
OAuth 2.0
authorization framework

Identification, Authentication and Authorization 1© André Zúquete, João Paulo Barraca

Goal

 Allow an application to access user resources maintained by a

service/server

 Full reference at https://oauth.net/2/

Identification, Authentication and Authorization 2

Application

(client)
Grant access to resource X@RS

Resource

server
Get resource XResource

owner

© André Zúquete, João Paulo Barraca

Roles (RFC 6749)

 Resource owner

 An entity capable of granting access to a protected resource

 End-user: a resource owner that is a person

 Resource server

 The server hosting protected resources

 Capable of accepting and responding to protected resource requests

using access tokens

Identification, Authentication and Authorization 3© André Zúquete, João Paulo Barraca

Roles (RFC 6749)

 Client

 An application making requests for protected resources on behalf of the

resource owner and with its authorization

 Authorization server

(aka OAuth server or provider)

 The server issuing access tokens to the client after successfully

authenticating the resource owner and obtaining its authorization for the

client to access one of its resources

Identification, Authentication and Authorization 4© André Zúquete, João Paulo Barraca

Application

(client)

Resource

owner

Authorization

server

Resource

server

authorization grant

authorization request

Abstract protocol flow (RFC 6749)

Identification, Authentication and Authorization 5

authorization grant + resource access request

access token

access token + resource request

protected resource

© André Zúquete, João Paulo Barraca

authn. grant

authn. request

authorization grant + resource access request

authorization grant

request

Common protocol flow

© André Zúquete, João Paulo Barraca Identification, Authentication and Authorization 6

Application

(client)

Resource

owner

browser

Authorization

server

Resource

server

access token

access token + resource request

protected resource

redirect
Authentication required

Authorization

required

Communication endpoints:
 Authorization endpoint

 Service provided by the OAuth server

 Authenticates the resource owner (the user)

 Asks for the delegation of access rights to

its protected resources to the client

 Send an authorization grant to the

redirection endpoint

Identification, Authentication and Authorization 7

Image: https://jenkov.com/tutorials/oauth2/endpoints.html

© André Zúquete, João Paulo Barraca

Communication endpoints:
 Authorization endpoint

Identification, Authentication and Authorization 8© André Zúquete, João Paulo Barraca

Communication endpoints:
 Token endpoint

 Service provided by the OAuth server

 Produces access tokens given an authorization grant

 It can also produce refresh tokens

 Refresh tokens can be used to get new tokens

• With an authorization grant

 Client authentication

 ClientID + ClientSecret + HTTP basic authentication

Identification, Authentication and Authorization 9

Image: https://jenkov.com/tutorials/oauth2/endpoints.html

© André Zúquete, João Paulo Barraca

Communication endpoints:
 Redirect endpoint

 Service provided by the client

 It collects the authorization grant provided

by the OAuth server

 It should be called by the OAuth server

using an HTTP redirect

Identification, Authentication and Authorization 10

Image: https://jenkov.com/tutorials/oauth2/endpoints.html

© André Zúquete, João Paulo Barraca

Application (client) types

 Type is related with the ability to maintain the confidentiality of client credentials
 Even from the resource owner

 Confidential

 Capable

 e.g. a secure server

 Public

 Incapable

 e.g. a web browser-based application, a mobile App

 Different application types will be allowed to execute different flows

Identification, Authentication and Authorization 11© André Zúquete, João Paulo Barraca

Application (client) profiles

 Web application

 Confidential client running on a web server

Identification, Authentication and Authorization 12

https://jenkov.com/tutorials/oauth2/client-types.html

© André Zúquete, João Paulo Barraca

Application (client) profiles

 User-agent based application

 Public client where the client code runs on a user-agent application

• e.g. a browser

Identification, Authentication and Authorization 13

https://jenkov.com/tutorials/oauth2/client-types.html

© André Zúquete, João Paulo Barraca

Application (client) profiles

 Native application

 Public client installed and executed on the device used by the resource owner

Identification, Authentication and Authorization 14

https://jenkov.com/tutorials/oauth2/client-types.html

© André Zúquete, João Paulo Barraca

Application (client) registration
 (in an OAuth server)

 Clients accessing OAuth servers must be previously registered

 Nevertheless, the standard does not exclude unregistered clients

 A registered client is given a unique identifier

• ClientID

 Registration includes both informational, legal and operational information

 Redirection URLs

 Acceptance of legal terms

 Application (client) name, logo, web site, description

 Client type

 Client authentication method (for confidential clients)

Identification, Authentication and Authorization 15© André Zúquete, João Paulo Barraca

OAuth tokens:
 Authorization grant

Identification, Authentication and Authorization 16

 Created by an OAuth server

 Upon authenticating a resource owner and

getting its consent to grant access to a protected

resource

 An opaque byte blob that makes sense only to its

issuer

 Short validity time

 Just enough to get an access token

© André Zúquete, João Paulo Barraca

OAuth tokens:
 Access token

 Created by an OAuth server

 Upon authenticating a client and receiving an authorization grant

 An opaque byte blob that makes sense to its issuer and to the resource owner

• An access capability

 Bearer tokens

 Clients need to protect their use with

HTTPS

 Clients can handover tokens to others

Identification, Authentication and Authorization 17© André Zúquete, João Paulo Barraca

OAuth tokens:
 Refresh token

 Created by an OAuth server

 When creating an access token

 An opaque byte blob that makes sense only to its issuer

 It can be used to collect a new access token

• Still requiring the client authentication

 Bearer tokens

 Clients need to protect their use with HTTPS

 Clients can handover tokens to others

Identification, Authentication and Authorization 18© André Zúquete, João Paulo Barraca

OAuth flows

 Authorization code flow

 3-legged OAuth

 Default OAuth flow

 The most secure

 Implicit flow (grant)

 Resource owner password credentials flow

 Client credentials flow

 2-legged flow

Identification, Authentication and Authorization 19© André Zúquete, João Paulo Barraca

Authorization code flow

 3-legged OAuth
 Enables checking the identity of the 3 involved actors

 OAuth server authenticates the resource owner
 Username + password or other means

 OAuth server authenticates the client
 ClientID + ClientSecret + HTTP basic authorization

 Client authenticates the OAuth server
 Certificate + URL

Identification, Authentication and Authorization 20© André Zúquete, João Paulo Barraca

Authorization code flow

 Requirements
 Confidential application types

 Secure storage for tokens, ClientID and ClientSecret

 Setup

 Client registration in the OAuth server

• Client receives ClientID and ClientSecret

• Not regulated by OAuth

© André Zúquete Identification, Authentication and Authorization 21

Authorization code flow

 Resource owner uses a server-based Web App

 The client

 The client uses the resource server API to get a resource

 The resource server redirects the client to the OAuth server

 The OAuth server authenticates the resource owner

 And sends an authorization grant to the client

 The client gets an access token from the OAuth server

 Using its credentials (to have access permission)

 Using its authorization grant

 The client uses again the resource server API to get a resource

 This time providing an access token

Identification, Authentication and Authorization 22© André Zúquete, João Paulo Barraca

Authorization code flow

Identification, Authentication and Authorization 23
https://cloudsundial.com/salesforce-oauth-flows

Implicit flow

 Requirements
 Public application types

 Setup

 Client registration in the OAuth server

• Client receives ClientID

• Not regulated by OAuth

 Limitations

 No client authentication

 No refresh tokens

Identification, Authentication and Authorization 24© André Zúquete, João Paulo Barraca

Implicit flow

 Resource owner uses a mobile or client-based Web App

 The client

 The client uses the resource server API to get a resource

 The resource server redirects the client to the OAuth server

 The OAuth server authenticates the resource owner

 And sends an access token to the client

 The client uses again the resource server API to get a resource

 This time providing an access token

Identification, Authentication and Authorization 25© André Zúquete, João Paulo Barraca

Identification, Authentication and Authorization 26© André Zúquete, João Paulo Barraca
https://cloudsundial.com/salesforce-oauth-flows

Resource owner password flow

 Requirements

 Confidential application types

 Sharing of resource owner credentials with client applications

 Secure storage for tokens, ClientID and ClientSecret

 Setup

 Client registration in the OAuth server

• Client receives ClientID and ClientSecret

• Not regulated by OAuth

 Limitations

 Resource owners need to trust on client applications

Identification, Authentication and Authorization 27© André Zúquete, João Paulo Barraca

Resource owner password flow

 Resource owner uses a server-based Web App

 The client

 The client uses the resource server API to get a resource

 The resource server requests a token

 The client asks the resource owner for authentication credentials

 The client gets an access token from the OAuth server

 Using its credentials (to have access permission)

 Using the resource owner’s credentials

 These should be immediately discarded

 The client uses again the resource server API to get a
 resource

 This time providing an access token

Identification, Authentication and Authorization 28© André Zúquete, João Paulo Barraca

Identification, Authentication and Authorization 29© André Zúquete, João Paulo Barraca

Client credentials flow

 Requirements

 Confidential application types

 Secure storage for tokens, ClientID and ClientSecret

 Setup

 Client registration in the OAuth server

• Client receives ClientID and ClientSecret

• Not regulated by OAuth

 Limitations

 No resource owner authentications or authorizations

Identification, Authentication and Authorization 30© André Zúquete, João Paulo Barraca

Client credentials flow

 Resource owner uses a server-based Web App

 The client

 The client uses the resource server API to get a resource

 The resource server requests a token

 The client gets an access token from the OAuth server

 Using its credentials (to have access permission)

 The client uses again the resource server API to get a resource

 This time providing an access token

Identification, Authentication and Authorization 31© André Zúquete, João Paulo Barraca

Identification, Authentication and Authorization 32© André Zúquete, João Paulo Barraca

Proof Key for Code Exchange (PKCE, RFC 7636)

 Binds authorization grants to their requesters

 Using a Code Challenge

• A digest of a Code Verifier

• A bit commitment

 Cannot the used by eavesdroppers

 The requester is required to demonstrate the ownership of

the authorization grant when fetching the access token

 Providing the Code Verifier

© André Zúquete Identification, Authentication and Authorization 33

Identification, Authentication and Authorization 34© André Zúquete, João Paulo Barraca

Device authorization grant (RFC 8628)

 In some cases the user is using a device with no browser to interact with a

OAuth client

 No HTTP redirections to Authorization server and back to client

 No user interface

• To authenticate the user

• To review and authorize request

 Solution

 Use a second device to perform the user authentication and to grant the authorization

• e.g. mobile phone, tablet, etc.

 Client fetches the access token from the Authorization server

• Possibly with a refresh token

Identification, Authentication and Authorization 35© André Zúquete, João Paulo Barraca

Device authorization grant (RFC 8628)

Identification, Authentication and Authorization 36© André Zúquete, João Paulo Barraca

Actual protocol flow

Identification, Authentication and Authorization 37

Resource

owner

browser

Authorization

server

Resource

server

loop

Application

(client)

client ID, device code

client ID, scope

authorization request

authorization grant

device code, verification URI, user code Authentication required

user code

authorization pending, slow down

Client ID, device code

access token, refresh token

access token,

resource request

protected resource

© André Zúquete, João Paulo Barraca

	Slide 1: OAuth 2.0 authorization framework
	Slide 2: Goal
	Slide 3: Roles (RFC 6749)
	Slide 4: Roles (RFC 6749)
	Slide 5: Abstract protocol flow (RFC 6749)
	Slide 6: Common protocol flow
	Slide 7: Communication endpoints: Authorization endpoint
	Slide 8: Communication endpoints: Authorization endpoint
	Slide 9: Communication endpoints: Token endpoint
	Slide 10: Communication endpoints: Redirect endpoint
	Slide 11: Application (client) types
	Slide 12: Application (client) profiles
	Slide 13: Application (client) profiles
	Slide 14: Application (client) profiles
	Slide 15: Application (client) registration (in an OAuth server)
	Slide 16: OAuth tokens: Authorization grant
	Slide 17: OAuth tokens: Access token
	Slide 18: OAuth tokens: Refresh token
	Slide 19: OAuth flows
	Slide 20: Authorization code flow
	Slide 21: Authorization code flow
	Slide 22: Authorization code flow
	Slide 23: Authorization code flow
	Slide 24: Implicit flow
	Slide 25: Implicit flow
	Slide 26
	Slide 27: Resource owner password flow
	Slide 28: Resource owner password flow
	Slide 29
	Slide 30: Client credentials flow
	Slide 31: Client credentials flow
	Slide 32
	Slide 33: Proof Key for Code Exchange (PKCE, RFC 7636)
	Slide 34
	Slide 35: Device authorization grant (RFC 8628)
	Slide 36: Device authorization grant (RFC 8628)
	Slide 37: Actual protocol flow

