Smart Cards and the Electronic Citizen Cards

© André Zúquete, João Paulo Barraca

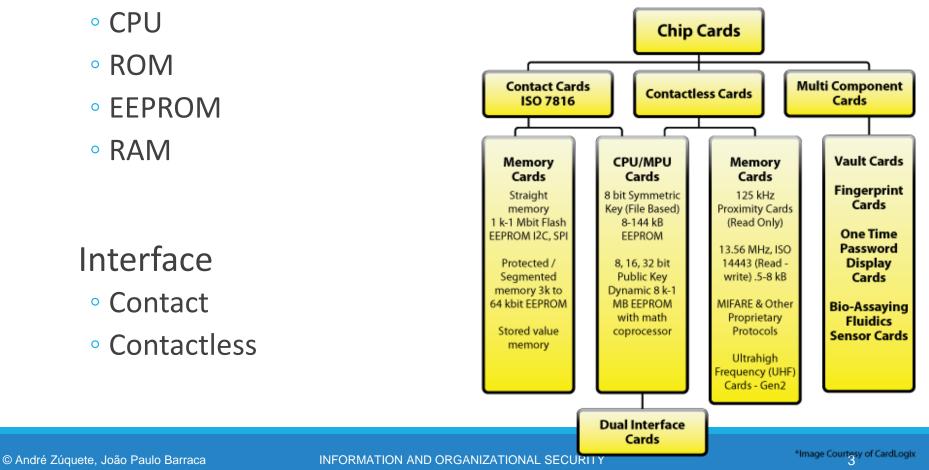
INFORMATION AND ORGANIZATIONAL SECURITY

Smartcards

Hardware devices to store keys and do operations over the keys

• Sealed, resistant to side channel attacks or virus

Objective: allow the use of keys without its compromise


• Owner can use keys to do cryptographic operations

- Symmetric or asymmetric ciphers
- Authenticate the owner, generate document signatures, generate answers to challenges, store values

Uses:

Authenticated, bank cards, Identity cards, SIM cards

Card has computational capabilities

SmartCards: Components

CPU

- 8/16 bit
- Crypto-coprocessor (opt.)

ROM

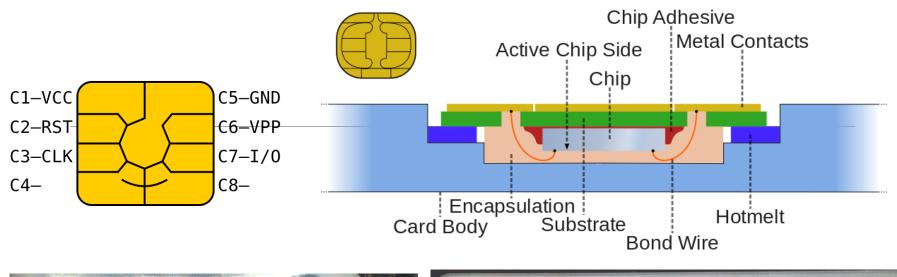
- Operation System
- Communication
- Cryptographic algorithms

EEPROM

- File system
 - Programs / applications
 - Keys / Passwords

RAM

- Temporary data
 - Lost when card is disconnected


Mechanical Contacts

• ISO 7816-2

Physical Security

- Resistant to direct physical attacks
- Resistant to side channel attacks

Interacting with the SmartCard: APDU (ISO 7816-4)

Command APDU

- CLA (1 byte)
 - Instruction Class
- INS (1 byte)
 - Command
- P1 e P2 (2 bytes)
 - Command specific parameters
- Lc
 - Length of the optional data
- Le
 - Length of the data contained in the response
 - Zero (0) means all data available

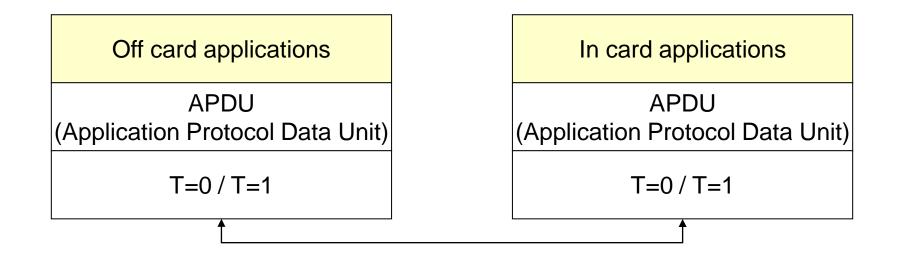
Response APDU

- SW1 e SW2 (2 bytes)
 - State byte
 - 0x9000 means SUCCESS

Interacting with the SmartCard: Lower level protocols: T=0 and T=1

T=0

- Data is sent one byte at a time
- Slower but widely supported
- Default mode


T=1

- Data is sent in blocks
- Faster but requires support

ATR (ISO 7816-3)

- Response to the RESET operation
- Provides many information, including the protocols

Applications in SmartCards: Communication Stack


```
ATR: 3B 7D 95 00 00 80 31 80 65 B0 83 11 00 C8 83 00 90 00
+ TS = 3B --> Direct Convention
+ T0 = 7D, Y(1): 0111, K: 13 (historical bytes)
  TA(1) = 95 --> Fi=512, Di=16, 32 cycles/ETU
    125000 bits/s at 4 MHz, fMax for Fi = 5 MHz => 156250 bits/s
  TB(1) = 00 \rightarrow VPP is not electrically connected
  TC(1) = 00 --> Extra guard time: 0
+ Historical bytes: 80 31 80 65 B0 83 11 00 C8 83 00 90 00
  Category indicator byte: 80 (compact TLV data object)
    Tag: 3, len: 1 (card service data byte)
      Card service data byte: 80
        - Application selection: by full DF name
        - EF.DIR and EF.ATR access services: by GET RECORD(s) command
        - Card with MF
    Tag: 6, len: 5 (pre-issuing data)
      Data: B0 83 11 00 C8
    Tag: 8, len: 3 (status indicator)
      LCS (life card cycle): 00 (No information given)
      SW: 9000 (Normal processing.)
Possibly identified card (using /usr/share/pcsc/smartcard_list.txt):
3B 7D 95 00 00 80 31 80 65 B0 83 11 00 C8 83 00 90 00
3B 7D 95 00 00 80 31 80 65 B0 83 11 .... 83 00 90 00
```

```
Portuguese ID Card (eID)
```

```
http://www.cartaodecidadao.pt/
```

SmartCard Internal Object Representation

Tag-Length-Value (TLV)

- Tag: Object type
- Length: Object Length
- Value: Object Data

Each TLV is encoded according to eh ASN.1 BER rules

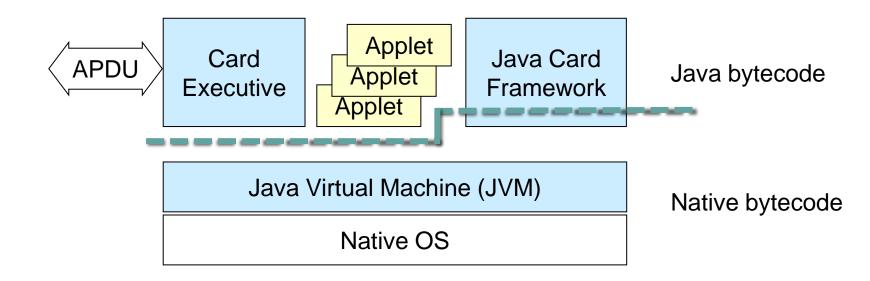
• Abstract Syntax Notation, Basic Encoding Rules

An object can contain other TLV

• Recursive Structure

Compact notation, allowing applications to ignore unknown object types

SmartCard Computation Model

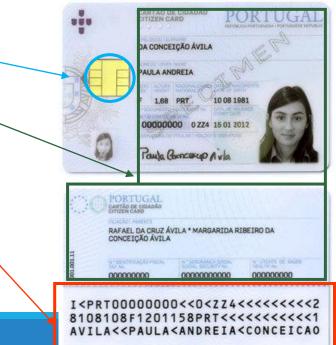

SmartCards execute Applets Java

- Use the Java Card Runtime Environment (JCRE)
- O JCRE executes on top of a native OS

JCRE

- Java Virtual Machine
- Card Executive
 - Card management
 - Communications
- Java Card Framework
 - Library and Functions

SmartCard Computation Model



PT Citizen Card

Identification Card with the same dimensions as a bank card

Provides information through multiple ways

- Digital
 - Interacting with the smart card chip
- Visual, readable by humans
 - Photo, numbers, name
- Visual, readable by machines
 - MRZ (Machine Readable Zone)

INFORMATION AND ORGANIZATIONAL SECURITY

Visual Attributes Readable by Humans

Name

• Surname, Given Name, Parents

Physical attributes

• Gender and Height


Others

- Nationality
- Photo
- Written signature

Numbers

- Civil Identification Number
- Card number and validity
- other: VAT, Social Security, Public Health System

Card Version

Visual Attributes Readable by machines

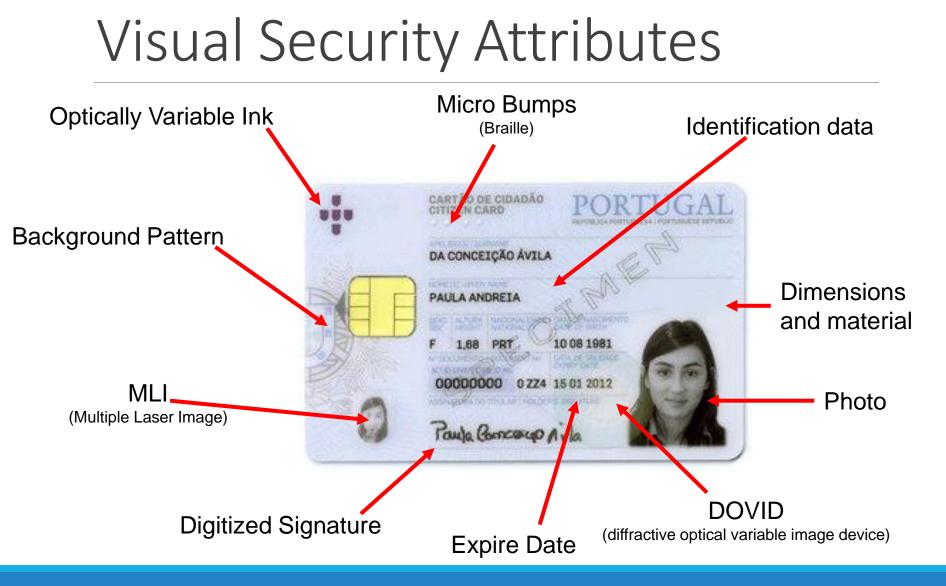
Name

- Surname, First Name, Other names
- Número de nomes

Physical attributes

• Gender

Others


• Birth date, and Nationality

Numbers

- Civil identification (and checksum)
- Doc number (and checksum)
- Documents created

Expiration Date

© André Zúquete, João Paulo Barraca

Digital Attributes

All visible attributes except the digitized signature

Address

Template of the biometric fingerprint

2 cryptographic key pairs (Authentication and Signing)

5 public key certificates

- 2 related to the key pairs
- 3 with the intermediate CAs of the certification path

1 symmetric secret key, for EMV-CAP

• Europay, MasterCard, and Visa Chip Authentication Program

4 User Codes (PINs)

Authentication, Signature, Address, PUK

PIN protection

Having physical access to the card is enough to:

- Obtain the owner address
- Obtain or use the private key for authentication
- Obtain or use the private key for digital signature
- Obtain or use the key for EMV-CAP (deprecated in 2016)

Actions are protected by an authentication code

- PIN with 4 numbers
- PIN is blocked after 3 incorrect attempts

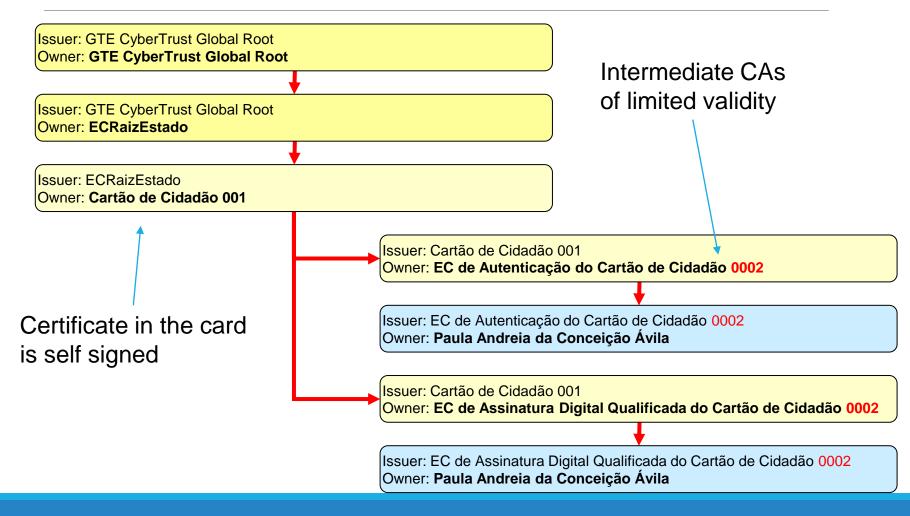
Exceptions

• the address pin code in recent cards is '0000'

Objectives of the SmartCard certificates

Authenticate the card owner

• The owner can manually distribute the certificate to other individuals/services so that they can verify his identity


Authenticate other citizens with similar cards

- Certification chain is present in the card
- CC Certificate in the card is self signed
- CC Certificate publicly available has a different issuer

Certificates for two different operations

- Authentication in services
- Sign of digital documents (certificate only activated upon request)

SmartCard Certificates

Certificates in the SmartCard: Interoperation with other applications

Watchdog applications detect insertion and removal

Insertion

- Applications obtain certificates and can load them in the browser keystores
- A cache is created to speedup access to data
- Keys usage is still limited by knowing the PIN codes

Removal

• Applications remove certificates from the local keystores

Applications in SmartCards: the Portuguese Citizen Card

IAS

- Authentication and Digital Signature
- Management of Asymmetric Cryptographic Keys

EMV-CAP

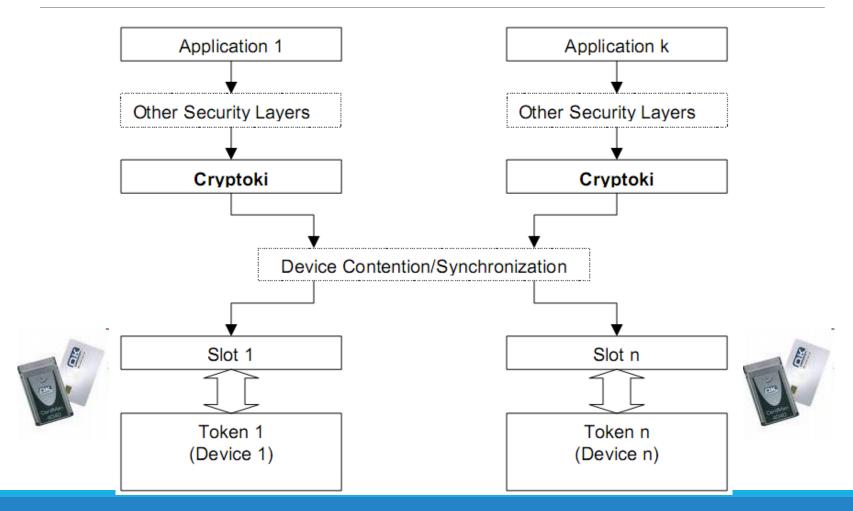
- Generation of one-time-passwords for alternative channels (telephone, fax, etc..)
- Removed in 2016

Match-on-Card

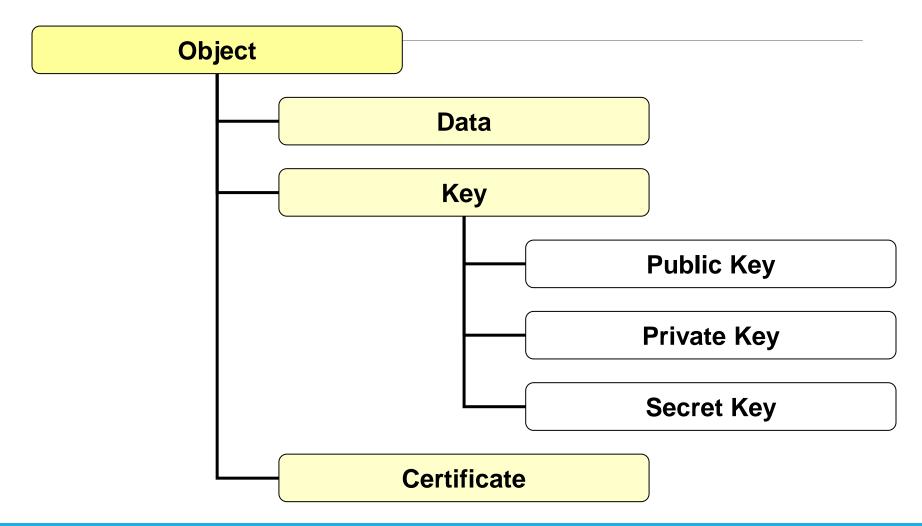
Validation of biometric fingerprints

© André Zúquete, João Paulo Barraca

SmartCard Cryptographic Services Middleware


Libraries acting as bridges between the SmartCard and Higher Layer Applications

Based on standardized solutions:


- PKCS #11: Token Access Primitives
 - Cryptographic Token Interface Standard (cryptoki)
 - Defined by RSA Security Inc.
- PKCS #15: Information Structure In the Token
 - Cryptographic Token Information Format Standard
 - Defined by RSA Security Inc.
- CAPI CSP: API
 - CryptoAPI Cryptographic Service Provider
 - Defined by Microsoft for Windows applications
- PC/SC: API
 - Personal computer/Smart Card
 - Platform for access in Windows and Linux

PKCS#11

PKCS #11: Interaction with applications

PKCS #11: Cryptoki Object Hierarchy

PKCS #11: Sessions

Logical connections between applications and SmartCards (tokens)

- Read-only Sessions
- Read-Write Sessions

Session Operations

- Administrative
 - Login/logout
- Object Management
 - Create or destroy objects in the card
- Cryptographic

Session Objects

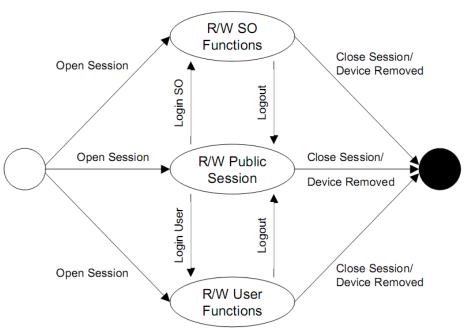
• Temporary objects created and valid during the session existence

Session Duration

Usually only for a single operation

PKCS #11: Read-only sessions

Public Read-Only Sessions


- Read access to the publicly readable objects
- Read-Write Access public session objects

User Specific Sessions

- Requires an authentication process (PIN code)
- Read access to public objects and objects available to that user

Read-Write to all session objects (public and private)

PKCS #11: Read-Write Sessions

Read-Write Public Session

• Read or Write any public object

Read-Write Security Officer (SO) functions

- Read/Write Public Objects
 - No access to private objects
- SO can redefine the user PIN codes

Read-Write User functions

Read-Write all objects available to that user

Access is conditioned per user

- Objects (e.g. Objects)
- Functions (e.g., Sign)

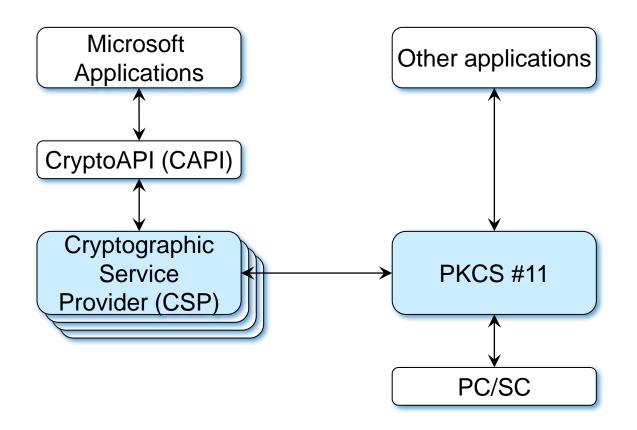
PKCS #11: Concepts used

Authentication PIN

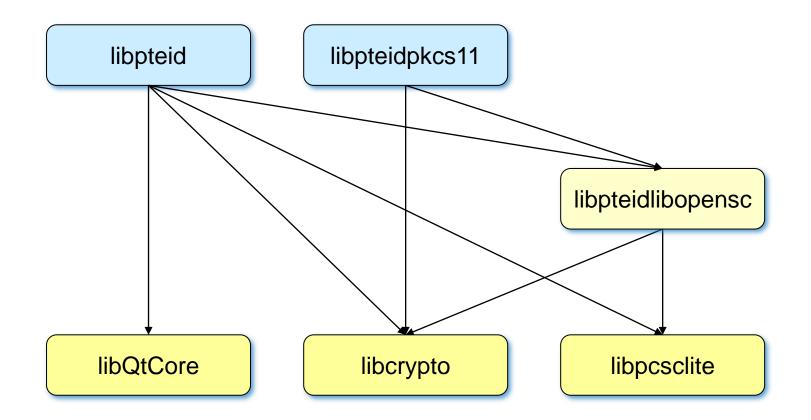
• User Code used in PKCS #11

Signing PIN

Not exposed through PKCS #11


Address PIN

- Not exposed through PKCS #11
- 0000 by default in recent cards


PKCS #11 SO PIN

Not used by card owners

PT Citizen Card: Windows

Citizen Card: Other OS

PTEID middleware & SDK

Public Distribution

- Windows
- macOS
- Linux
 - Caixa Mágica, Fedora, OpenSuse, Red Hat, Ubuntu

Languages

- Dynamic Libraries for C/C++
- Java Wrapper (JNI) to the C/C++ libraries
- C#.NET Wrapper C# .NET for the C/C++ libraries

Documentation

- Validação de Número de Documento do Cartão de Cidadão
- Autenticação com Cartão de Cidadão
- Manual Técnico do Middleware do Cartão de Cidadão
- Certificados e Entidades de Certificação
- Other

PTEID middleware & SDK

Additional API to interact with the CC

• Provided by the libpteid.so library

Provides access to the data associated with the card

• Name, Picture, etc...

PTEID Objects stored as files

- 3f000003 = Trace
- 3f005f00ef02 = Citizen Data (Identification Data, Photo)
- 3f005f00ef05 = Citizen Address Data (Pin Protected)
- 3f005f00ef06 = SOd (Security Object Data)
- 3f005f00ef07 = Citizen Notepad

Document signing

PTEID allows the generation of signatures and these can be inserted in objects

• Email, PDF documents, ...

Digital Signature replaces calligraphic signature

- Important in some regulatory contexts, public administration (UA grades)
- Natively supported in some formats

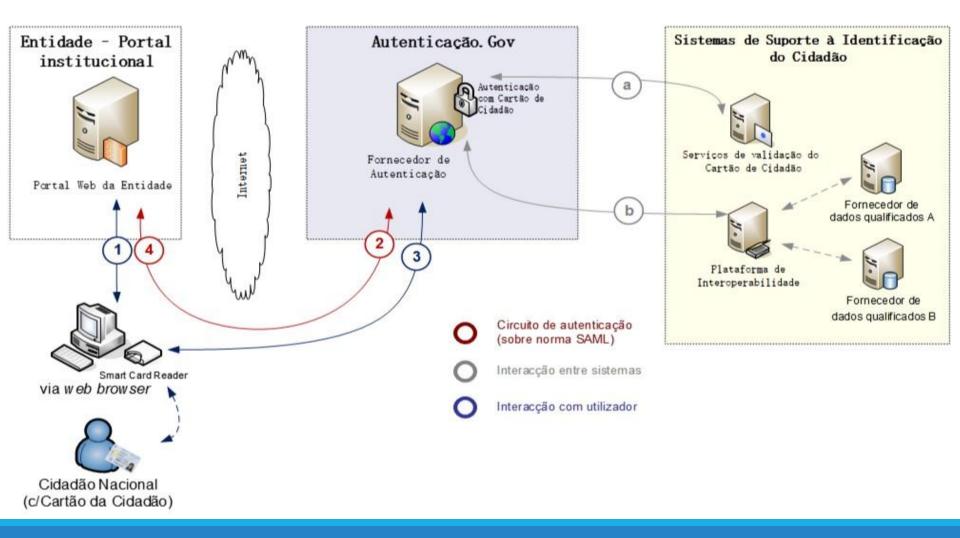
Uses the private key and the PKI temporal seal

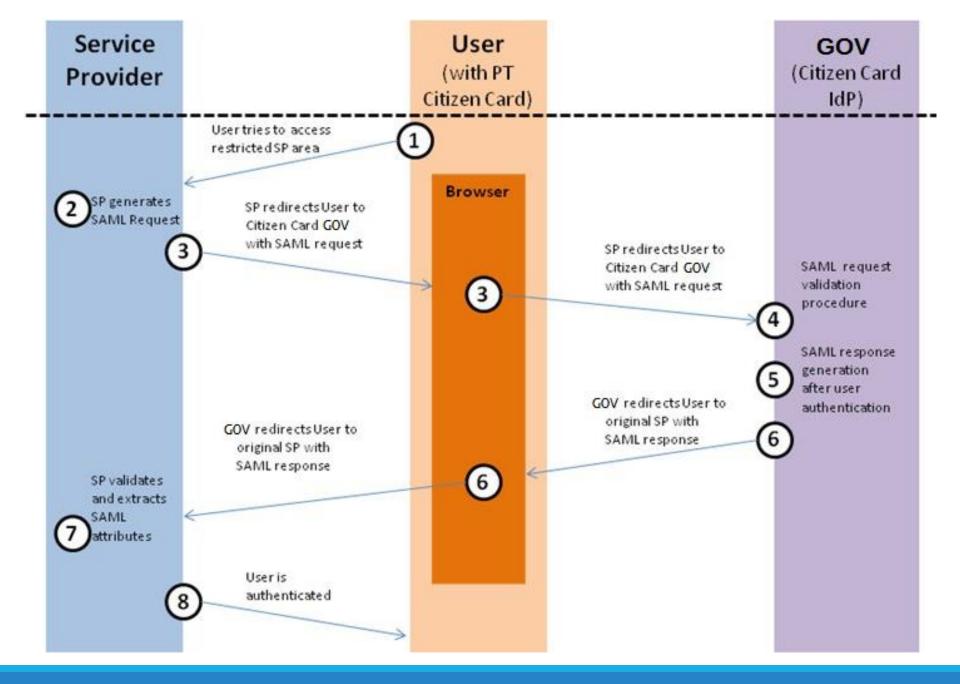
CC: <u>http://ts.cartaodecidadao.pt/tsa/server</u>

Temporal Seal is vital to ensure the signature timestamp

Authentication with the PTEID

Authenticator sends NONCE to the CC to be signed with the private key


Issue: Browser do not have direct access to the CC


- Possible to configure libpteidpkcs11.so, limited to the PKCS#11 API
- Possible to use a java applet (obsolete)

Solution: Use a plugin installed in the user computer

- Exposes a web server to the localhost
- Allows access to the card through the web server
 - Only to authenticated requests through the CC infrastructure
- Required the previous approval of each new integration

Authentication Plugin

Mobile Digital Key (CMD)

Objective: allow authentication/signature even without the smartcard

• But with a similar level of security

Operation principles

- Requires a smartcard to authenticate the request of a CMD
- Users can authenticate themselves/sign documents using the CMD
- Doesn't require any plugin installed
- Doesn't require the card in future uses
- Uses 2FA: PIN code in the site + code through another channel
 - E.g: SMS or Twitter

© André Zúquete, João Paulo Barraca