
OAuth 2.0
authorization framework
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Goal

 Allow an application to access user resources maintained by a 

service/server

 Full reference at https://oauth.net/2/
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Roles (RFC 6749)

 Resource owner

 An entity capable of granting access to a protected resource

 End-user: a resource owner that is a person

 Resource server

 The server hosting protected resources

 Capable of accepting and responding to protected resource requests 

using access tokens
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Roles (RFC 6749)

  Client

 An application making requests for protected resources on behalf of the 

resource owner and with its authorization

 Authorization server

(aka OAuth server or provider)

 The server issuing access tokens to the client after successfully 

authenticating the resource owner and obtaining its authorization for the 

client to access one of its resources
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Communication endpoints:
    Authorization endpoint

 Service provided by the OAuth server

 Authenticates the resource owner (the user)

 Asks for the delegation of access rights to 

its protected resources to the client

 Send an authorization grant to the 

redirection endpoint
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Image: https://jenkov.com/tutorials/oauth2/endpoints.html
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Communication endpoints:
    Authorization endpoint
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Communication endpoints:
    Token endpoint

 Service provided by the OAuth server

 Produces access tokens given an authorization grant

 It can also produce refresh tokens

 Refresh tokens can be used to get new tokens

• With an authorization grant

 Client authentication

 ClientID + ClientSecret + HTTP basic authentication
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Communication endpoints:
    Redirect endpoint

 Service provided by the client

 It collects the authorization grant provided 

by the OAuth server

 It should be called by the OAuth server 

using an HTTP redirect
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Application (client) types

 Type is related with the ability to maintain the confidentiality of client credentials
 Even from the resource owner

 Confidential

 Capable

 e.g. a secure server

 Public

 Incapable

 e.g. a web browser-based application, a mobile App

 Different application types will be allowed to execute different flows
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Application (client) profiles

 Web application

 Confidential client running on a web server
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Application (client) profiles

 User-agent based application

 Public client where the client code runs on a user-agent application

• e.g. a browser

Identification, Authentication and Authorization 13

https://jenkov.com/tutorials/oauth2/client-types.html

© André Zúquete, João Paulo Barraca



Application (client) profiles

 Native application

 Public client installed and executed on the device used by the resource owner
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Application (client) registration
 (in an OAuth server)

 Clients accessing OAuth servers must be previously registered

 Nevertheless, the standard does not exclude unregistered clients

 A registered client is given a unique identifier

• ClientID

 Registration includes both informational, legal and operational information

 Redirection URLs

 Acceptance of legal terms

 Application (client) name, logo, web site, description

 Client type

 Client authentication method (for confidential clients)
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OAuth tokens:
 Authorization grant
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 Created by an OAuth server

 Upon authenticating a resource owner and 

getting its consent to grant access to a protected 

resource

 An opaque byte blob that makes sense only to its 

issuer

 Short validity time

 Just enough to get an access token
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OAuth tokens:
 Access token

 Created by an OAuth server

 Upon authenticating a client and receiving an authorization grant

 An opaque byte blob that makes sense to its issuer and to the resource owner

• An access capability

 Bearer tokens

 Clients need to protect their use with 

HTTPS

 Clients can handover tokens to others
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OAuth tokens:
 Refresh token

 Created by an OAuth server

 When creating an access token

 An opaque byte blob that makes sense only to its issuer

 It can be used to collect a new access token

• Still requiring the client authentication

 Bearer tokens

 Clients need to protect their use with HTTPS

 Clients can handover tokens to others
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OAuth flows

 Authorization code flow

 3-legged OAuth

 Default OAuth flow

 The most secure

 Implicit flow (grant)

 Resource owner password credentials flow

 Client credentials flow

 2-legged flow
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Authorization code flow

 3-legged OAuth
 Enables checking the identity of the 3 involved actors

 OAuth server authenticates the resource owner
 Username + password or other means

 OAuth server authenticates the client
 ClientID + ClientSecret + HTTP basic authorization

 Client authenticates the OAuth server
 Certificate + URL
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Authorization code flow

 Requirements
 Confidential application types

 Secure storage for tokens, ClientID and ClientSecret

 Setup

 Client registration in the OAuth server

• Client receives ClientID and ClientSecret

• Not regulated by OAuth
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Authorization code flow

 Resource owner uses a server-based Web App

 The client

 The client uses the resource server API to get a resource

 The resource server redirects the client to the OAuth server

 The OAuth server authenticates the resource owner

 And sends an authorization grant to the client

 The client gets an access token from the OAuth server

 Using its credentials (to have access permission)

 Using its authorization grant

 The client uses again the resource server API to get a resource

 This time providing an access token
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Authorization code flow
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Implicit flow

 Requirements
 Public application types

 Setup

 Client registration in the OAuth server

• Client receives ClientID

• Not regulated by OAuth

 Limitations

 No client authentication

 No refresh tokens
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Implicit flow

 Resource owner uses a mobile or client-based Web App

 The client

 The client uses the resource server API to get a resource

 The resource server redirects the client to the OAuth server

 The OAuth server authenticates the resource owner

 And sends an access token to the client

 The client uses again the resource server API to get a resource

 This time providing an access token
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Resource owner password flow

 Requirements

 Confidential application types

 Sharing of resource owner credentials with client applications

 Secure storage for tokens, ClientID and ClientSecret

 Setup

 Client registration in the OAuth server

• Client receives ClientID and ClientSecret

• Not regulated by OAuth

 Limitations

 Resource owners need to trust on client applications
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Resource owner password flow

 Resource owner uses a server-based Web App

 The client

 The client uses the resource server API to get a resource

 The resource server requests a token

 The client asks the resource owner for authentication credentials 

 The client gets an access token from the OAuth server

 Using its credentials (to have access permission)

 Using the resource owner’s credentials

 These should be immediately discarded

 The client uses again the resource server API to get a
 resource

 This time providing an access token
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Client credentials flow

 Requirements

 Confidential application types

 Secure storage for tokens, ClientID and ClientSecret

 Setup

 Client registration in the OAuth server

• Client receives ClientID and ClientSecret

• Not regulated by OAuth

 Limitations

 No resource owner authentications or authorizations
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Client credentials flow

 Resource owner uses a server-based Web App

 The client

 The client uses the resource server API to get a resource

 The resource server requests a token

 The client gets an access token from the OAuth server

 Using its credentials (to have access permission)

 The client uses again the resource server API to get a resource

 This time providing an access token

Identification, Authentication and Authorization 31© André Zúquete, João Paulo Barraca



Identification, Authentication and Authorization 32© André Zúquete, João Paulo Barraca



Proof Key for Code Exchange (PKCE, RFC 7636)

 Binds authorization grants to their requesters

 Using a Code Challenge

• A digest of a Code Verifier

• A bit commitment

 Cannot the used by eavesdroppers

 The requester is required to demonstrate the ownership of 

the authorization grant when fetching the access token

 Providing the Code Verifier
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Device authorization grant (RFC 8628)

 In some cases the user is using a device with no browser to interact with a 

OAuth client 

 No HTTP redirections to Authorization server and back to client

 No user interface

• To authenticate the user

• To review and authorize request

 Solution

 Use a second device to perform the user authentication and to grant the authorization

• e.g. mobile phone, tablet, etc.

 Client fetches the access token from the Authorization server

• Possibly with a refresh token

Identification, Authentication and Authorization 35© André Zúquete, João Paulo Barraca



Device authorization grant (RFC 8628)

Identification, Authentication and Authorization 36© André Zúquete, João Paulo Barraca



Actual protocol flow
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