Network Security: Firewalls & VPNs

departamento de eletrónica,

telecomunicacões e informática

SIO

André Zúquete

Firewalls: Objectives

- Fundamental element to interconnect network domains
 - Access control
 - Flow control
 - -Content control
- Centralized implementation of security policies
 - Minimizes the impact of local vulnerabilities
 - Known or unknown
 - Makes it easier to take more drastic actions
 - -Centralizes problem detection
 - and its treatment

Firewall definition (Cheswick & Bellovin)

- Link between network domains
 - of a protected perimeter (set of networks and machines)
 - to an insecure network
 - Internet
 - Other untrusted local networks
- Component set
 - Hardware and software
- Properties
 - In the path of all in \Leftrightarrow out traffic
 - Controls the traffic passing through it
 - Immune to penetration (by definition)

Firewalls: Definition (Cheswick & Bellovin)

Firewalls: Functionalities

- Supervision of all in ⇔ out communication
 - Control
 - The use of internal resources by external hosts/requests
 - The use of external resources by internal host/requests
 - Defense from attacks
 - from outside the protected domain towards its resources
 - from the protected domain against external resources
- Activation of gateway mechanisms
 - To hide the structure from the protected perimeter
 - NAT (Network Address Translation)
 - Masquerading and Port Forwarding
 - To extend the security perimeter
 - Secure tunneling (VPN)

Firewalls: Importance

- Extreme!
- Attacks on public systems are constant
 - By specialized attackers
 - By standalone applications
- Systems do not always have adequate security mechanisms
 - Blocking after too many incorrect attempts
 - Validation of communications
 - Access control
- Necessary to apply mechanisms defined by the administrator, in accordance with domain policies
 - An application programmer is not aware of these

- Perimeter defense (of the domain)
 - Can be part of a defense in depth strategy
- Consider an unsafe environment and a safe one
 - Out: other domains or the Internet
 - Inside: internal network
- A single server: Bastion

Generic structure: with a DMZ

- DMZ: DeMilitarized Zone Network or Perimeter Network
 - Insecure network
 - Contains servers exposed to the world
 - Sometimes necessary to use specific services/applications

Generic structure: w/ DMZ and two firewall equipments

- DMZ may have some protection
 - System of two firewalls with different rules
- External firewall: quite permissive
 - Control access to all networks
- Internal firewall: more restricted
 - Control access to the internal network

Firewall types: Packet filters

- Reject unauthorized interactions based on the content of IP datagrams
 - IP addresses (source and/or destination)
 - IP/transport header options
 - Transport protocols and ports (origin and/or destination)
 - Directions for creating virtual circuits
 - Data sent via transport protocol
 - Datagram size
- Can analyze flow behavior
 - Example: detect port scans (with nmap)
- Typically supported by core OS components
 - Example: iptables, ipfw, pf

Firewalls types: Stateful packet filters

- Dynamic (or context-sensitive) packet filter
 - Sort of packet filter with historical context
 - Context is key to certain decisions
 - Common term: Stateful Packet Filter/Inspection (SPI)

• Context examples:

- Decisions made for IP packet fragments
 - Defragmentation before filtering
- Established TCP virtual circuits
 - Circuit establishment requests are controlled
 - Established virtual circuits are allowed

Firewall types: Stateful packet filters

- Context examples (cont.):
 - Dynamic NAT tables
 - Creation of entries depending on observed traffic
 - Request/response interactions over UDP
 - Dynamic authorization of responses to authorized requests
 - Example: DNS name resolution
 - ICMP error messages
 - Related to previously sent TCP/UDP packets
 - Identification of application protocols from data flows
 - To handle flows that use dynamic or "stolen" ports
 - Examples: FTP, RPC protocols, P2P protocols
 - Utility: filtering, transparent proxying, QoS

Firewall types: Applicational gateways

- Control interactions at the application level
 - But transparent to interacting applications
 - There is usually a different firewall per protocol (protocol proxy)
- Client -> Proxy -> service (server)
 - Proxies are servers
- Aspects of operating a proxy
 - User access control
 - Analysis and modification of content
 - Detailed logging
 - Impersonation (proxying)
 - Transparent replacement of one of the interlocutors

Firewall types: Circuit gateways

- Kind of application gateway
 - But contacted directly by client applications
 - Non-transparent interposition
- Interposition goals
 - Deploying domain-specific authentication and authorization policies and mechanisms
 - Deploying supplementary services
 - e.g. Tor proxy
- Typically requires changing client applications
 - Examples: SOCKS and HTTP Proxy

Example: SOCKS4 circuit gateways

Example: SOCKS v5 circuit gateways

Firewall bastion

- Must run secure versions of operating systems
 - With a secure configuration
 - Only essential services are installed
 - Telnet/SSH, DNS, FTP, SMTP and authentication proxies
- Public servers should not perform in a bastion
 - Examples: DNS, SMTP, HTTP, FTP, SSH, RAS, etc.
 - Must run on isolated machines within DMZs
 - Preferably one per service
 - Bastion only forwards traffic to the appropriate machines on a DMZ
 - And allows limited traffic from the DMZ

Firewall bastion

- It is often a platform for application gateways
 - -But the more proxies, the lower its performance will be
 - Proxies can run on specific machines
 - Security appliances
 - -Bastion only forwards traffic to and from the appliances
- Secure execution of application gateways
 - -Independence
 - The compromise of one does not affect the rest
 - -No special privileges
 - Their compromise does not allow to affect the host

Firewalls' security services

Authorization

- Data streams (packet filters)
 - Transport or network level
- Users (application gateways / circuits)

• Traffic Redirection

- For dedicated hosts
 - Local services (e.g., mail, www, ftp, etc.)
 - Proxies in security appliances
- Proxying
 - Explicit (e.g., circuit gateways)
 - Transparent (e.g., NAT address translations)

Firewalls' security services

- Application content processing
 - Content analysis
 - Example: virus detection
 - Changing high-level protocols
 - Example: virus removal
- Secure communication
 - Virtual Private Networks (VPNs)
 - Encryption and integrity control of data flows over public (insecure)
 - Tunneling
 - IP domain extension to distant nodes
 - Example: PPTP, L2TP, IPSec

Firewalls' security services

- Defense against DoS attempts
 - Attack detection
 - Abnormal traffic volumes, high volume, etc...
 - Traffic scrubbing
 - Filtering dangerous or malformed datagrams
 - Activation of mitigation add-ons
 - Example: SYN flooding relay/semi-gateway
- Defense against information leaks (exfiltration attacks)
 - Abnormal traffic detection
 - Controlling behavior against known models

Firewalls' limitations

- Cannot tackle attacks from the internal network
 - Unless the internal network is segmented into multiple subnets
 - Switches typically do not support firewall operations
 - VLANs provide minimal segregation (DMZ type)
- Effectiveness in controlling all external connections
 - Which can be done in parallel in countless ways:
 - Unregistered WLANs & Aps
 - VPNs
- Lack of control over camouflaged/hidden interactions
 - Camouflaged interactions multiplexed by VPNs
 - IP tunnels over HTTP, ICMP, DNS, etc.
- Difficult to manage in environments with heterogeneous interests
 - Universities, ISPs

Personal firewalls

- Adopted for the protection of individual / personal hosts
 - Defense in depth vs. perimeter defense
- Owners can set additional control policies
 - Applications authorized to access the network
 - The protocols that applications can use
 - The hosts/networks that protocols/applications can interact with
- Reduce the risk of compromise between hosts on a network
 - Allows a machine to self-protect, independently of the protection given by its network
 - No assumptions regarding other network protections
 - Useful for machines that migrate between networks

Personal firewalls: issues

- Normal users are not network security experts
 - They don't normally understand how IP networks work
 - IP addresses, transport ports, transport protocols, etc.
 - They do not know how to assess whether a given interaction is normal, acceptable, etc.
 - They don't know the basic security policies they should apply
- Blocking suspicious interactions may nullify functionality
 - Network communication is currently commonplace
 - Applications do not inform users of their communication needs

Personal firewalls: issues

- Operational complexity
 - Different operating environments \rightarrow different policies
 - Different network interfaces \rightarrow different policies
- The combination of operational scenarios, network interfaces and acceptable interactions for each case leads to a huge number of rules
 - Confusion, incoherence \rightarrow difficulty to detect vulnerabilities

Linux OS firewall: iptables

- Stateful packet filter
 - Integrated with the kernel TCP/IP
 - Can be extended in several ways
 - New core modules
 - User mode applications

- 5 chains
 - INPUT, OUTPUT, FORWARD
 - PREROUTING, POSTROUTING
- 4 tables (per chain, but not for all) – raw, mangle, nat, filter
- Various extra modules
 - e.g., CONNTRACK (connection tracker, or flow follower)

Iptables: decisions (or verdicts)

- Basic
 - ACCEPT
 - Let the package continue
 - DROP
 - Discard the package
 - CONTINUE
 - Use decisions from other rules
- Reusable Decisions
 - New chains
 - Jump to a new chain
 - The name of the chain is the decision
 - RETURN
 - Leave the current chain

- Other
 - LOG
 - MARK
 - With internal label
 - Useful for making coherent decisions across different chains
 - REJECT
 - Rejection with error message
 - SNAT, MASQUERADE
 - Source NAT (masquerading)
 - DNAT, REDIRECT
 - Destination NAT (port forwarding)
 - QUEUE
 - Forward to applications

VPN (Virtual Private Network)

- A VPN is a technology that extends a security perimeter
 - It allows traffic from a security perimeter to extend to hosts or networks physically far from it
 - The traffic in the VPN must be cryptographically protected
- In a nutshell, it combines two technologies
 - IP or TCP/UDP tunneling
- VPN client VPN server secure Over IP, UDP, TCP, or an applicational protocol • tunnel host host - Secure tunneling Confidentiality & integrity control host host • Network **VPN** client secure **VPN** server extended tunnel host host by a VPN host host • VPN types - Host-to-Host host host host Network host Network VPN VPN secure - Host-to-Net extended extended endpoint tunnel endpoint by a VPN by a VPN host host host host Net-to-Net

SIO

Why do we need a VPN?

- To expose critical assets of a protected perimeter only to authorized people working geographically far from it
 - Work from home
 - Roaming personnel
- To guarantee that remote interactions with the protected perimeter do not reveal useful information for an attacker
 - Traffic eavesdropping is possible but useless, because it is encrypted
- To protect from malicious network providers
 - These can do all sorts of traffic manipulation, since they intercept the entire communication
 - By using a VPN, a user primarily uses network services from the protected perimeter
 - Example: DNS resolvers
 - People should always use a VPN when using public networks!

VPN examples: SSH

- An SSH session allows to define port-oriented tunnels
 - The SSH client can expose ports that represent ports in the SSH server host/network
 - The SSH server can expose ports that represent ports in the SSH client host/network
- A single SSH session can multiplex several tunnels
 - But these must be explicitly defined
- SSH tunnels are very convenient for several applications/scenarios
 - For implementing a secure FTP session, which uses two TCP streams
 - Control and data
 - For running X11 graphical applications on the server host that display on the client host
 - For remote accessing <u>specific services</u> in a protected network
 - Without exposing other network services

Firewall example: OpenVPN

- OpenVPN implements a network-based host-to-net VPN
 - All traffic from a client to a given network is routed to it through the VPN
 - The VPN server represents the VPN client in that network
 - The VPN server extends the security perimeter of the network it serves
- OpenVPN types
 - L2 (TAP): the server propagates L2 broadcast/multicast traffic to the client
 - L3 (TUN): the server propagates L3 (IP) unicast traffic to the client

Firewall example: IPSec

- IPSec is IP with some security-related modifications
 - Extra headers
 - Possible payload encryption
- Extra headers
 - AH (Authentication Header)
 - For adding source authentication & integrity control to IP packets (header and payload)
 - ESP (Encapsulating Security Payload)
 - For adding source authentication & integrity control and/or confidentiality to IP payloads
- IPSec modes
 - Transport (rarely used)
 - Tunnel (used for host-to-net or net-to-net VPNs)

38

Firewall example: IPSec

- An IPSec VPN is usually implemented with
 - IPSec in tunnel mode
 - ESP headers with source authentication, integrity control and confidentiality
- Original IP packets routed through the VPN are
 - Totally encrypted (both header and payload) on ingress
 - And decrypted and validated on egress
 - Become the payload of a VPN IP packet
 - The VPN IP packet has a proper ESP header
- But because of NAT, IPSec is tunneled over UDP

 An extra UDP header allows NAT multiplexing
 Mathematical Action of the strain of the str

