Introduction to cybersecurity

SIO

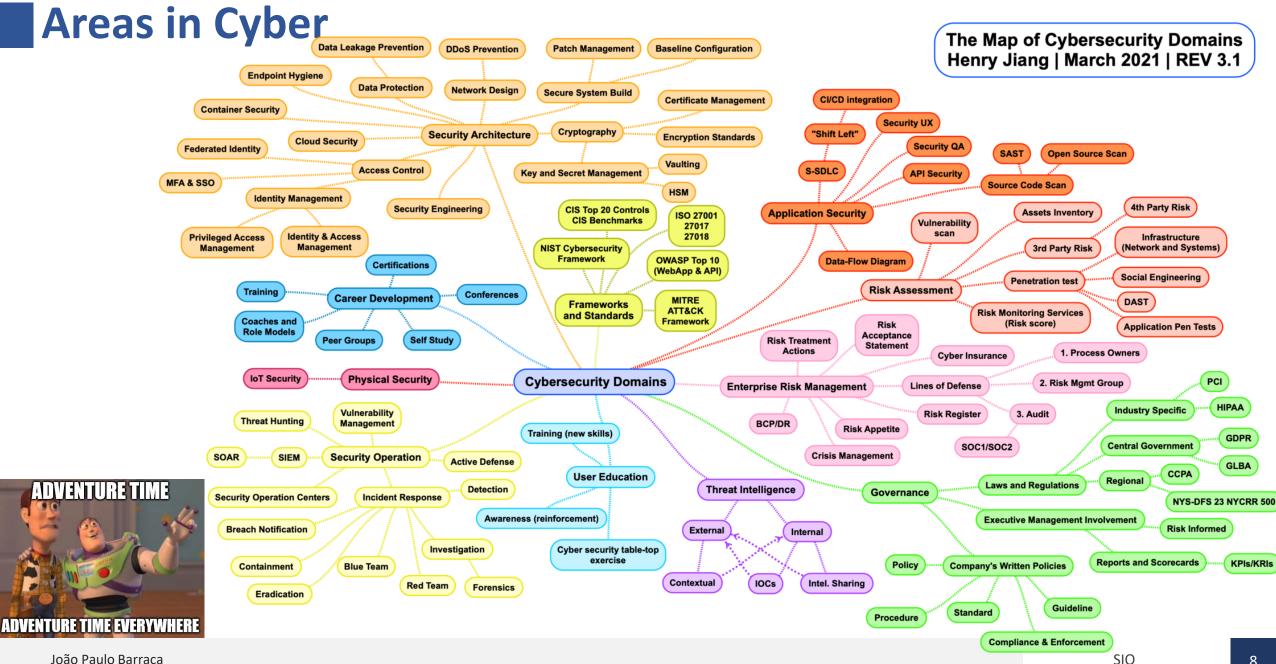
eti universidade de aveiro departamento de eletrónica, telecomunicações e informática



.088b. d88888b d8888b d8888 88' YP .8P Y8. d8P Y8 88 `88' 88 88 8P 88 8800000 88 8b `Y8b. 88 88 88 db 8D `8b d8' Y8b d8 .88. ΥP `Y88P' `Y88P' Y888888P Y88888P

- {3}--Shellnoob
 - --commix
 - -FTP Auto Bypass
 - -jboss-autopwn
 - Blind SQL Automatic Injection And Exploit ruteforce the Android Passcode given the hash mla SQL injection Scanner

To Main Menu



Cybersecurity

Subject focused on the predictability of systems, processes, environments...

- Across all aspects of a (business, system, organization) life cycle:
 - Planning
 - Development
 - Execution and operations
 - Processes
 - Human resources and clients
 - Supply Chain
 - Mechanisms and Controls
 - Standards, Compliance and Laws, ...

Security Domains or Areas

Security is scoped into domains with many overlaps

- Organizational Security
- Physical Security
- Information Security
- System Security
- Operacional Security
- Secure Development

Security Domains

Organizational Security (ISO 27001)

- Measures to **protect data** (electronic and otherwise) collected, held, and processed,
- and to protect its computer systems, devices, infrastructure, computing environment, information and data stored and all other relevant equipment
- from damage and threats whether internal, external, deliberate, or accidental.

Organizational Security We are here Information Security

Security Domains

Information Security (ISO 27001)

• preservation of **confidentiality**, **integrity**, and **availability** (CIA) of information.

- Confidentiality: Ensuring that information is accessed only by authorized individuals.
- **Integrity**: Maintaining the accuracy and completeness of information.
- Availability: Ensuring that information is accessible when needed by authorized users.

Organizational Security We are here Information Security

11

Information Security Objectives

 Confidentiality: Ensuring that information is accessed only by authorized individuals.

Measures:

- Encrypt information
- Use access passwords (strong)
- Use Identity Management and Authentication systems
- Doors, Strong walls
- Security personel
- Training

Information Security Objectives

 Integrity: Maintaining the accuracy and completeness of information.

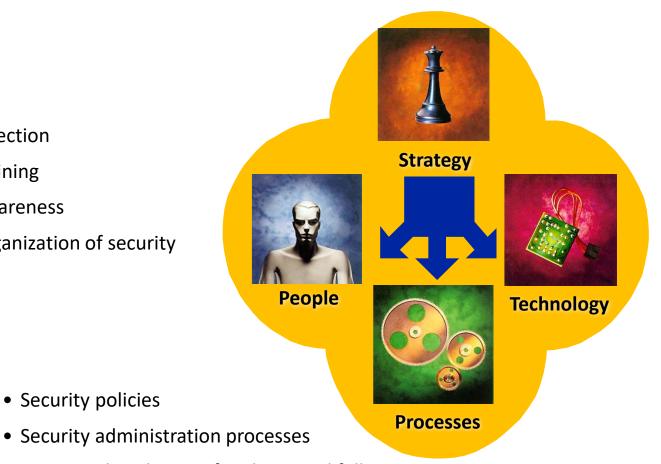
Measures:

- Identity control (hashes)
- Backups
- Access controls
- Robust storage devices
- Data verification processes

Information Security Objectives

 Availability: Ensuring that information is accessible when needed by authorized users.

• Measures:


- Backups
- Disaster recovery plans
- Redundancy
- Virtualization
- Monitoring

How can we use security in an organization?

With a strategy following the organizational dimensions

- Selection
- Training
- Awareness
- Organization of security

Security policies

- Vulnerability scanning
- Firewalls
- Authentication
- Access Control
- Cryptography
- Digital Signatures
- Certification authorities
- Certification hierarchies

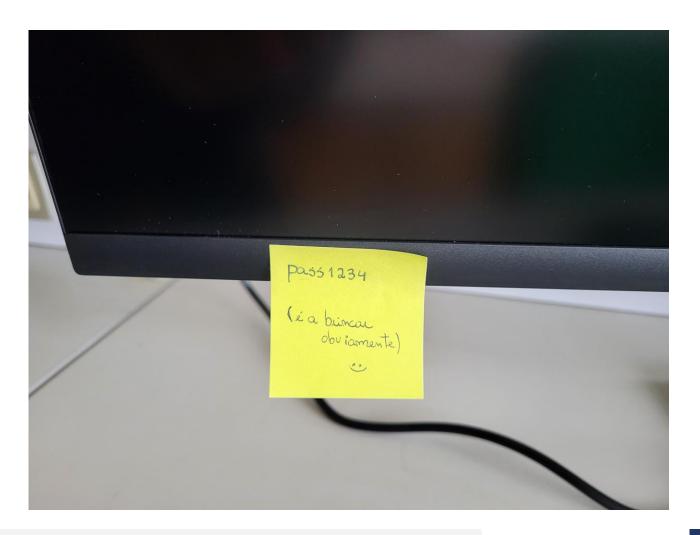
15

• etc...

• Continued evolution of auditing and follow-up processes

Pitfalls

Pushing one dimensions without the other weakens the security posture


- What may have failed?
 - Technology?
 - Processes?
 - People?
 - Strategy?
- Walls, firewalls, processes...
 everything bypassed

Pitfalls

Pushing one dimensions without the other

 When it works and there is a security culture

Security objectives

1/3 – Intrinsic and unhavoidable aspects

- Defense against catastrophic events
 - Natural phenomena
 - Abnormal temperature, lightning, thunder, flooding, radiation, ...

- Degradation of computer hardware
 - Failure of power supplies
 - Bad sectors in disks
 - Bit errors in RAM cells or SSD, etc.

Security objectives

2/3 – Unpredictable ordinary failures

- Defense against ordinary faults / failures
 - Power outages
 - Systems' internal failures
 - Linux Kernel panic, Windows blue screen, OS X panic
 - Deadlocks
 - Abnormal resource usage
 - Software faults
 - Communication faults...

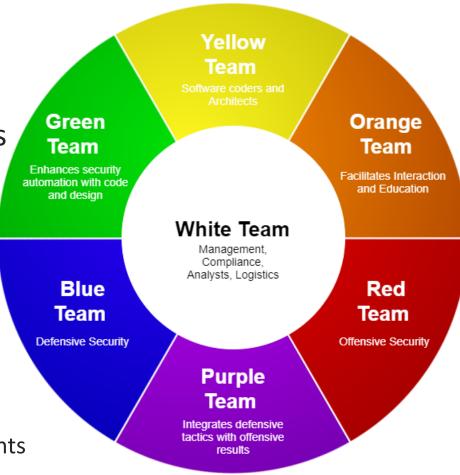
Security objectives

3/3 – Threats

- Defense against non-authorized activities (adversaries)
 - Initiated by someone "from outside", "from inside" or "through a supplier"
- Types of non-authorized activities:
 - Information access
 - Information alteration
 - Resource usage
 - CPU, memory, print, network, wallets, etc...
 - Denial of Service
 - Vandalism
 - Interference with the normal system behavior without any benefit for the attacker

Security Perspectives

Which type of approaches


Defensive tasks: focus on maintaining predictability and building layers

Deployment of Firewalls, Backups, Alert systems

Creation of processes and compliance

• Offensive: focus on exploiting vulnerabilities in entities

- May have malicious/criminal intent
- May have the purpose of validating the solution (Red Teams)
- Other:
 - Reverse Engineering: Recovery of design from built products
 - Forensics: extract information and reconstruct previous events
 - Disaster Recovery: minimize the impact of attacks
 - Auditing: validate the solution complies with some set of requirements

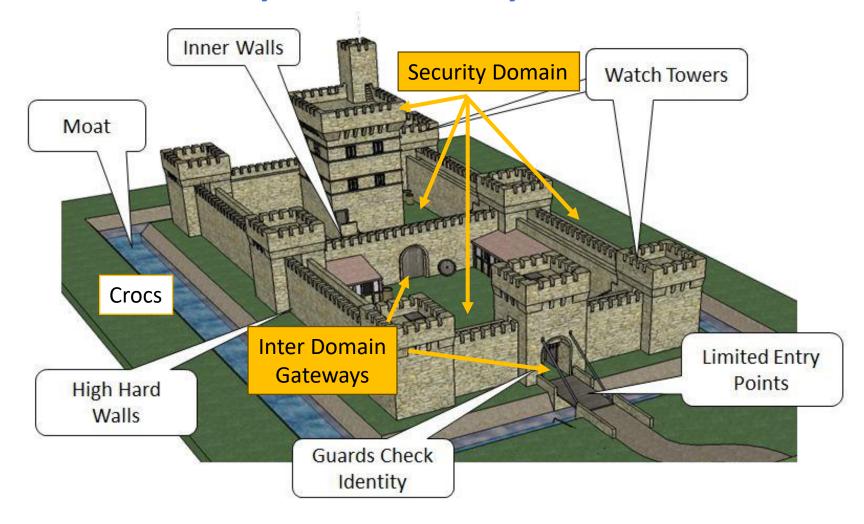
Core Concepts

1. Security Domains

2. Security Policies

3. Security Mechanisms

4. Security Controls


Security Domains

A system or subsystem that is under the authority of a single trusted authority. Security domains may be organized (eg, hierarchically) to form larger domains.

- Allow managing security in an aggregated manner
 - Management will set the attributes of the domain
 - Entities are added do the domain and will get the "group" attributes
- Behavior and interactions are ruled by homogeneous rules inside the domain
- Domains can be organized in a flat of hierarchical manner
 - Flat: Domains do not overlap but have frontiers, and exist at the same abstraction level
 - Hierarchical: Domains have different levels of abstraction (Organization -> devices -> Servers -> ServerA)
- Interactions between domains are usually controlled
 - With gateways that limit, change or log interactions

Security Domains

Popular application of security domains circa year 1500

24

Security policies

Set of guidelines related to security, that rule over a domain

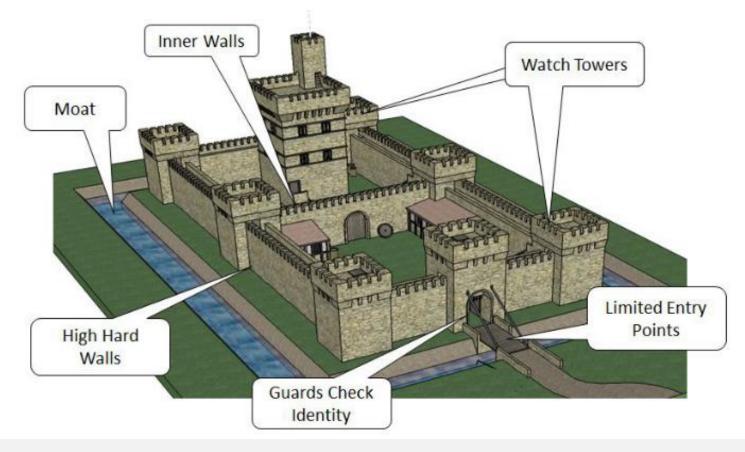
- Organization will contain multiple policies
 - Applicable to each specific domain
 - They may overlap and have different scopes/abstraction levels
- The multiple policies must be coherent
- Examples
 - Users can only access web services
 - Subjects must be authenticated in order to enter the domain
 - Walls must be made of concrete
 - Communications must be encrypted

Security Policies

- Define the power of each subject
 - Least privilege principle: each subject should only have the privileges required for the fulfillment of his duties
- Define security procedures
 - Who does what in which circumstances
- Define the minimum security requirements of a domain
 - Security levels, Security Groups
 - Required authorization
 - And the related minimum authentication requirements (Strong/weak, single/multifactor, remote/face-to-face)

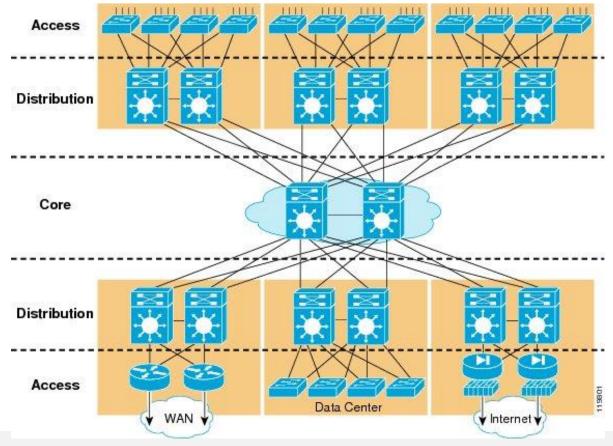
Security Policies

- Define defense strategies and fight back tactics
 - Defensive architecture
 - Monitoring of critical activities or attack signs
 - Reaction against attacks or other abnormal scenarios


- Define what are legal and illegal activities
 - Forbid list model: Some activities are denied, the rest are allowed
 - **Permit list model**: Some activities are allowed, the rest is forbidden

Security Mechanisms

- Mechanisms implement policies
 - Policies define, at a higher level, what needs to be done or exist
 - Mechanisms are used to deploy policies
- Generic security mechanisms
 - Confinement (sandboxing)
 - Authentication
 - Access control
 - Privileged Execution
 - Filtering
 - Logging
 - Auditing
 - Cryptographic algorithms
 - Cryptographic protocols


Security Mechanisms

- Policy: Movement between domains is restricted
- Mechanisms: Doors, guards, passwords, objects/documents, training, salary

Security Mechanisms

- Policy: systems must be resilient to arbitrary failures of one component
- Mechanisms: equipment and links are doubled, protocols are developed

Security Controls

A safeguard or countermeasure prescribed for an information system or an organization designed to protect the confidentiality, integrity, and availability

- Controls include policies & mechanisms, but also:
 - Standards and Laws
 - Processes
 - Techniques
- Controls are explicitly stated and can be auditable
 - E.g.: ISO 27001 defines 114 controls in 14 groups
 - ... asset management, physical security, incident management...

João Paulo Barraca, André Zúquete SIO

31

Types of Security Controls

	Prevention	Detection	Correction
Physical	- Fences	- CCTV	- Repair Locks
	- Gates		- Repair Windows
	- Locks		- Redeploy access cards
Technical	- Firewall	- Intrusion Detection Systems	- Vulnerability patching
	- Authentication	- Alarms	- Reboot Systems
	- Antivirus	- Honeypots	- Redeploy VMs
			- Remove Virus
Administrative	- Contractual clauses	- Review Access Matrixes	- Implement a business continuity plan
	- Separation of Duties	- Audits	- Implement an incident response plan
	- Information Classification		

João Paulo Barraca, André Zúquete SIO

32

Practical security

Key concept: Realistic Prevention

- Consider that perfect security is impossible!
- Focus on the most probable events for the most relevant assets
 - May depend on physical location, legal framework, ...
- Consider cost and profit
 - A great number of controls has a low cost
 - However, there is no upper limit on the cost of a security strategy
 - Security mechanisms must cost less than the asset it protects
- Consider all domains and entities
 - A single breach can be escalated to a more serious situation

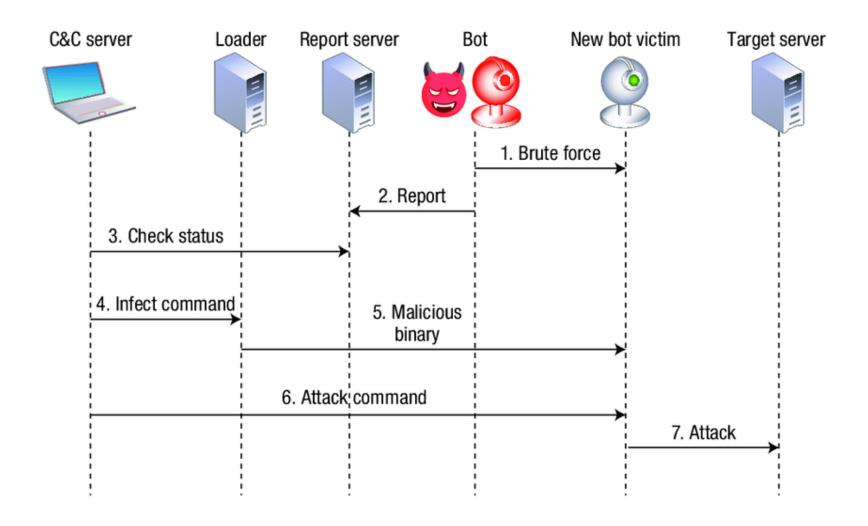
Practical security

Key concept: Realistic Prevention

- Consider the impact of an attack
 - Under the light of CIA and other potential impact areas (e.g., brand or legal)
- Consider the cost and recover time
 - Data, monetary cost, reputation, market access
- Characterize attackers
 - Define controls specific for those attackers
 - There will always exist more resourceful attackers
- Consider that the system will be compromised
 - Have recovery plans assuming that everything else failed

Security in computing systems

Complex problems


- Computers can do much damage in short time frames
 - Computers manage huge amounts of information
 - Process and communicate with very high speed

- The number of weaknesses is always growing
 - Due to the increased complexity
 - Due to every reducing time-to-market, or cost

Security in computing systems

Complex problems

- Networks allow novel attack mechanisms
 - "Anonymous" attacks from any place in the planet
 - Fast spread across geographical boundaries
 - Exploitation of insecure hosts and applications
- Attackers can build complex attack chains
 - First exploration
 - Lateral movement
 - Exfiltration
 - Check: https://attack.mitre.org/matrices/enterprise/

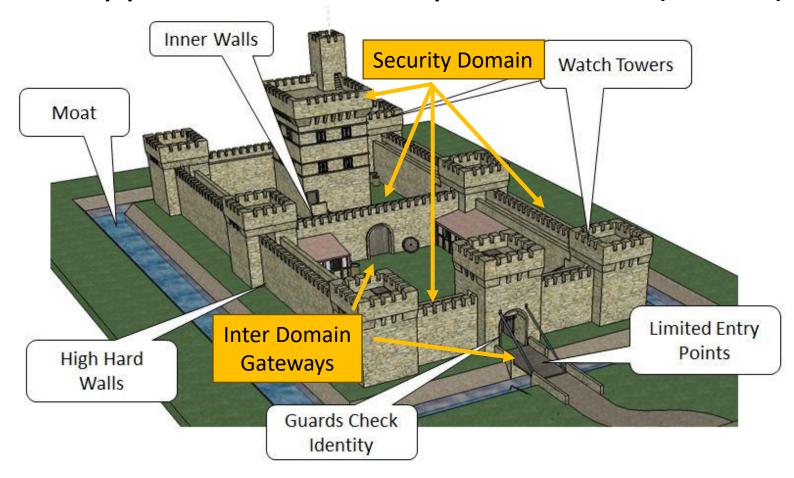
Mirai botnet operation and communication

Causes Distributed Denial of Service (DDoS) attacks to a set of services, by constantly propagating to weakly configured IoT Devices. Observe that victims are used to conduct further attacks to other victims

source: Kolias, Constantinos et al. "DDoS in the IoT: Mirai and Other Botnets." Computer 50 (2017): 80-84.

Perimeter Defense Model

Minimal defense, frequently not sufficient. The most common.


42

Perimeter Defense Model

- Protection against external attackers
 - Internet
 - Foreign users
 - Other organizations
- Assumes that internal users are trusted and share the same policies
 - Friends, family, collaborators
- Used in domestic scenarios or small offices
- Limitations
 - Too simple
 - Doesn't protect against internal attackers
 - Previously trusted users
 - Attackers that acquired internal access

Defense in Depth Model

Layered approach with multiple domains (better)

Defense in Depth Model

- Protection against internal and external attackers
 - From the Internet
 - Users
 - Other organizations

- Assumes well-defined domains across the organization
 - Walls, doors, authentication, security personnel, ciphers, secure networks

- Limitations
 - Needs coordination between the different controls
 - May end with overlapping controls, but also with holes in the security perimeters
 - Cost
 - Requires training, changes to processes and frequent audits

Zero Trust Model

- Defense model without specific perimeters
 - There is no inherent trust in entities just because they are internal
 - Actually, there may be no notion of internal and external
 - Requires detailed knowledge, controls and observability between all entities

- Model recommended for new systems
 - Traditional systems should migrate to it
 - Implies the design of systems/services specific for this model
 - Legacy systems will need additional protection layers
 - Firewalls, filters, adapters, plugins

In practice?

- Cibersecurity is limited by economics, operations and logistics
 - All entities have limited resources
 - Even attackers!
 - Security is a business continuity activity, it cannot prevent business
- Cybersecurity deals with building and applying a strategy
 - under an operational and legal context
 - preventing issues that may never happen
- Try this: http://targetedattacks.trendmicro.com/cyoa/en/