
Linux
security mechanisms

© André Zúquete, João Paulo Barraca Identification, Authentication and Authorization 1

Mechanisms

 Capabilities

 cgroups (control groups)

 LSM (Linux Security Modules)

© André Zúquete, João Paulo Barraca Identification, Authentication and Authorization 2

Linux management privileges

 Initial UNIX philosophy

 Privileged processes (UID = 0)

• Bypass all kernel permission checks

 Unprivileged processes (UID ≠ 0)

• Subject to permission checking based on their credentials

• Effective UID, effective GID, secondary group list

Identification, Authentication and Authorization 3© André Zúquete, João Paulo Barraca

Unix file protection ACLs:
 Special protection bits

 Set-UID bit
 Is used to change the UID of processes executing the file

 Set-GID bit
 Is used to change the UID of processes executing the file

 Sticky bit
 Hint to keep the file/directory as much as possible in memory cache

Identification, Authentication and Authorization 4© André Zúquete, João Paulo Barraca

Privilege elevation:
 Set-UID mechanism

 Change the effective UID of a process running a program stored on a
Set-UID file
 If a program file is owned by UID X and the set-UID bit of its ACL is set, then it will

be executed in a process with UID X
• Independently of the UID of the subject that executed the program

 Allows normal users to execute privileged tasks encapsulated in
administration programs
 Change the user’s password (passwd)

 Change to super-user mode (su, sudo)

 Mount devices (mount)

Identification, Authentication and Authorization 5© André Zúquete, João Paulo Barraca

Privilege elevation:
 Set-UID mechanism (cont.)
 Effective UID / Real UID

 Real UID (rUID) is the UID of the process creator
• App launcher

 Effective UID (eUID) is the UID of the process
• The one that really matters for defining the rights of the process

• eUID may differ from rUID

 UID change
 Ordinary application

• eUID = rUID = UID of process that executed exec

• eUID cannot be changed (unless = 0)

 Set-UID application
• eUID = UID of exec’d application file, rUID = initial process UID

• eUID can revert to rUID

 rUID cannot change

Identification, Authentication and Authorization 6© André Zúquete, João Paulo Barraca

Privilege elevation:
 Set-UID/Set-GID decision flowchart
 exec (path, …)

 File referred by path has Set-UID?

 Yes
• ID = path owner

• Change the process effective UID to ID of path owner

 No

• Do nothing

 File referred by path has Set-GID?

 Yes
• ID = path GID

• Change the process GIDs to ID only

 No

• Do nothing

Identification, Authentication and Authorization 7© André Zúquete, João Paulo Barraca

Capabilities

 Protection mechanism introduced in Kernel 2.2

 Allow to divide the traditional super-user privileges into distinct units

 That can be independently enabled and disabled

 Capabilities are a per-thread attribute

 Propagated through forks

 Changed explicitly of by execs

Identification, Authentication and Authorization 8© André Zúquete, João Paulo Barraca

List of capabilities:
 Examples (small sample …)

 CAP_CHOWN
 Make arbitrary changes to file UIDs and GIDs

 CAP_DAC_OVERRIDE / CAP_DAC_READ_SEARCH
 Bypass file permission / directory transversal checks

 CAP_KILL
 Bypass permission checks for sending signals

 CAP_NET_ADMIN
 Perform various network-related operations

 CAP_SYS_ADMIN
 Overloaded general-purpose administration capability

Identification, Authentication and Authorization 9© André Zúquete, João Paulo Barraca

Capability management

 Per-thread capabilities
 They define the privileges of the thread

 Divided in sets

 Sets
 Effective

 Inheritable

 Permitted

 Bounding

 Ambient

Identification, Authentication and Authorization 10© André Zúquete, João Paulo Barraca

Thread capability sets:
 Effective

 Set of capabilities used by the kernel to perform permission

checks for the thread

 That is: these are the effective capabilities being used

Identification, Authentication and Authorization 11© André Zúquete, João Paulo Barraca

Thread capability sets:
 Inheritable

 Set of capabilities preserved across an exec

 Remain inheritable for any program

 Are added to the permitted set when executing a program that

has the corresponding bits set in the file inheritable set

Identification, Authentication and Authorization 12© André Zúquete, João Paulo Barraca

Thread capability sets:
 Permitted

 Limiting superset

 For the effective capabilities that the thread may assume

 For the capabilities that may be added to the inheritable set

• Except for threads w/ CAP_SETPCAP in their effective set

 Once dropped, it can never be reacquired

 Except upon executing a file with special capabilities

Identification, Authentication and Authorization 13© André Zúquete, João Paulo Barraca

Thread capability sets:
 Bounding

 Set used to limit the capabilities that are gained during an exec

 From a file with capabilities set

 Was previously a system-wide attribute

 Now is a per-thread attribute

Identification, Authentication and Authorization 14© André Zúquete, João Paulo Barraca

Thread capability sets:
 Ambient

 Set of capabilities that are preserved across an exec of an

unprivileged program

 No set-UID or set-GID

 No capabilities set

 Executing a privileged program will clear the ambient set

Identification, Authentication and Authorization 15© André Zúquete, João Paulo Barraca

Thread capability sets:
 Ambient

 Ambient capabilities must be both permitted and inheritable

 One cannot preserve something one cannot have

 One cannot preserve something one cannot inherit

 Automatically lowered if either of the corresponding permitted or

inheritable capabilities is lowered

 Ambient capabilities are added to the permitted set and assigned

to the effective set upon an exec

Identification, Authentication and Authorization 16© André Zúquete, João Paulo Barraca

Files extended attributes (xattr)

 Files’ metadata in UNIX-like systems

 Some not interpreted by kernels

 Linux: key-value pairs

 Keys can be defined or undefined

 If defined, their value can be empty or not

 Key’s namespaces

• namespace.attr_name[.attr_name]

 Namespaces

 security

• For files’ capabilities

• setcap / getcap

 system

• ACL

 trusted

• Protected metadata

 user

• setfattr / lsattr / getfattr

Identification, Authentication and Authorization 17© André Zúquete, João Paulo Barraca

File capabilities

 Stored in the security.capability attribute

 Specify capabilities for threads that exec a file
 Permitted set

• Immediately forced into the permitted set

• Previous AND with the thread’s bounding set

 Inheritable set
• To AND with the threads’ inheritable set

• Can be used to reduce the effective set upon the exec

 Effective bit
• Enforce all new capabilities into the thread’s effective set

Identification, Authentication and Authorization 18© André Zúquete, João Paulo Barraca

Capability transfer across exec:
 No privileged files

Identification, Authentication and Authorization 19

Ambient Ambient

Permitted Permitted

Effective Effective

Inheritable Inheritable

Bounding Bounding

exec

© André Zúquete, João Paulo Barraca

Capability transfer across exec (non-root)
 Privileged files

© André Zúquete Identification, Authentication and Authorization 20

Ambient 0

Permitted Permitted

Effective Effective

Inheritable Inheritable

Bounding Bounding

exec

P(inheritable) AND F(inheritable)

OR

P(bounding) AND F(permitted)

Inheritable Permitted Effective

?

True

False

Capability transfer across exec (root)

 EUID = 0 or RUID = 0

 Capability sets are considered to be all 1’s

 EUID = 0

 File effective bit considered 1

 Exception: EUID = 0, RUID ≠ 0

 Set-UID file was executed

 File capabilities are honored if present

Identification, Authentication and Authorization 22© André Zúquete, João Paulo Barraca

Control groups (cgroups)

 Collection of processes bound by the same criteria and associated with a set

of parameters or limits

 cgroups are organized hierarchically

 cgroup file system

 Limits can be defined at each hierarchical level

• Affecting the sub-hierarchy underneath

 Subsystems

 Kernel component that modifies the behavior of cgroup processes

 Resource controllers (or simply controllers)

Identification, Authentication and Authorization 23© André Zúquete, João Paulo Barraca

cgroups v1 and v2

 Currently two versions coexist

 But controllers can only be used in on of them

Identification, Authentication and Authorization 24© André Zúquete, João Paulo Barraca

cgroups file system

 This file system is created by mounting several controllers as

cgroup-type file system entities

 Usually /sys/fs/cgroup

 In V2 all controllers are part of a single cgroup2

 Each controller defines a tree of cgroups below the mount point

 e.g. memory controller → /sys/fs/cgroup/…/memory.[…]

Identification, Authentication and Authorization 25© André Zúquete, João Paulo Barraca

cgroup V2 (and V1) controllers

 cpu (cpu & cpuacct in V1)

 CPU usage & accounting

 cpuset

 CPU bounding

 memory

 Memory usage & accounting

 devices

 Device creation & usage

 freezer

 Suspend/resume groups of processes

 Io (blkio in V1)

 Block I/O management

 perf_event

 Performance monitoring

 hugelb

 Huge pages management

 pids

 # of processes in cgroup

 rdma

 RDMA / IB resources’ management

 Deprecated from V1

 net_cls

• Outbound packet classification

 net_prio
• Network interfaces priorities

Identification, Authentication and Authorization 26© André Zúquete, João Paulo Barraca

cgroup V2 definition

 Directory under /sys/fs/cgroup

 With a set of controllers defined by cgroup.controllers

 With hierarchy limits defined by cgroup.depth and cgroup.descendants

 With files to send KILL signals (cgroup.kill) and freeze/unfreeze orders (cgroup.freeze) to all cgroup
processes

• Including descendants

 The processes using the cgroup are given by cgroup.procs and their status reported by
cgroups.events

• We can add a process to a cgroup just by writing its PID on the first file

 For each active controller, specific files will exist

 Processes can only belong to leaf cgroups

 “No internal processes” rule

Identification, Authentication and Authorization 27© André Zúquete, João Paulo Barraca

cgroups of a process

 A process can be controlled by an arbitrary number of

cgroups

 The list of a process’ cgroups is given by the /proc file system

 /proc/[PID]/cgroup

Identification, Authentication and Authorization 28© André Zúquete, João Paulo Barraca

Linux Security Modules (LSM)

 Framework to add new Mandatory Access Control (MAC)

extensions to the kernel

 Those extensions are not kernel modules

 They are embedded in the kernel code

 They can be activated or not at boot time

 List of extensions given by /sys/kernel/security/lsm

Identification, Authentication and Authorization 29© André Zúquete, João Paulo Barraca

LSM extensions

 Capabilities (default)

 AppArmor

 MAC for applications

 LoadPin

 Kernel-loaded files origin enforcement

 SELinux

 Smack

 Simplified Mandatory Access Control

Kernel

 TOMOYO

 Name-based MAC extension

 Yama

 System-wide DAC security protections

that are not handled by the core kernel

itself

 SafeSetID

 Restricts UID/GID transitions

Identification, Authentication and Authorization 30

Source: https://www.kernel.org/doc/html/next/admin-guide/LSM/index.html

© André Zúquete, João Paulo Barraca

https://www.kernel.org/doc/html/next/admin-guide/LSM/index.html

AppArmor

 Enables the definition of per-application MAC policies

 Profiles

 Applications are identified by their path

• Instead of i-node

 Profiles restrict applications’ actions to the required set

 All other actions will be denied

 Profiles define

 Actions white-listed

 Logging actions

Identification, Authentication and Authorization 31© André Zúquete, João Paulo Barraca

AppArmor: profiles

 Profiles are loaded into the kernel

 Upon compilation from textual files

 apparmor_parser

 Profiles can be used on a voluntary basis

 aa-exec

Identification, Authentication and Authorization 32© André Zúquete, João Paulo Barraca

Confinement: Namespaces

 Allows partitioning of resources in views (namespaces)
 Processes in a namespace have a restricted view of the system

 Activated through syscalls by a simple process:
• clone: Defines a namespace to migrate the process to

• unshare: disassociates the process from its current context

• setns: puts the process in a Namespace

 Types of Namespaces
 Mount: Applied to mount points

 process id: first process has id 1

 network: "independent" network stack (routes, interfaces...)

 IPC: methods of communication between processes

 uts: name independence (DNS)

 user id: segregation of permissions

 cgroup: limitation of resources used (memory, cpu...)

Information and Organizational Security 33© André Zúquete, João Paulo Barraca

© André Zúquete, João Paulo Barraca Information and Organizational Security 34

Create netns named mynetns
root@vm: ~# ip netns add mynetns

Change iptables INPUT policy for the netns
root@linux: ~# ip netns exec mynetns iptables -P INPUT DROP

List iptables rules outside the namespace
root@linux: ~# iptables -L INPUT
Chain INPUT (policy ACCEPT)
target prot opt source destination

List iptables rules inside the namespace
root@linux: ~# ip netns exec mynetns iptables -L INPUT
Chain INPUT (policy DROP)
target prot opt source destination

Information and Organizational Security 35

List Interfaces in the namespace
root@linux: ~# ip netns exec mynetns ip link list
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group default qlen 100
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

Move the interface enp0s3 to the namespace
root@linux: ~# ip link set enp0s3 netns mynetns

List interfaces in the namespace
root@linux: ~# ip netns exec mynetns ip link list
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group default qlen 100
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: enp0s3: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT...
 link/ether 08:00:27:83:0a:55 brd ff:ff:ff:ff:ff:ff

List interfaces outside the namespace
root@linux: ~# ip link list
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT...
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

© André Zúquete, João Paulo Barraca

Confinement: Containers

 Explores namespaces to provide a virtual view of the system
 Network isolation, cgroups, user ids, mounts, etc...

 Processes are executed under a container
 Container is an applicational construction and not of the core

 Consists of an environment by composition of namespaces

 Requires building bridges with the real system network interfaces, proxy processes

 Relevant approaches
 LinuX Containers: focus on a complete virtualized environment

• evolution of OpenVZ

 Docker: focus on running isolated applications based on a portable packet
between systems
• uses LXC

Information and Organizational Security 36© André Zúquete, João Paulo Barraca

	Slide 1: Linux security mechanisms
	Slide 2: Mechanisms
	Slide 3: Linux management privileges
	Slide 4: Unix file protection ACLs: Special protection bits
	Slide 5: Privilege elevation: Set-UID mechanism
	Slide 6: Privilege elevation: Set-UID mechanism (cont.)
	Slide 7: Privilege elevation: Set-UID/Set-GID decision flowchart
	Slide 8: Capabilities
	Slide 9: List of capabilities: Examples (small sample …)
	Slide 10: Capability management
	Slide 11: Thread capability sets: Effective
	Slide 12: Thread capability sets: Inheritable
	Slide 13: Thread capability sets: Permitted
	Slide 14: Thread capability sets: Bounding
	Slide 15: Thread capability sets: Ambient
	Slide 16: Thread capability sets: Ambient
	Slide 17: Files extended attributes (xattr)
	Slide 18: File capabilities
	Slide 19: Capability transfer across exec: No privileged files
	Slide 20: Capability transfer across exec (non-root) Privileged files
	Slide 22: Capability transfer across exec (root)
	Slide 23: Control groups (cgroups)
	Slide 24: cgroups v1 and v2
	Slide 25: cgroups file system
	Slide 26: cgroup V2 (and V1) controllers
	Slide 27: cgroup V2 definition
	Slide 28: cgroups of a process
	Slide 29: Linux Security Modules (LSM)
	Slide 30: LSM extensions
	Slide 31: AppArmor
	Slide 32: AppArmor: profiles
	Slide 33: Confinement: Namespaces
	Slide 34
	Slide 35
	Slide 36: Confinement: Containers

