Storage

© André Zúquete, João Paulo Barraca

INFORMATION AND ORGANIZATIONAL SECURITY

Storage devices develop faults

- It should be minimized the failures in storage devices and loss of data
- Failure is certain and cannot be ignored

Access to mechanical disks is slow (hard disks)

- Access Time = Translation time + Rotation Time
- More information -> higher impact of storage media

Solid State Devices (SSDs) have a limited number of write operations

2000-3000 writes per sector for MLC

Specific events may result in total data loss

• Fire, robbery, "energy peaks", floods, user mistakes, attacks

May be required to distribute data in an intelligent manner

- To maximize performance
- To reduce costs

Solutions

Data backups

- Local
- Remote

Redundant Storage

- RAID
- Others: ZFS

Better storage devices, environments with higher control

- SLED (Single Large Expensive Disks)
- Enterprise Grade devices
- Temperature and Humidity Control

Infrastructures dedicated for storage

Single policy control point

Backups

Periodic copy of data

- Snapshot of the storage state in a specific moment
- Copies will allow to set files to a previous version
- May be encrypted

Full: Complete snapshot of the data volume

- Fast recovery
- Requires a large amount of space

Differential: Differences since the last full backup

- Slower recovery, but also lower storage requirements
- Daily differential backups will grow as changes increase

Incremental: Differences since the last backup

- Even slower recovery
 - Requires reconstruction of all intermediate backups since the last full
- Higher storage space efficiency

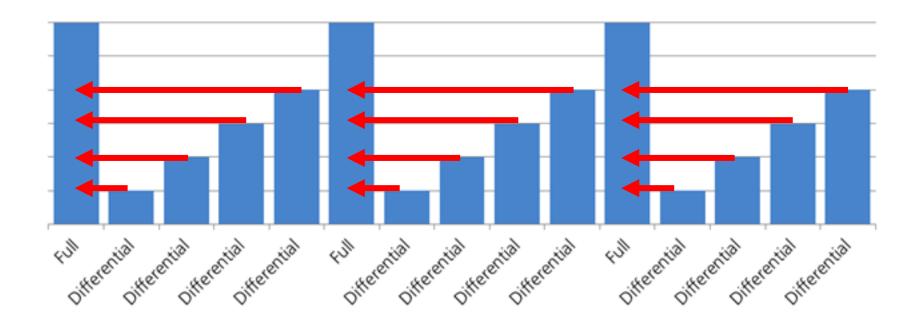
Backups

A backup is not an additional disk with data

• External or remote

It considers policies, mechanisms and processes to make, maintain and recover copies of the same data

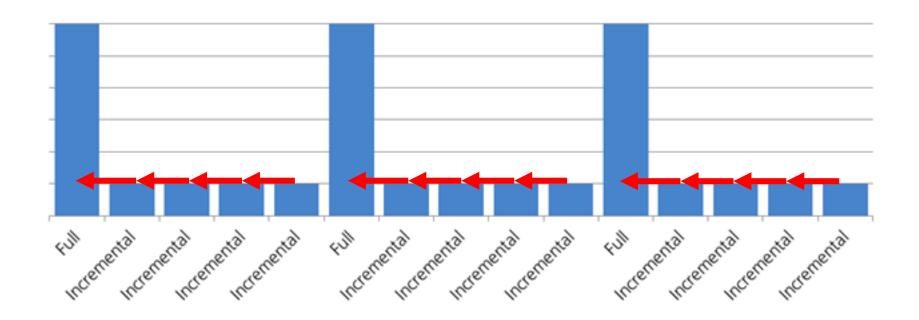
- Should resist specific situations
- Should be used only in emergency situations
- Important to consider both the copy, storage and recovery!


Legal framework implies a special care

- When dealing with personal data
- Frequently impose a retention policy
 - Backups should expire after some time

Backup Types: Differential

Backups types: Differential


Differential

http://www.teammead.co.uk/

Backups types: Incremental

Incremental

http://www.teammead.co.uk/

Backups types: Incremental

			Totals			Existing Files		New Files	
Backup#	Туре	#Files	Size/MB	MB/sec	#Files	Size/MB	#Files	Size/MB	
<u>657</u>	full	143905	7407.3	2.07	143870	7360.4	59	46.9	
<u>658</u>	incr	47	47.6	0.03	33	40.0	29	7.6	
<u>659</u>	incr	153	39.5	0.02	132	32.1	36	7.4	
<u>660</u>	incr	118	52.2	0.03	78	12.1	70	40.1	
<u>661</u>	incr	47	47.4	0.02	32	40.0	32	7.4	
<u>662</u>	incr	47	47.5	0.02	33	40.0	29	7.5	
<u>663</u>	incr	47	47.5	0.01	33	40.2	29	7.3	
<u>664</u>	incr	232	53.3	0.03	211	46.0	36	7.4	
<u>665</u>	incr	91	51.4	0.05	35	1.2	85	50.2	
<u>666</u>	incr	89	45.7	0.05	71	38.0	37	7.6	
<u>667</u>	incr	47	47.7	0.02	18	9.2	44	38.5	
<u>668</u>	incr	47	47.8	0.02	21	34.0	41	13.8	
<u>669</u>	full	143937	7407.8	3.05	143824	7396.8	185	11.2	
<u>670</u>	incr	95	35.0	0.04	68	27.0	54	8.0	

Backups: Compression

Uses lossless compression algorithms and solutions

• Ex: ZIP

Copy only some parts of the information

Only modified files

Deduplication

- Only store unique files/blocks
- Usually using full copy with offline deduplication
 - Of disk blocks using specific image formats
 - Of files using hard links

Backups: Compression and Deduplication

			Existing Files			New Files			
Backup#	Туре	Comp Level	Size/MB	Comp/MB	Comp	Size/MB	Comp/MB	Comp	
<u>657</u>	full	3	7360.4	6244.5	15.2%	46.9	9.4	80.0%	
<u>658</u>	incr	3	40.0	9.0	77.6%	7.6	1.7	76.9%	
<u>659</u>	incr	3	32.1	8.6	73.1%	7.4	1.7	77.3%	
<u>660</u>	incr	3	12.1	3.2	74.0%	40.1	9.0	77.6%	
<u>661</u>	incr	3	40.0	8.3	79.4%	7.4	1.7	76.7%	
<u>662</u>	incr	3	40.0	8.8	77.9%	7.5	1.7	76.8%	
<u>663</u>	incr	3	40.2	8.3	79.3%	7.3	1.7	77.2%	
<u>664</u>	incr	3	46.0	12.3	73.2%	7.4	1.7	77.1%	
<u>665</u>	incr	3	1.2	0.4	68.2%	50.2	10.5	79.2%	
<u>666</u>	incr	3	38.0	9.1	76.0%	7.6	1.9	74.8%	
<u>667</u>	incr	3	9.2	1.2	86.5%	38.5	8.4	78.2%	
<u>668</u>	incr	3	34.0	7.2	78.9%	13.8	3.4	75.4%	
<u>669</u>	full	3	7396.8	6251.1	15.5%	11.2	2.9	74.5%	
<u>670</u>	incr	3	27.0	6.5	76.0%	8.0	2.0	75.7%	

\$ du -hs 669
6.2G 669
\$ du -hs 657
6.2G 657

\$ du	-hs 669 657	
6.2G	669	
106M	657	
6.3G	total	

du ignores duplicated hard links

© André Zúquete, João Paulo Barraca

INFORMATION AND ORGANIZATIONAL SECURITY

Backups: Levels

Applications

- Extract data from applications (e.g. mysqldump)
- Represent a consistente view of the application
 - May be required to block the application state (e.g. Database changes)
- May be repeated for each individual application

Files

- Copy of individual files
- May backup any application in a filesystem
- State may be inconsistente
 - E.g. open files without data written, or applications change change many files at once

Backups: Levels

Filesystem

- Internal features provides by each individual filesystem
- Creation of periodic snapshots with record of all changes or current state
- May allow the recovery of individual files, or the entire filesystem

Device Blocks

- Copy of all blocks of a storage médium
- Independent of the filesystem or operation system in use
- May be implemented by the storage infrastructure
 - Transparent and without any impact to applications

Backups: Location of data

In the same volume or in the same server

- Allow users to rapidly recover information
- Protects against changes/deletions made by users
- May not protect against hardware malfunction
 - E.g. macOS Timemachine

In a system location in the same infrastructure

- Also with fast access time
- Protects against isolated storage failures
- Doesn't protect data against events with broader reach
 Floods, fire, robbery
- Examples: Most enterprise storage solutions, backuppc, TimeCapsule, Borg, Kopia

Backups: Location of data

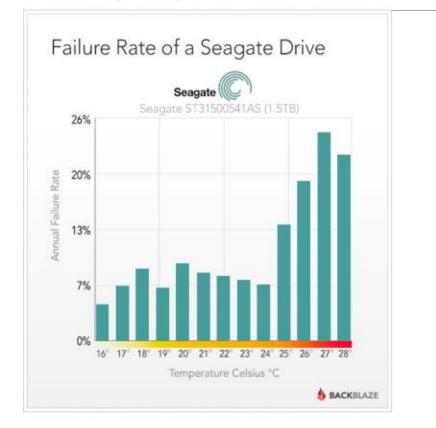
Remote (off-site)

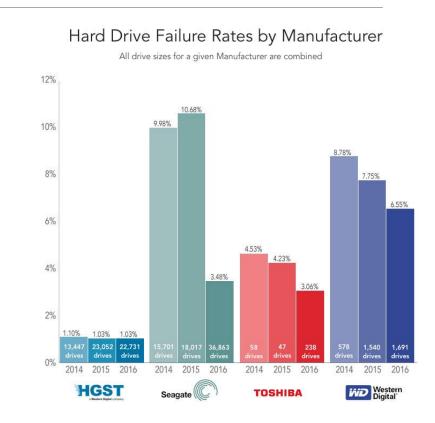
- Implemented to a system outside the local datacenter
 - Dedicated service or through the internet
 - E.g. Amazon S3, or to servers in a dedicated datacenter
 - Encryption if recommended (or mandatory) in the case of external services!
- Implemented with specialized secure transport
 - Armored car transporting backups to a secure place
- Allow recovery even if far reaching events occur
 - Terrorism, Earthquake
- Recovery will be slower
 - Limited by the speed of a network link or the physical transport

Selecting Storage Devices

There are diferent device grades: Enterprise vs Desktop

- Different construction quality and recovery features
- Different MTBF: Mean Time Between Failures
 - Enterprise HDD: 1.2M hours, at 45°C, working 24/7, 100% use rate (1)
 - Desktop HDD: 700K hours, at 25°, working 8/5, 10-20% use rate(1)

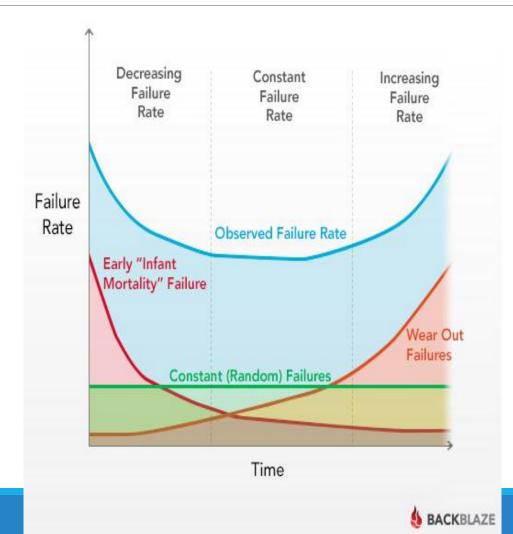

Adjusted to each use case


- Write intensive vs Read Intensive
- NAS vs Video vs Desktop vs Cold Storage vs Data Center
 - Differences in power consumption, reliability and performance

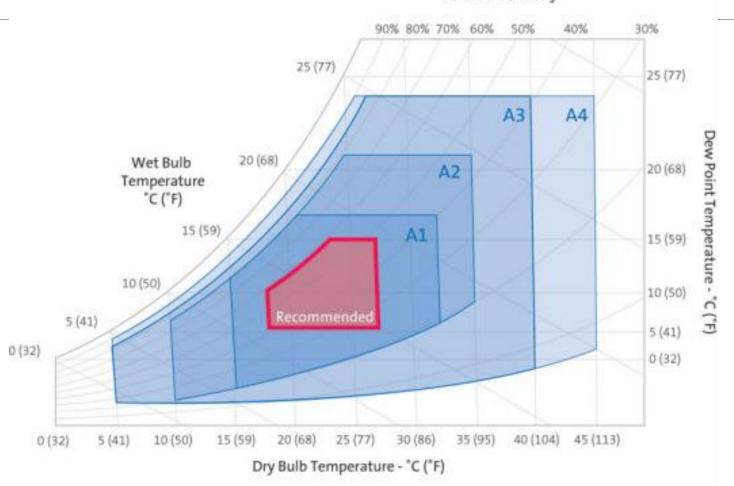
Adjusted to a specific performance level

- Tier 0: Highest performance, low capacity (PCIe NVME SLC SSD)
- Tier 1: Some performance, high capacity and availability (M2 SATA SSD)
- Tier 3: Low performance, high capacity, low price (SATA HDD)

Controled Environment and Equipment



b BACKBLAZE


https://www.backblaze.com/b2/hard-drive-test-data.html

Controled Environment and Equipment

© André Zúquete, João Paulo Barraca

Controled Environment and Equipment

© ASHRAE graphic reformatted by Condair

RAID: Redundant Array of Inexpensive Drives

Improves the survivability of information

- Data is only lost after several devices are lost
- The number of lost devices is configurable

Low cost and efficient solution

- Can use cheap, lower quality hardware
- Can improve read and write performance

RAID doesn't replace backups

- Only tolerates the failure of a limited number of devices
- Cannot cope with user mistakes (file modification/deletion)

RAID can even increase the failure probability

• As it can be tweaked towards performance

RAID 0 (Striping)

Objectives

• Speedup data access

Approach

- Access disks in parallel
- Striping
 - Data is split in small chunks (stripes)
 - Stripes are stored among all disks in a distributed maner

Advantages

May speedup performance as a factor of the number of disks

Disadvantages

- May increase the probability of loosing data
 - If Pf is the probability of failure of a single disk, a RAID 0 volume with N disks will have a failure probability of (1-(1-Pf))N
- Increases the number of devices
 - At least it will double the number

RAID 0

A2

A4

A6

A8

A1

A3

A5

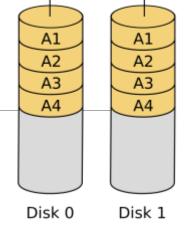
A7

Disk 0 Disk 1

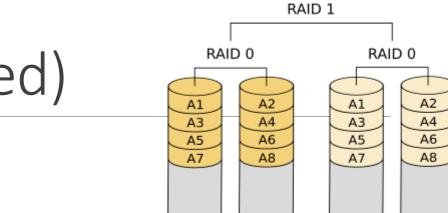
RAID 1 (Mirroring)

Objectives

Tolerate the failure of disks


Approach

- Data duplication (mirroring)
 - Sincronized writing
 - Distributed read from any disk with or without comparison from another disk


Advantages

- Decreases the probability of data loss
 - $^\circ~$ Considering the probability of failture of a single disk Pf, the probability of failure with N disks is (Pf)*N

- Storage inefficiency
 - Will lose at lease 50% of the total capacity. For 3 disks it will lose 66%... Loss is (N-1)/N
- Increase the number of devices
 - At least to the double

RAID 0+1

Disk 1

Disk 2

Disk 3

Disk 0

RAID 0+1 (Nested)

Objectives

- Benefits of RAID 0 (performance)
- Benefits of RAID 1 (resilience)

Approach

- A RAID 0 volume
 - Of RAID 1 volumes
- Result: Mirroring of striped volumes

- Storage capacity waste
 - At least 50%
- Increase the number of devices

A3

Β3

C3

D3

Disk 2

Ap

Bp

Cp

Dp

Disk 3

A2

B2

C2

D2

Disk 1

A1

B1

C1

D1

Disk 0

RAID 4

Objectives

- Have some resilience as RAID 1
- With a performance close to RAID 0

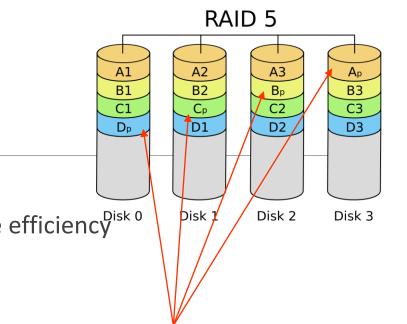
Approach

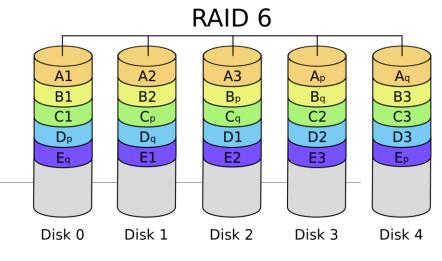
- Store data in N-1 disks
- Store parity data in a additional disk
 - Total waste is dependent on the capacity and number of disks
 - Data from any N-1 disk can be used to recreate another one

- Requires at least 3 disks
 - Updating parity data is complex and will require specific hardware
 - Imposes the need to read before any write
 - Read data from existing block (e.g. C1)
 - Read block from parity disk (Cp)
 - Compare old data block with new, and change the parity block (Cp')
 - Write the new data block (C1')
 - Write the new parity block (Cp')
 - Writes must be serialized due to the existance of a parity disk
- Recovery is way more complex than with RAID 1

RAID 5

Objectives


 $^{\circ}$ Similar to RAID 4 but with higher write efficiency $\overset{\text{Disk 0}}{V}$


Approach

- Distribute the parity blocks among all disks
- Waste is similar to RAID 4
- Write concurrency is improved

Disadvantages

More complex to be implemented

RAID 6

Objectives

Improve the realibility of RAID 5

Approach

- Use 2 parity blocks, distributed among all disks
- Capacity waste will be higher than in RAID 5 (eq to 2 disks)
- Concorrency is slightly worse than with RAID 5

Advantages

Allows the failure of two disks without data loss

Disadvantages

Even more than than RAID 5

NAS and SAN

NAS: Network Attached Storage

- Storage system available in the network
- Frequently created with RAID disks
- Cost: Hundreds to Thousands of Euro

SAN: Storage Area Network

- Set of systems available in a network
- Implemented distributed storage with redundancy
- Cost: Hundreds of Thousands to Millions of Euro

Advantages

- Allow centralizing the storage policies
- Provide a normalized interface, independente of the real storage
- May be used to distributed backups

Confidentiality of Data Storage

The protections provided by a traditional filesystem are limited

Physical Protections

• FS is limited to a physical device

Logical Protections

- Access Control to files, controled by the operating system
- Using ACLs na other confinement mechanisms

There is a relevant number of situations where standard protections are irrelevante

When there is direct and phyisical access to devices

- Access to host devices (laptops, smartphones, servers)
- Access to external storage devices
 - Tapes, CDs, DVDs, SSDs, NAS

Access through the system with the correct rights

- Non ethical access by system administrators
- With impersonation attacks

There is a prevalence of distributed storage

It imposes trusting multiple administrators, sometimes unknown

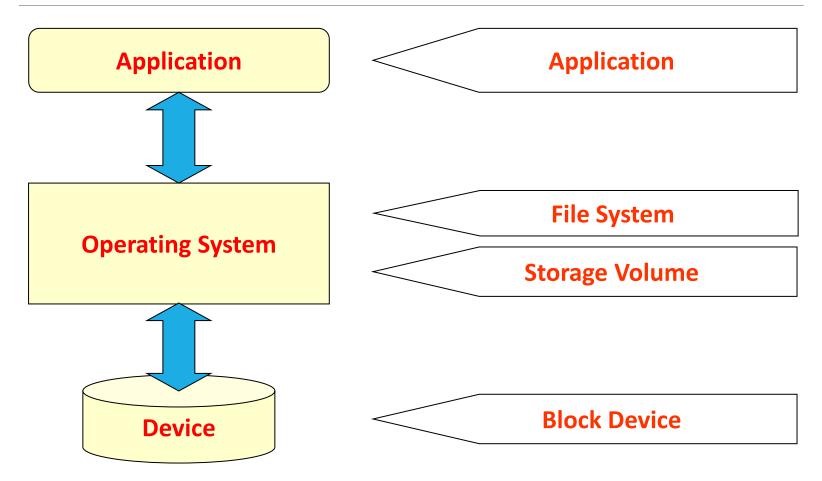
Authentication is made remotely

- Sometimes it is not clear what is the security level of said methods
- Storage Provider may have unkown integrations
- Interaction models are complex, through external networks
- Multiple entities involved

Information is transmited through communication channels

May violate Confidentiality, Integrity and create Privacy issues

Solutions: Encrypt data


Encryption/Decryption of file contente

- Enable secure transfer over insecure networks
- Enable secure storage in insecure locations
 - Managed by external entities, or in shared storages

Problems of encryption

- Access to information
 - Users may lose the keys
 - Key loss = data loss
 - Key storage may reduce overall security
- File sharing
 - Sharing data implies sharing keys
- May interfere with standard management and recovert tasks
 - Content analysis, deduplication, indexing

Encryption in Applications

Information is transformed by each application

- Little or no integration with other applications
- Usually it is clear what is secure or not
 - Specific files with known file extensions

Present vulnerability windows

• Data must be encrypted to other files before it is access

Information may be processed by diferente algorithms/keys

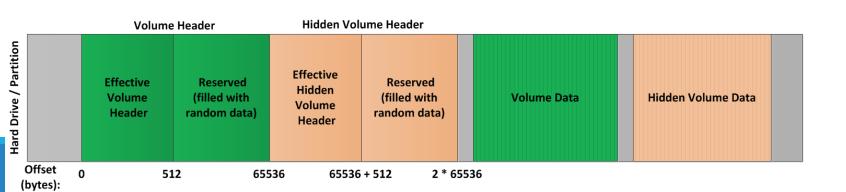
- Adapted to a specific operating system or the security level
- May complicate the data recovery processes

May difficult sharing data inside the encrypted package

May imply extract data which is stored in a clear format

Examples:

- PGP, AxCrypt, TrueCrypt, Veracrypt, etc..
- Also: RAR, ZIP, 7zip, LZMA...


TrueCrypt

Was a popular application to manage FS over encrypted files

- Similar to a disk image used in virtual machines
- Used strong ciphers in cascade (e.g. AES+Twofish)
- Multiple modes: AES-CBC, AES-LRW, AES-XTS
- Key derivation processes: PKBDF2, SHA-512 and 2000 rounds

Interesting concept: Plausible Deniability

- Filesystems inside the file do not have obvious headers
- A file may have multiple volumes
 - It is not possible to prove how many volumes really exist
 - Different passwords unlock diferente volumes

Volume Encryption

Encryption in the File Systems

Information is transformed when is sent from memory to the filesystem

- May be broad, from the entire filesystem into the global memory cache
 - No protection in shared servers as data is available to all applications
 - Security mechanism is harder to implemente in distributed environments
 - Coordination of ACLs
- May be specific to the cache of a specific process
 - Protection in the case of shared servers as data access is contexto bound
 - Client API deficers data

Examples

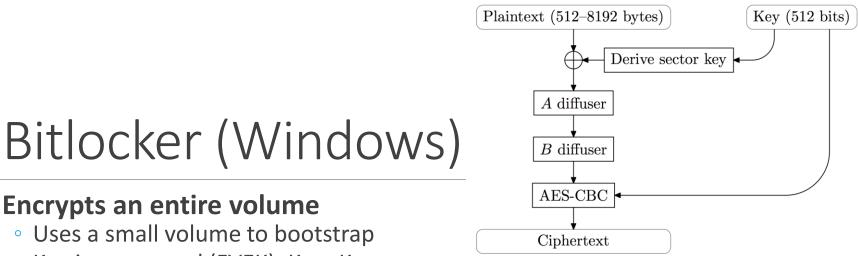
• EncFS, EXT4, NTFS, CFS

Encryption at the volume level

Information is transformed by the volume driver

- Transparent to applications and almost transparente to OS
 - Requires support through a specific driver
- The entire volume will be made available (partition)

Policies defined through applications or the controller


- Agnostic to the actual filesystem on top
 - Protects everything, including metadata
- But it doesn't differentiate between individual users

Unable to solve problems related with distributed systems, but solves those related with mobile devices

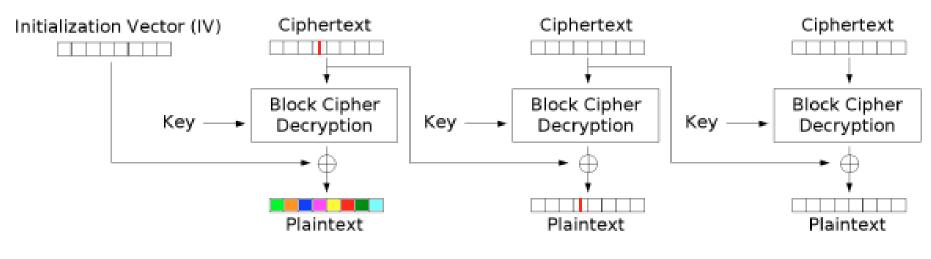
- Distributed systems expose the filesystem after decryption
- Mobile devices: lost of stolen devices will keep data secure

Examples:

• PGPDisk, LUKS, BitLocker, Filevault

• Key is composed (FVEK): K_{AES}, K_{diffuser}

Key Storage


- FVEK encrypted with a Volume Master Key (VMK), Encrypted with a Key Protector Key
- Key Protector Key encrypted with secret provided by user on in a TPM

Encryption process

- AEC-CBC 128 or 256 applied to each sector, without MAC or intersector feedback
- $IV = E(K_{AES}, e(s))$, where e mapps the sector number to 16bits
- Sector Key = $E(K_{AES}, e(s)) | E(K_{AES}, e'(s))$
- Elephant diffuser: difusor for whitening, controlled by K_{Diffuser}

Bitlocker (Windows)

Malleability attack in AES-CBC

Cipher Block Chaining (CBC) mode decryption

Encryption at the Device Level

Block Device applies security policy internally

- At boot. Device must be unlocked
 - After the correct credentials are provided
- Encryption is implemented at the hardware/firmware

Advantages

- No performance loss
- Data access is not trivial as keys are internal
- May be coordinated with applications (e.g USB devices)

- After the device is unlocked, all data is made available
- Security is limited by the algorithms presente
- The possible existence of backdoors is difficult to find and correct

Encryption at the Device Level

Devices have two distinct áreas

- Shadow Disk: Read Only, ~100MB with software to unlock it
- Real Disk: Read Write. Contains user data

Two keys used

- KEK: Key Encryption Key (AuthenticationKey)
 - Provided by te user. Digest stored in the Shadow Disk
- MEK (or DEK): Media (Data) Encryption Key
 - Encrypted with the KEK

Boot process

- BIOS will access Shadow Disk and boots
- Application in Shadow Disk requests password, decrypts K hash(KEK)
- If it maches, MEK is decrypted and disk geometry is updated

