SQL Injections

Current Web Environment

* Current “web pages” are really web applications

— Front end which may run in browser

— Server provides execution environment
— Backend which provides services

— Database for persistent storage

* |nterfaces connect the different subsystems
— E.g. HTTP, REST, WebSocket, SQL, etc.

 Multiple technologies and languages used
— E.g. Javascript, PHP, HTML, CSS

Current Web Environment

e Each subsystem may be vulnerable to attacks

— Entire application may be compromised if single
breach is found

* SQL Injections are just one case

— Focus in applications using SQL servers
— There are many other attacks

What?

Conjunction of several things:

— Specially crafted input
— Lack of sanity checks in code

Injection of an SQL statement into another SQL

statement, changing its purpose

Most frequent vector: Attacker injects special SQL

statement into text field

SQL Injection

You must log in to proceed

Please enter your name and password
| |

name:

password: | |

| Submit Query |

Form provides two values: login and password

Typical validation query:

SELECT user FROM users WHERE user=‘$login’
AND password=‘$password’

For login=admin and password=1234, query becomes:

SELECT user FROM users WHERE user=‘admin’
AND password=¢1234"’

SQL Injection: Detection

You must log in to proceed

Please enter your name and password
| |

name:

password: | |

| Submit Query |

Form provides two values: login and password

What if password is a single quote? ‘
For login=admin and password=‘, query becomes:

SELECT user FROM users WHERE user=‘admin’
AND password=¢""’

SQL Injection: Detection

Error: You have an error in your SQL syntax;
check the manual that corresponds to your MySQL
server version for the right syntax to use near """
at line 1

User or password is incorrect

You must log in to proceed
Please enter your name and password
| |

name:

password: | |

| Submikt Query |

SQL Injection: Detection

Server Error in '/Topl0WebConfigVulns' Application.

Unclosed quotation mark after the character string "
Incorrect syntax near ".

Description: &n unhandled exception occurred during the execution of the current web request. Please revievy the stack trace for more
information about the error and where it originated in the code.

Exception Details: System Data SqiClient. SglException: Unclosed guotation mark after the character string .
Incorrect syntax near ".

Stack Trace:

[SqlException (0x80131904): Unclosed quotation mark after the character string 3

Incorrect syntax near ''.]
System.Data.SqlClient.SglConnection.OnError(SqlException exception, Boolean breakConnection) +857450
System.Data.SqlClient.SqlInternalConnection.OnError{SqlException exception, Boolean breakConnection)
System.Data.SqlClient.TdsParser. ThrowExceptionAndwarning{TdsParserStateObject statelObj) +188
System.Data.SqlClient.TdsParser.Run(RunBehavior runBehavior, SgqlCommand cmdHandler, SqlDataReader dai
System.Data.SqlClient.SqlDataReader.ConsumeMetaDatal) +31
System.Data.SqlClient.SqlDataReader.get_MetaData() +62
System.Data.SqlClient.SqlCommand. FinishExecuteReader (SqlDataReader ds, RunBehawvior runBehavior, Strit
System.Data.SqlClient.SqlCommand. RunExecuteReaderTds (CommandBehavior cmdBehavior, RunBehavior runBeh:
System.Data.SqlClient.SqlCommand. RunExecuteReader (CommandBehavior cmdBehavior, RunBehavior runBehawic
System.Data.SqlClient.SqlCommand. RunExecuteReader (ConmandBehavior cmdBehavior, RunBehawvior runBehavic
System.Data.SqlClient.SqlCommand. ExecuteReader (ConmandBehavior behavior, String method) +122
System.Data.SqlClient.SqlCommand. ExecuteDbDataReader (CommandBehavior behavior) +12
System.Data.Common.DbConmand. System.Data. IDbCommand. ExecuteReader (ConmandBehavior behavior) +7
System.Data.Common.DbDataAdapter.Fill1Internal (DataSet dataset, DataTable[] datatables, Int32 startRet
System.Data.Common.DbDataAdapter.Fill(DataSet dataSet, Int32 startRecord, Int32 maxRecords, String st
System.Data.Common.DbDatafrdapter.Fill{DataSet dataSet, String srcTable) +83
System.Web.UI.WebControls.SqlDataSourceView. ExecuteSelect(DataSourceSelectArguments arguments) +1770
System.Web.UI.WebControls.SqlDataSource. Select(DataSourceSelectArguments arguments) +16
_Default.Page_Load{0Object sender, Eventfrgs e) +25
System.Web.Uti1.CalliHelper.EventArgFunctionCaller (IntPtr fp, Object o, Object t, EwventArgs e) +15
System.Web.Uti1.CalliEventHandlerDelegateProxy.Callback{Object sender, EventArgs e) +34
System.Web.UI.Control.0OnLoad{EventArags e) +99
System.Web.UI.Control.LoadRecursive() +47
System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfi

Yersion Information: Microsoft NET Framework Version:2.0.50727 .42, ASP NET Yersion:2.0.50727 42
http://assets.devx.com/articlefigs/17059.jpg

SQL Injection: Bypass Simple Password

Form data is used to create an SQL statement

— Without validation!
— SQL code in form can be injected

What if... password is ‘ or ‘1'="1

SELECT user FROM users WHERE user=‘admin’ AND
password=‘" or '1’=‘1"’

SQL Statement is valid and always returns 1 row if the

user exists. It is also possible to find username

SQL Injection: Bypass Simple Password

Access Granted as admin

You must log in to proceed

Please enter your name and password

name: ' '

password: | |

| Submit Query |

SQL Injection: Bypass Complex
Passwords

e SQL can store passwords in a ciphered format

— Uses the PASSWORD function
— Password stored in database cannot be obtained

* Typical validation query:

SELECT user FROM users WHERE user=‘$login’ AND
password=PASSWORD(¢ $password’)

* For login=admin and password=‘) OR (‘1’="1, query becomes:

SELECT user FROM users WHERE user=‘admin’ AND
password=PASSWORD(‘‘) OR (‘1’=1")

Guess Password

More complex statement can be included in form fields
Frequently, the only requirement is that they start and

end with single quote (‘)

Does the password starts with an ‘a’?

“ OR EXISTS(SELECT user FROM users WHERE
user=‘admin’ and password LIKE “a%”) AND ¢’ =°

Guess Password

SELECT user FROM users WHERE user=‘admin’ AND password=‘‘ OR
EXISTS(SELECT user FROM users WHERE user=‘admin’ and password
LIKE “a%”) AND ¢’=¢’

User or password is incorrect

You must log in to proceed
Please enter your name and password

name: | |

password: | |

| Submit Query |

Guess Password

SELECT user FROM users WHERE user=‘admin’ AND password=‘‘ OR

EXISTS(SELECT user FROM users WHERE user=‘admin’ and password
LIKE ‘p%”) AND ¢’=¢’

Access Granted as admin

You must log in to proceed
Please enter your name and password

name: ' '

password: | |

| Submit Query |

 Then we could try: pa% or pa%a%, etc.

Other possibilities

 Find table name:

— Is there a users table in the current db?:

' OR EXISTS(SELECT * FROM INFORMATION_SCHEMA.TABLES WHERE
TABLE_SCHEMA="test' AND TABLE_NAME=’users') AND ''=’

— Is there any table starting by “p” in any db? :

' OR (SELECT COUNT(*) FROM INFORMATION_SCHEMA.TABLES WHERE
TABLE_SCHEMA LIKE “p%')>1 AND ''='

 Find database name

— Starts by t?:
' OR EXISTS(SELECT 1 FROM users WHERE database() LIKE ’t%') AND

T«

* Find columns, get columns by index, etc.

SQL Injection: Terminate Query

 Two characters are particularly important

— ; terminates current query
* Allows multiple queries in same request

— -- terminates processing of all queries
* Ignores syntax errors which may appear

Query 1

SELECT user FROM users WHERE user=‘admin’ AND

password=*";

DROP TABLE users; --’

Query 2 lgnored after --

Mitigation: Sanitize Input Data

* Sanitize form input data

— Filter out dangerous characters
e Username can only have letters
e Passwords can only have letters and numbers
* Emails must comply with RFC 2822

— Escape dangerous characters
e Avoid this

* Browser using Javascript

— Can be bypassed doing direct queries or using tampering proxies (e.g.
WebScarab).

— Automated tools such as WebCruiser can easily detect and bypass
such methods

e Server

— Higher load in server
— Much more effective!

Mitigation: Sanitize Input Data

Sanitizing input data based on quotes is insufficient!

If form is numeric, no quote is required
— E.g. PIN validation

SELECT user FROM users WHERE user=‘admin’ AND
pin=12 or 1=1

Validation must take in consideration actual data

Sanitize as much as possible

Mitigation: Sanitize Input Data

Escaping doesn’t really help in all cases
— E.g. typical escapeis ‘ = “ (two quotes)

Providing OR ‘1'="1 results in:

— SELECT user FROM users WHERE user=‘admin’ AND password=‘‘’ OR

¢ "I) 7:‘ (‘I b
— As double quote is ignored by SQL, no harm done

What about \’; DROP TABLE users; -- ?

— \is expanded to \”, ‘\" is a valid string with just one character (the single
quote). Table is dropped!

MySQL provides own sanitization methods: mysql_real_escape_string()

Mitigation: Prepared Queries

* |nstead of building query string, let SQL

ibraries compile the query

— Separation between Query and Parameters

* Three steps required:

— Preparation
— Bind parameters
— Execution

Mitigation: Prepared Queries

* Query Preparation:

$s = mysql->prepare(“SELECT user FROM users WHERE
user= ? AND pin= ?7”);

* Parameter binding:

$s->bind_param(“s”, $login);
$s->bind_param(“i”, $password);

* Query execution
Ss->execute();

Mitigation: Other strategies

Limit data permissions according to user needs
— Do not grant DROP, or Write methods for read-only application

Use stored procedures
Isolate servers to reduce compromise of neighbor hosts

Configure error reporting appropriately

— Detailed error reporting for developers
— Limited error reporting for users

