digest size is the last block

─ Can be resumed!

• Digest is the state at Tn

─ Algorithms: MD5, SHA1, SHA2

João Paulo Barraca, André Zúquete 6

compression function

IV

T1

Digest

Tn

SIO

Digest Functions

Approaches

João Paulo Barraca, André Zúquete 7

• Sponge functions
─ Data split in r sized blocks

─ Absorbing phase: chained f(r) calls

─ Squeezing: extract bits for digest value

─ Algorithms: SHA3

SIO

Message Integrity Code (MIC)

• Provide the capability to detect arbitrary changes to data
ꟷ Communication/storage errors from a random process or without integrity control

ꟷ Humans/Attackers can change the Text and calculate a new MIC!

• MIC is a simple calculation of a digest over some data: MIC=H(T)
ꟷ Sender calculates MIC and sends along with the Text

ꟷ Receiver calculates new MIC’ from received message (T’) and compares it with MIC

8João Paulo Barraca, André Zúquete

Text MIC

H(Text)

Text Text’ MIC

H(Text’)

MIC’ MICequals?

Creator

Validator

SIO

Example usage at kernel.org to validate file integrity

9João Paulo Barraca, André Zúquete

SIO

Message Authentication Code (MAC)

• Provide the capability to detect deliberate changes to data
ꟷ Any change to data, even if from attackers!

• MAC is a keyed calculation of a digest over some data: MIC=H(T, K)
ꟷ Parties agree with Key K, which is kept private to participants

ꟷ Sender calculates MAC using K and sends along with the Text

ꟷ Receiver calculates new MAC from received message (T’) and K and compares it with MAC

10João Paulo Barraca, André Zúquete

Text MAC

H(Text, K)

Text Text’ MAC

H(Text’, K)

MAC’ MACequals?

Creator

Validator

SIO

Example usage in JWT

11João Paulo Barraca, André Zúquete

https://jwt.io/#debugger-io?token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ._sytI9TdagSl-vSnVExnCuD46OQVKX7BxQR1YomY9cA

Cookie provided
in webpage to

Clients

Clients cannot change
Cookie due to MAC

Algorithm

Data in cookie

MAC calculated
with secret_key.
Key is private to server

https://jwt.io/#debugger-io?token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ._sytI9TdagSl-vSnVExnCuD46OQVKX7BxQR1YomY9cA

SIO

Message Authentication Code (MAC)

Approaches

• Encryption of an ordinary digest (e.g. from SHA3)
─ Using, for instance, a symmetric block cipher

• Using encryption with feedback & error propagation
─ CBC-MAC or GCM

• Adding a key to the hashed data
─ Keyed-MD5 (128 bits)

• MD5(K, keyfill, text, K, MD5fill)

─ HMAC (output length depends on the function H used)
• H(K, opad, H(K, ipad, text))

• ipad = 0x36 B times opad = 0x5C B times B = size of H input block

▪ HMAC-MD5, HMAC-SHA-1, etc.

João Paulo Barraca, André Zúquete 12

SIO

Message Authentication Code (MAC)

When used with encryption

João Paulo Barraca, André Zúquete 13

• Encrypt-then-MAC: MAC is computed from cryptogram: M = C | MAC(C, K2), C=E(T, K1)
─ Allows verifying integrity before decryption
─ MAC calculation is frequently faster than decryption

• Encrypt-and-MAC: MAC is computed from plaintext: M = E(T, K1) | MAC(T, K2)
─ May give information regarding original text (if similar to other text)
─ Receiver will find that text was manipulated only after decryption plus MAC calculation (slower)
─ Manipulated ciphertext may attack the decryption algorithm without detection

• MAC-then-Encrypt: MAC is computed from plaintext: M = E(T | MAC(T, K2), K1)
─ MAC is encrypted (which is not bad)
─ Receiver will find that text was manipulated only after decryption plus MAC calculation (slower)
─ Manipulated ciphertext may attack the decryption algorithm without detection

B
A

D

SIO

Example: GCM (Galois Counter Mode)

João Paulo Barraca, André Zúquete 14

CTR0

EK

+1CTR1 CTRn+1

E E

T1
Tn

multH

multH multHauth data

C1 Cn

multH

auth tag

len(A) || len(C)

K K
Standard CTR

encryption process

Digest construction

Results in a cryptogram (C1, C2, C3 … Cn) and a auth_tag acting as MAC
Requires an additional auth_data

SIO

Key derivation

Motivation
• Cipher algorithms require fixed dimension keys

─ 56, 128, 256… bits

• We may need to derive keys from multiple sources
─ Shared secrets

─ Passwords generated by humans

─ PIN codes and small length secrets

• Original source may have low entropy
─ Reduces the difficulty of a brute force attack

─ Although we must have some strong relation into a useful key

• Sometimes we need multiple keys from the same material
─ While not allowing to find the material (a password, another key) from the new key

João Paulo Barraca, André Zúquete 15

SIO

Key derivation

Purposes

• Key reinforcement: increase the security of a password
─ Usually defined by humans

─ To make dictionary attacks impractical

• Key expansion: increase/decrease the length of a key
─ Expansion to a size that suits an algorithm

─ Eventually derive other related keys for other algorithms (e.g. MAC)

João Paulo Barraca, André Zúquete 16

SIO

Key derivation

• Key derivation requires the existence of:
ꟷ A Salt which makes the derivation unique

ꟷ A difficult problem

ꟷ A chosen level of complexity

• Computational difficulty
ꟷ Transformation requires relevant computational resources

• Memory difficulty
ꟷ Transformation requires relevant storage resources

ꟷ Limits attacks using dedicated hardware accelerators

17João Paulo Barraca, André Zúquete

SIO

Key derivation

Simple Approach: A Digest function

• Arguments:
─ Salt = A random value

─ Password = a secret (provided by humans)

─ H = An adequate Digest Function

key = H(password, salt)

• Advantages:
─ Key has a large length, and can be truncated to the adequate length

─ Two passwords will result in diferent keys

─ Finding the key will not lead to the password

• Issues: simple, enabling brute force/diccionary attacks

João Paulo Barraca, André Zúquete 18

SIO

Key derivation

Password Based Key Derivation Function (PBKDF2)

• Produces a key from a password, with a chosen difficulty

• K = PBKDF2(PRF, Salt, rounds, dim, password)
─ PRF: Pseudo-Random-Function: a digest function

─ Salt: a random value

─ Rounds: the computational cost (hundreds of thousands)

─ Dim: the size of the result required

• Operation: calculate ROUNDS x DIM operations of the PRF using the
SALT and Password
─ Higher number of rounds will increase the cost of brute force/diccionary attacks

João Paulo Barraca, André Zúquete 19

SIO

Key derivation

Password Based Key Derivation Function (PBKDF2)

João Paulo Barraca, André Zúquete 20

Dimension

R
o

u
n

d
s

SIO

Key derivation

scrypt

• Produces a key with a chosen computation and storage cost

• K = scrypt(password, salt, n, p, dim, r, hLen, Mflen)
─ Password: a secret

─ Salt: a random value

─ N: the cost parameter

─ P: the parallelization parameter. p ≤ (232− 1) * hLen / MFLen

─ Dim: the size of the result

─ R: the size of the blocks to use (default is 8)

─ hLen: the size of the digest function (32 for SHA256)

─ Mflen: bytes in the internal mix (default is 8 x R)

João Paulo Barraca, André Zúquete 21

SIO

Key Derivation: scrypt

• Produces a key with a chosen storage cost

• K = scrypt(password, salt, n, p, dim, r, hLen, Mflen)
ꟷ Password: a secret

ꟷ Salt: a random value

ꟷ N: the cost parameter

ꟷ P: the parallelization parameter. p ≤ (232− 1) * hLen / MFLen

ꟷ Dim: the size of the result

ꟷ R: the size of the blocks to use (default is 8)

ꟷ hLen: the size of the digest function (32 for SHA256)

ꟷ Mflen: bytes in the internal mix (default is 8 x R)
© André Zúquete, João Paulo Barraca Information and Organizational Security 22

SIO

Key derivation

scrypt

João Paulo Barraca, André Zúquete 23

	Slide 1: Digests, Integrity Control and Key Derivation
	Slide 2: Digest Functions
	Slide 3: Digest Functions
	Slide 4: Digest Functions
	Slide 5: Digest Functions
	Slide 6: Digest Functions
	Slide 7: Digest Functions
	Slide 8: Message Integrity Code (MIC)
	Slide 9: Example usage at kernel.org to validate file integrity
	Slide 10: Message Authentication Code (MAC)
	Slide 11: Example usage in JWT
	Slide 12: Message Authentication Code (MAC)
	Slide 13: Message Authentication Code (MAC)
	Slide 14: Example: GCM (Galois Counter Mode)
	Slide 15: Key derivation
	Slide 16: Key derivation
	Slide 17: Key derivation
	Slide 18: Key derivation
	Slide 19: Key derivation
	Slide 20: Key derivation
	Slide 21: Key derivation
	Slide 22: Key Derivation: scrypt
	Slide 23: Key derivation

