
Linux
security mechanisms

© André Zúquete, João Paulo Barraca Identification, Authentication and Authorization 1

Mechanisms

 Capabilities

 cgroups (control groups)

 LSM (Linux Security Modules)

© André Zúquete, João Paulo Barraca Identification, Authentication and Authorization 2

Linux management privileges

 Initial UNIX philosophy

 Privileged processes (UID = 0)

• Bypass all kernel permission checks

 Unprivileged processes (UID ≠ 0)

• Subject to permission checking based on their credentials

• Effective UID, effective GID, secondary group list

Identification, Authentication and Authorization 3© André Zúquete, João Paulo Barraca

Unix file protection ACLs:
 Special protection bits

 Set-UID bit
 Is used to change the UID of processes executing the file

 Set-GID bit
 Is used to change the UID of processes executing the file

 Sticky bit
 Hint to keep the file/directory as much as possible in memory cache

Identification, Authentication and Authorization 4© André Zúquete, João Paulo Barraca

Privilege elevation:
 Set-UID mechanism

 Change the effective UID of a process running a program stored on a
Set-UID file
 If a program file is owned by UID X and the set-UID bit of its ACL is set, then it will

be executed in a process with UID X
• Independently of the UID of the subject that executed the program

 Allows normal users to execute privileged tasks encapsulated in
administration programs
 Change the user’s password (passwd)

 Change to super-user mode (su, sudo)

 Mount devices (mount)

Identification, Authentication and Authorization 5© André Zúquete, João Paulo Barraca

Privilege elevation:
 Set-UID mechanism (cont.)
 Effective UID / Real UID

 Real UID (rUID) is the UID of the process creator
• App launcher

 Effective UID (eUID) is the UID of the process
• The one that really matters for defining the rights of the process

• eUID may differ from rUID

 UID change
 Ordinary application

• eUID = rUID = UID of process that executed exec

• eUID cannot be changed (unless = 0)

 Set-UID application
• eUID = UID of exec’d application file, rUID = initial process UID

• eUID can revert to rUID

 rUID cannot change

Identification, Authentication and Authorization 6© André Zúquete, João Paulo Barraca

Privilege elevation:
 Set-UID/Set-GID decision flowchart
 exec (path, …)

 File referred by path has Set-UID?

 Yes
• ID = path owner

• Change the process effective UID to ID of path owner

 No

• Do nothing

 File referred by path has Set-GID?

 Yes
• ID = path GID

• Change the process GIDs to ID only

 No

• Do nothing

Identification, Authentication and Authorization 7© André Zúquete, João Paulo Barraca

Capabilities

 Protection mechanism introduced in Kernel 2.2

 Allow to divide the traditional super-user privileges into distinct units

 That can be independently enabled and disabled

 Capabilities are a per-thread attribute

 Propagated through forks

 Changed explicitly of by execs

Identification, Authentication and Authorization 8© André Zúquete, João Paulo Barraca

List of capabilities:
 Examples (small sample …)

 CAP_CHOWN
 Make arbitrary changes to file UIDs and GIDs

 CAP_DAC_OVERRIDE / CAP_DAC_READ_SEARCH
 Bypass file permission / directory transversal checks

 CAP_KILL
 Bypass permission checks for sending signals

 CAP_NET_ADMIN
 Perform various network-related operations

 CAP_SYS_ADMIN
 Overloaded general-purpose administration capability

Identification, Authentication and Authorization 9© André Zúquete, João Paulo Barraca

Capability management

 Per-thread capabilities
 They define the privileges of the thread

 Divided in sets

 Sets
 Effective

 Inheritable

 Permitted

 Bounding

 Ambient

Identification, Authentication and Authorization 10© André Zúquete, João Paulo Barraca

Thread capability sets:
 Effective

 Set of capabilities used by the kernel to perform permission

checks for the thread

 That is: these are the effective capabilities being used

Identification, Authentication and Authorization 11© André Zúquete, João Paulo Barraca

Thread capability sets:
 Inheritable

 Set of capabilities preserved across an exec

 Remain inheritable for any program

 Are added to the permitted set when executing a program that

has the corresponding bits set in the file inheritable set

Identification, Authentication and Authorization 12© André Zúquete, João Paulo Barraca

Thread capability sets:
 Permitted

 Limiting superset

 For the effective capabilities that the thread may assume

 For the capabilities that may be added to the inheritable set

• Except for threads w/ CAP_SETPCAP in their effective set

 Once dropped, it can never be reacquired

 Except upon executing a file with special capabilities

Identification, Authentication and Authorization 13© André Zúquete, João Paulo Barraca

Thread capability sets:
 Bounding

 Set used to limit the capabilities that are gained during an exec

 From a file with capabilities set

 Was previously a system-wide attribute

 Now is a per-thread attribute

Identification, Authentication and Authorization 14© André Zúquete, João Paulo Barraca

Thread capability sets:
 Ambient

 Set of capabilities that are preserved across an exec of an

unprivileged program

 No set-UID or set-GID

 No capabilities set

 Executing a privileged program will clear the ambient set

Identification, Authentication and Authorization 15© André Zúquete, João Paulo Barraca

Thread capability sets:
 Ambient

 Ambient capabilities must be both permitted and inheritable

 One cannot preserve something one cannot have

 One cannot preserve something one cannot inherit

 Automatically lowered if either of the corresponding permitted or

inheritable capabilities is lowered

 Ambient capabilities are added to the permitted set and assigned

to the effective set upon an exec

Identification, Authentication and Authorization 16© André Zúquete, João Paulo Barraca

Files extended attributes (xattr)

 Files’ metadata in UNIX-like systems

 Some not interpreted by kernels

 Linux: key-value pairs

 Keys can be defined or undefined

 If defined, their value can be empty or not

 Key’s namespaces

• namespace.attr_name[.attr_name]

 Namespaces

 security

• For files’ capabilities

• setcap / getcap

 system

• ACL

 trusted

• Protected metadata

 user

• setfattr / lsattr / getfattr

Identification, Authentication and Authorization 17© André Zúquete, João Paulo Barraca

File capabilities

 Stored in the security.capability attribute

 Specify capabilities for threads that exec a file
 Permitted set

• Immediately forced into the permitted set

• Previous AND with the thread’s bounding set

 Inheritable set
• To AND with the threads’ inheritable set

• Can be used to reduce the effective set upon the exec

 Effective bit
• Enforce all new capabilities into the thread’s effective set

Identification, Authentication and Authorization 18© André Zúquete, João Paulo Barraca

Capability transfer across exec:
 No privileged files

Identification, Authentication and Authorization 19

Ambient Ambient

Permitted Permitted

Effective Effective

Inheritable Inheritable

Bounding Bounding

exec

© André Zúquete, João Paulo Barraca

Capability transfer across exec (non-root)
 Privileged files

© André Zúquete Identification, Authentication and Authorization 20

Ambient 0

Permitted Permitted

Effective Effective

Inheritable Inheritable

Bounding Bounding

exec

P(inheritable) AND F(inheritable)

OR

P(bounding) AND F(permitted)

Inheritable Permitted Effective

?

True

False

Capability transfer across exec (root)

 EUID = 0 or RUID = 0

 Capability sets are considered to be all 1’s

 EUID = 0

 File effective bit considered 1

 Exception: EUID = 0, RUID ≠ 0

 Set-UID file was executed

 File capabilities are honored if present

Identification, Authentication and Authorization 22© André Zúquete, João Paulo Barraca

Control groups (cgroups)

 Collection of processes bound by the same criteria and associated with a set

of parameters or limits

 cgroups are organized hierarchically

 cgroup file system

 Limits can be defined at each hierarchical level

• Affecting the sub-hierarchy underneath

 Subsystems

 Kernel component that modifies the behavior of cgroup processes

 Resource controllers (or simply controllers)

Identification, Authentication and Authorization 23© André Zúquete, João Paulo Barraca

cgroups v1 and v2

 Currently two versions coexist

 But controllers can only be used in on of them

Identification, Authentication and Authorization 24© André Zúquete, João Paulo Barraca

cgroups file system

 This file system is created by mounting several controllers as

cgroup-type file system entities

 Usually /sys/fs/cgroup

 In V2 all controllers are part of a single cgroup2

 Each controller defines a tree of cgroups below the mount point

 e.g. memory controller → /sys/fs/cgroup/…/memory.[…]

Identification, Authentication and Authorization 25© André Zúquete, João Paulo Barraca

cgroup V2 (and V1) controllers

 cpu (cpu & cpuacct in V1)

 CPU usage & accounting

 cpuset

 CPU bounding

 memory

 Memory usage & accounting

 devices

 Device creation & usage

 freezer

 Suspend/resume groups of processes

 Io (blkio in V1)

 Block I/O management

 perf_event

 Performance monitoring

 hugelb

 Huge pages management

 pids

 # of processes in cgroup

 rdma

 RDMA / IB resources’ management

 Deprecated from V1

 net_cls

• Outbound packet classification

 net_prio
• Network interfaces priorities

Identification, Authentication and Authorization 26© André Zúquete, João Paulo Barraca

cgroup V2 definition

 Directory under /sys/fs/cgroup

 With a set of controllers defined by cgroup.controllers

 With hierarchy limits defined by cgroup.depth and cgroup.descendants

 With files to send KILL signals (cgroup.kill) and freeze/unfreeze orders (cgroup.freeze) to all cgroup
processes

• Including descendants

 The processes using the cgroup are given by cgroup.procs and their status reported by
cgroups.events

• We can add a process to a cgroup just by writing its PID on the first file

 For each active controller, specific files will exist

 Processes can only belong to leaf cgroups

 “No internal processes” rule

Identification, Authentication and Authorization 27© André Zúquete, João Paulo Barraca

cgroups of a process

 A process can be controlled by an arbitrary number of

cgroups

 The list of a process’ cgroups is given by the /proc file system

 /proc/[PID]/cgroup

Identification, Authentication and Authorization 28© André Zúquete, João Paulo Barraca

Linux Security Modules (LSM)

 Framework to add new Mandatory Access Control (MAC)

extensions to the kernel

 Those extensions are not kernel modules

 They are embedded in the kernel code

 They can be activated or not at boot time

 List of extensions given by /sys/kernel/security/lsm

Identification, Authentication and Authorization 29© André Zúquete, João Paulo Barraca

LSM extensions

 Capabilities (default)

 AppArmor

 MAC for applications

 LoadPin

 Kernel-loaded files origin enforcement

 SELinux

 Smack

 Simplified Mandatory Access Control

Kernel

 TOMOYO

 Name-based MAC extension

 Yama

 System-wide DAC security protections

that are not handled by the core kernel

itself

 SafeSetID

 Restricts UID/GID transitions

Identification, Authentication and Authorization 30

Source: https://www.kernel.org/doc/html/next/admin-guide/LSM/index.html

© André Zúquete, João Paulo Barraca

https://www.kernel.org/doc/html/next/admin-guide/LSM/index.html

AppArmor

 Enables the definition of per-application MAC policies

 Profiles

 Applications are identified by their path

• Instead of i-node

 Profiles restrict applications’ actions to the required set

 All other actions will be denied

 Profiles define

 Actions white-listed

 Logging actions

Identification, Authentication and Authorization 31© André Zúquete, João Paulo Barraca

AppArmor: profiles

 Profiles are loaded into the kernel

 Upon compilation from textual files

 apparmor_parser

 Profiles can be used on a voluntary basis

 aa-exec

Identification, Authentication and Authorization 32© André Zúquete, João Paulo Barraca

Confinement: Namespaces

 Allows partitioning of resources in views (namespaces)
 Processes in a namespace have a restricted view of the system

 Activated through syscalls by a simple process:
• clone: Defines a namespace to migrate the process to

• unshare: disassociates the process from its current context

• setns: puts the process in a Namespace

 Types of Namespaces
 Mount: Applied to mount points

 process id: first process has id 1

 network: "independent" network stack (routes, interfaces...)

 IPC: methods of communication between processes

 uts: name independence (DNS)

 user id: segregation of permissions

 cgroup: limitation of resources used (memory, cpu...)

Information and Organizational Security 33© André Zúquete, João Paulo Barraca

© André Zúquete, João Paulo Barraca Information and Organizational Security 34

Create netns named mynetns
root@vm: ~# ip netns add mynetns

Change iptables INPUT policy for the netns
root@linux: ~# ip netns exec mynetns iptables -P INPUT DROP

List iptables rules outside the namespace
root@linux: ~# iptables -L INPUT
Chain INPUT (policy ACCEPT)
target prot opt source destination

List iptables rules inside the namespace
root@linux: ~# ip netns exec mynetns iptables -L INPUT
Chain INPUT (policy DROP)
target prot opt source destination

Information and Organizational Security 35

List Interfaces in the namespace
root@linux: ~# ip netns exec mynetns ip link list
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group default qlen 100
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

Move the interface enp0s3 to the namespace
root@linux: ~# ip link set enp0s3 netns mynetns

List interfaces in the namespace
root@linux: ~# ip netns exec mynetns ip link list
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group default qlen 100
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: enp0s3: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT...
 link/ether 08:00:27:83:0a:55 brd ff:ff:ff:ff:ff:ff

List interfaces outside the namespace
root@linux: ~# ip link list
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT...
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

© André Zúquete, João Paulo Barraca

Confinement: Containers

 Explores namespaces to provide a virtual view of the system
 Network isolation, cgroups, user ids, mounts, etc...

 Processes are executed under a container
 Container is an applicational construction and not of the core

 Consists of an environment by composition of namespaces

 Requires building bridges with the real system network interfaces, proxy processes

 Relevant approaches
 LinuX Containers: focus on a complete virtualized environment

• evolution of OpenVZ

 Docker: focus on running isolated applications based on a portable packet
between systems
• uses LXC

Information and Organizational Security 36© André Zúquete, João Paulo Barraca

	Slide 1: Linux security mechanisms
	Slide 2: Mechanisms
	Slide 3: Linux management privileges
	Slide 4: Unix file protection ACLs: Special protection bits
	Slide 5: Privilege elevation: Set-UID mechanism
	Slide 6: Privilege elevation: Set-UID mechanism (cont.)
	Slide 7: Privilege elevation: Set-UID/Set-GID decision flowchart
	Slide 8: Capabilities
	Slide 9: List of capabilities: Examples (small sample …)
	Slide 10: Capability management
	Slide 11: Thread capability sets: Effective
	Slide 12: Thread capability sets: Inheritable
	Slide 13: Thread capability sets: Permitted
	Slide 14: Thread capability sets: Bounding
	Slide 15: Thread capability sets: Ambient
	Slide 16: Thread capability sets: Ambient
	Slide 17: Files extended attributes (xattr)
	Slide 18: File capabilities
	Slide 19: Capability transfer across exec: No privileged files
	Slide 20: Capability transfer across exec (non-root) Privileged files
	Slide 22: Capability transfer across exec (root)
	Slide 23: Control groups (cgroups)
	Slide 24: cgroups v1 and v2
	Slide 25: cgroups file system
	Slide 26: cgroup V2 (and V1) controllers
	Slide 27: cgroup V2 definition
	Slide 28: cgroups of a process
	Slide 29: Linux Security Modules (LSM)
	Slide 30: LSM extensions
	Slide 31: AppArmor
	Slide 32: AppArmor: profiles
	Slide 33: Confinement: Namespaces
	Slide 34
	Slide 35
	Slide 36: Confinement: Containers

