
Using RBAC to Enforce the Principle of Least
Privilege in Industrial Remote Maintenance Sessions

Alexander Kern and Reiner Anderl
Department of Computer Integrated Systems (DiK)

Technical University of Darmstadt
Darmstadt, Germany

Email: {kern,anderl}@dik.tu-darmstadt.de

Abstract—In recent years, digitalization is having a great
impact on industry. Especially the rising degree of cross-linked
machines is resulting in new business models and great economic
advantages. One example is remote maintenance. It leads to less
downtime and gained efficiency due to a quicker response time
of highly qualified maintenance technicians. However, connecting
industrial machines to WANs opens up new attack surfaces.
In particular, machines with long lifetimes are often severely
outdated since updates that might cause downtime stand in
direct conflict to the central objective of availability. In case
of remote maintenance, it additionally requires great trust in
the external maintenance technician not to use the remote
connection for wrong doing. On the market multiple solutions
for securing remote maintenance sessions exist. However, these
solutions mainly focus on network security and disregard system
security entirely. Security doctrines such as the principle of least
privilege should be used to enhance the system security.

This paper focuses on system security of industrial machines
and proposes the use of role based access control to confine users
and attackers alike. This way, consequences of security breaches
and wrong doing can be minimized. The scientific contribution
is the development, implementation and assessment of a concept
for the usage of RBAC on system level to solve current system
security issues, with the focus on remote maintenance sessions.

Index Terms—access control, RBAC, system security, industrial
remote maintenance, principle of least privilege

I. INTRODUCTION

With the market is putting pressure on companies, in recent
years, major investments have been made worldwide to mod-
ernize production systems and develop new technologies to
ensure future economic competitiveness. Especially, the idea to
connect physical systems with computing and communication
infrastructure gained momentum [20]. In case of a standard
machine maintenance, there exists an area of conflict between
the qualification, cost and response time of a maintenance
technician. With the possibility of remote maintenance this
conflict can be reduced noticeably. Traveling time and cost
become obsolete. Consequently, technicians have more time
to actively perform maintenance tasks, resulting in a higher
capacity utilization. This gained efficiency results in cheaper
and faster maintenance by highly qualified technicians. Ad-
ditionally, the machines suffer shorter downtime, adding yet
another economic advantage.

These upsides are great, but so are the potential downsides.
New vulnerabilities for Information Technology (IT) systems

are being discovered every day and Information Security is
needed to protect against them [22]. Information Security also
called InfoSec is the practice to monitor and prevent any
kind of threats such as unauthorized access, use, disclosure,
disruption, modification, inspection, recording or destruction
of digital or non-digital information. This paper focuses on
the protection of digital information only. InfoSec centers
around the preservation of confidentiality, integrity and avail-
ability (CIA) of information. Additional objectives are the
authenticity, accountability, non-repudiation and reliability of
information [17, 7]. It can be split into computer security,
network security and system security. Computer Security is
ensuring that the actual physical hardware of the resource is
secure [5]. Network or Cyber Security describes the policies
and procedures applied to monitor and prevent unauthorized
access, misuse, exploitation or modification of a resource from
the network the resource is connected to. System Security
describes the policies and procedures applied to monitor and
prevent unauthorized access, misuse, exploitation or modifica-
tion of a resource within the resource itself.

While network security is very similar for both office
systems and industrial systems and can be maintained quite
well, system security differs a lot between the two. For office
systems system security is mainly focused on confidentiality
and integrity. The systems’ availability is not as critical and
if an update has to be installed, individual computers are
expendable. Oftentimes, office computers will update over
night when they are not in use. This way, the security can be
maintained quite well without having an impact on produc-
tivity. For production systems the system security often lacks
behind which leads to major risks for the company. Especially,
connecting legacy systems to the Internet and allowing con-
nections to the system, which is a basic requirement for remote
maintenance, leads to new attack scenarios against companies.
Vulnerabilities in single machines can be very valuable for an
attacker. Once in the production network, broadening rights
and spreading onto other machines becomes much simpler.
As a result, enormous damage can be caused.

The lacking system security has two main reasons. The first
reason is, as already mentioned, the very different focus of
IT security requirements. The most important requirement for
production systems is safety. It ensures that neither humans

2018 Fifth International Conference on Internet of Things: Systems, Management and Security (IoTSMS)

978-1-5386-9585-2/18/$31.00 ©2018 IEEE 107

Authorized licensed use limited to: b-on: UNIVERSIDADE DE AVEIRO. Downloaded on June 20,2022 at 07:19:19 UTC from IEEE Xplore. Restrictions apply.

or the environment suffer any harm. Any kind of security
violation, both intentional and unintentional may potentially
harm the plant safety. The second most important requirement
is the availability of the systems. Systems have to be very
robust since any kind of downtime is expensive. Unfortunately,
these requirements contradict most every standard IT security
administration process such as updates and software patches,
where a reboot of the system is needed or unstable behavior
might be caused.

The second reason is that the lifetime of production sys-
tems is much longer than the one of software systems [28].
Many security methods, algorithms and systems that seemed
sufficiently secure a couple of years ago are known to be
insecure today. One particular design principle often used in
legacy systems is the “Security by Obscurity” principle. It
aims at providing security using proprietary protocols and
systems under the assumption that no attacker can reverse
engineer the system due to its complexity. Without being
connected to any kind of public wide area network (WAN),
the main “security” goal was to protect the system from
unintentional mistakes much rather than intentional attacks
and thus did not require as much security. Nevertheless, for
todays interconnected production systems, security plays a
major role and securing both old systems and designing new
ones securely, poses a substantial challenge. Most legacy
systems use outdated operating systems and software where
support has been discontinued for years. Even if wanted,
it would not be possible to fully update and patch them.
The problem is, that these machines often have considerable
value and cannot easily be replaced. Since it is not possible
to completely prevent vulnerabilities from being exploited, a
method to minimize the damage of an exploitation is needed.

On top of protecting against attackers, a method to protect
the know-how stored on the machine is needed. Today, the
maintenance of machines is often done by the machine’s
manufacturer whose service technicians have full access to the
system (root). However, the business model of maintenance by
external technicians is becoming more popular. These external
technicians also use the same service account with full system
access. Sensitive data can easily be stolen or the machine can
be manipulated. This is quite problematic as of today, but
will be even more so in the future. Visionaries say that future
industrial machines will be multi-vendor products with the ca-
pability to upgrade its functionalities by adding new hardware
modules and new software applications. This development
is advanced through the standardization of both hardware
interfaces [31] and software components [30], [21]. If both
hardware and software components have multiple different
manufacturers there will not be one single remote maintenance
technician anymore. Consequently, a service technician must
not have full access, but must be confined within the system.

The remainder of this paper is organized as follows. In
section II, the problem is described in the context of industrial
remote maintenance and a research question is raised. Section
III gives a brief overview about the state of the art on RBAC,
discusses its usage in other contexts and outlines the concept

as well as tools needed for the implementation. Section IV
explains how the concept is implemented. In section V the
implementation is tested and the results are discussed. Further-
more, limitations and possible improvements are considered.
Last, in section VI a conclusion is drawn.

II. PROBLEM STATEMENT AND RESEARCH QUESTION

Until recently, the focus for remote maintenance systems
was on remote desktop applications for office IT only. How-
ever, with increasingly complex production systems and their
connection to public networks, industrial remote maintenance
is gaining importance. While there do not exist any norms or
standards for industrial remote maintenance yet, the Federal
Office for Information Security in Germany (BSI) released
recommendations for such systems [11, 9, 10]. They suggest,
depending on the size of the enterprise, a set of seven
mandatory rules for securing remote maintenance sessions [9]:

1) Remote maintenance sessions should be initiated in-
house.

2) A remote maintenance connection should be fully en-
crypted.

3) A remote maintenance service technician has to be
authenticated prior to the connection establishment.

4) The system being maintained should be isolated from
the rest of the production network.

5) To establish a remote maintenance session the modifi-
cations of the remaining network should be kept to a
minimum.

6) The remote maintenance session should be logged.
7) The permissions granted to the service technician should

be kept to the required minimum (principle of least
privilege).

These rules can be subdivided into two categories. One con-
cerning the network security and the other the system security.
Most commercial solutions for industrial remote maintenance
use modems or gateways to establish a secure connection
into the production network, complying only with the network
security requirements. The system security requirements, such
as end-to-end encryption between devices, session-logging and
user confinement, are mostly ignored. Especially BSI require-
ment number 7, “The permissions granted for the service
technician should be kept to a minimum (principle of least
privilege)”, regarding user confinement is not implemented by
any solution on the market at this point. They all rely on the ex-
isting access control mechanisms implemented on the systems.
Access control in this sense, describes the selective restriction
of access to information on a resource (authorization). An
example would be if a user is allowed to read/write/execute a
certain file or folder.

For most computer systems the standard authorization sys-
tem is a Discretionary Access Control (DAC) system. In DAC
systems, access decisions are based on permissions assigned to
the identity of a subject (authorization-based). Permissions for
a specific object are assigned or rather passed on by a subject

2018 Fifth International Conference on Internet of Things: Systems, Management and Security (IoTSMS)

108

Authorized licensed use limited to: b-on: UNIVERSIDADE DE AVEIRO. Downloaded on June 20,2022 at 07:19:19 UTC from IEEE Xplore. Restrictions apply.

with permissions for that object. In linux systems for example,
the DAC system uses the chmod (change mode) system call to
adjust access permissions of system objects such as files and
directories. Each system object is assigned independent access
rights for user (owner and usually creator of system object),
group (users belonging to the group associated with the file)
and others (users who are neither the owner nor member of the
associated group). The access rights define if a certain user can
read (read file or view directory), write (change/delete file or
add/delete directory’s contents) and execute (run/launch a file
or search/access directory and subdirectories) the respective
system object.

However, there are several disadvantages associated with
DAC. Since any user who owns a system object can give
globally valid permissions for it to any other user, it is
difficult to ensure consistency across the system. This makes
security policies very difficult to maintain and an audit of
security principles becomes virtually impossible in systems
with multiple users. Another problem inherent to DAC is
called the Safety Problem [15]. Because of a lack of constrains
in copy privileges, the information flow can not be controlled.
Once access is given to a certain object, the user can copy
its information without any limitations. These problems ex-
pose the system to vulnerabilities such as trojan horses and
other malicious code that is exploiting authorizations. Once a
vulnerability gains access to the privileged system, the entire
system is compromised.

To perform a remote maintenance task, a service technician
needs to be granted access to a variety of system objects, some
of which may require administrative rights. In a DAC system,
this requirement can only be met by a user account with full
administrative rights. This contradicts the requirement that the
permissions granted to a service technician are to be kept to
the minimum necessary for the maintenance task.

This raises the research question of how users can be
efficiently confined during industrial maintenance sessions
enforcing the principle of least privilege?

III. CONCEPT FOR USING RBAC
A. Introduction to Role Based Access Control

Besides DAC, there exist multiple other access control
mechanisms [8]. The two in practice most relevant types next
to DAC, are Mandatory Access Control (MAC) [4], and Role-
Based Access Control (RBAC) [13, 27]. In MAC, access
decisions are based on policies controlled by a central security
policy administration. Each subject and object is assigned
security attributes that are compared when access is requested.
DAC and MAC were first introduced in the early 1970’s, while
RBAC was first introduced by Ferraiolo et al. [13] and Sandhu
et al. [27] about 20 years later to overcome some of the
shortcomings of the DAC and MAC policy models. Quickly
after its introduction, prototypical implementations followed
[16]. Especially the use of RBAC in web-based server environ-
ments (e.g. corporate networks) [12] and HTTP environments
[14, 25] quickly gained interest and sophisticated methods for
role engineering were introduced [24, 6]. Today a vast variety

of different applications an modifications exist and RBAC is
broadly adapted in both research and industry. Nevertheless,
almost no contributions are concerned with the use of RBAC
to restrict access to industrial systems (e.g. for industrial
remote maintenance), even though it is suited very well for
this purpose.

In RBAC, access decisions are based on roles. Each role
is allowed access to specific objects. Since one subject can
be appointed multiple roles, this model scales very well with
multiple users. RBAC itself is policy neutral and can be
both implemented with the DAC or MAC paradigm [27,
26]. Besides resolving the issues mentioned for DAC, RBAC
has some major advantages compared to DAC and MAC,
supporting following security principles [19, 18, 2]:

• Least privilege: Only permissions required by the user to
perform a given task are granted.

• Separation of duties: Mutually exclusive roles are needed
to perform critical operations (enforcing four-eyes prin-
ciple).

• Data abstraction: Roles combine specific system rights
(read/write/execute) for certain system objects which is
easier to understand.

• Authorization management: Straightforward to assign
new roles and manage a user’s field of responsibility.

• Hierarchical roles: Roles can include other roles and
inherit the corresponding permissions.

Because of these advantages, this paper introduces the idea
to use RBAC to restrict a user’s access within an industrial
control system for a remote maintenance session. The concept
is developed on a linux system using frameworks, tools and
features inherent to the system. These will be briefly explained
in the following paragraphs.

B. Overview on the Linux Security Module
The Linux Security Module (LSM) is an access control

framework in the linux kernel that enables different imple-
mentations of access control modules to be loaded as kernel
modules [23]. This infrastructure leads to new security services
for linux. Examples are AppArmor [3], SELinux [29], Smack
and TOMOYO among others. The LSM tries to impose as
few changes to the kernel as possible avoiding system call
interpositions. Instead it uses upcalls to the kernel module,
so called “hooks”, whenever a user-level system call tries to
access internal kernel objects. With the LSM integrated into
the kernel, each system call has to pass three stages in the
kernel space to achieve access to internal kernel objects. First
an error check and a check if the process has the required
capabilities is performed. Then, the DAC verifies that the
user is allowed access. Finally, the LSM surveys the different
security implementations, using its framework, if access is
allowed. This process is shown in the segment “Kernel Space”
in “Fig. 1”.

C. Implementing RBAC with AppArmor
One very powerful, but yet simple implementation of such

a security module is AppArmor. AppArmor is a pathname-

2018 Fifth International Conference on Internet of Things: Systems, Management and Security (IoTSMS)

109

Authorized licensed use limited to: b-on: UNIVERSIDADE DE AVEIRO. Downloaded on June 20,2022 at 07:19:19 UTC from IEEE Xplore. Restrictions apply.

AppArmor
Application Profiles

(Profile Database)

Inode

K
e

rn
e

l S
p

ac
e

Sandboxed User Level Process

Linux OS Component

Desktop Application

Server Application

Error Check

DAC

LSM Interface
(Profile Enforcement)

AppArmor
(Profile Administration)

AppArmor Module
(Profile Decision Point)reject

reject

reject

allow

U
se

r
Sp

ac
e

system call &
lookup inode

access allowed?

yes/no

re
tu

rn
 s

ys
te

m
 c

al
l r

es
u

lt

ok

ok

ok

Fig. 1. AppArmor in combination with LSM.

based security system that enables MAC on linux systems.
For each individual application a security profile defines
which system resources are available to the application. The
profiles use a “whitelist” approach to grant access to minimal
system resources such as files and directories including the
corresponding access rights (r - read, w - write, a - append, x
- execute, k - lock and l - link) and POSIX capabilities needed
by the application. The security of this proactive whitelist
approach is based on the principle of least privilege and
therefore does not depend on attack signature databases or
else. Since AppArmor uses the pathname-based approach, it
does not require any labeling or relabeling of the file system
in contrast to the popular SELinux or similar implementa-
tions. Another advantage of this approach is the simplicity of
pathnames, which make the policies easy to understand and
audit. Because the profiles are loaded into the kernel and the
enforcement is done on kernel level as well, AppArmor is able
to protect the operating system and applications from both
internal (programming error) and external (zero-day exploit)
threats. How AppArmor in combination with the LSM works
is shown in “Fig. 1”.

Even though, AppArmor is primarily designed to use MAC
to restrict the capabilities of applications, it is possible to im-
plement RBAC with mandatory policies to confine individual
users. AppArmor profiles usually confine single applications.
In order to confine a user, the login program has to be
confined. To do so, the user login has to be linked to a user
individual instance of a login service (e.g. login shell). With
an AppArmor profile, this login service can then be restricted
to only resources necessary for the assigned task. However,
this architecture makes it difficult to have one role apply to
multiple users or one user have multiple roles as typically seen
for RBAC systems. As a solution, role specific rule sets have
to be defined. Depending on the user’s roles, these rule sets
can then be included into the profile for the user individual

login service. This setup is shown in “Fig. 2”.

Subject User Role Policy

user@pc:~$

role1

role2

role3

read objectA

write objectB

execute objectC

read objectD

write objectD

Fig. 2. Architecture of RBAC System.

With this architecture it is easily possible to assign a combi-
nation of roles to a specific user (e.g. maintenance technician)
that are needed to fulfill a given task while conforming with
the BSI requirement of least privilege.

IV. IMPLEMENTATION OF THE CONCEPT

The following section presents a prototypical implementa-
tion of the concept. Besides explaining the implementation of
the architecture itself, an approach for the role assignment and
automatic initiation of a maintenance session is introduced.

For the implementation a Raspberry Pi 3 model B+ is
used to compare to the characteristics of a low-performance
machine controller. The Pi runs Raspbian Stretch Lite, Kernel
version 4.14. To use AppArmor it has to be installed and
additionally enabled in the Kernel by recompiling it with the
correct options enabled.

A new user account “service“ is created for the service tech-
nician. The DAC rights should be extended to the maximum
rights needed for any possible maintenance scenario. Since
some maintenance tasks may require administrative rights, the
user is therefore added to the sudoers group.

A special login shell is created (sudo ln /bin/bash /usr/lo-
cal/servicebash) and referenced as such (sudo echo /usr/lo-
cal/servicebash >> /etc/shells). After that it is specified as the
standard login shell for the user service (sudo chsh service).
Furthermore, the authentication method for ssh sessions is
set to public-key authentication, so subjects can be uniquely
identified. With this being setup, AppArmor can now be used
to confine the servicebash and therefore the user service. To
implement RBAC, role specific profiles are created. Since
AppArmor is a pathname-based security system, rules can
easily be created. The path to a specific system object is given
followed by file access permissions (r, w, a, l, k, x). The role
profiles are saved in the directory /etc/apparmor.d/roles. The
typical structure of a role profile is as follows:

/etc/apparmor.d/roles/role1:

i n c l u d e < a b s t r a c t i o n s / s t a n d a r d _ r e s o u r c e s >
/ p a t h / t o / o b j e c t 1 rwa lkx
/ p a t h / t o / o b j e c t 2 rwx

2018 Fifth International Conference on Internet of Things: Systems, Management and Security (IoTSMS)

110

Authorized licensed use limited to: b-on: UNIVERSIDADE DE AVEIRO. Downloaded on June 20,2022 at 07:19:19 UTC from IEEE Xplore. Restrictions apply.

Depending on the roles needed to work on a certain main-
tenance task, the role profiles are included in the application
profile of the servicebash, as shown in the code-extract below:

/etc/apparmor.d/usr.bin.servicebash:

i n c l u d e < t u n a b l e s / g l o b a l >
/ u s r / l o c a l / b i n / s e r v i c e b a s h {

i n c l u d e < r o l e / r o l e 1 >
i n c l u d e < r o l e / r o l e 2 >
i n c l u d e < r o l e / r o l e 3 >
i n c l u d e < r o l e / r o l e 4 >

}

After putting the servicebash profile in enforce mode (sudo
aa-enforce usr.local.bin.servicebash) the program and there-
fore the user service is confined. The complete setup is shown
in “Fig. 3”.

K
e

rn
e

l S
p

ac
e reject

allow

U
se

r
Sp

ac
e

access?

re
tu

rn
 s

ys
te

m
 c

al
l r

es
u

lt

ok

AppArmor
Profile Database

LSM Interface
(Profile Enforcement)

AppArmor Module
(Profile Decision Point)

role2

role4

servicebash
profile

role1

role3

Application Profiles RBAC Role Profiles

Sandboxed
Service Bash

user@pc:~$

yes/no

Inode

ssh-service

Fig. 3. Architecture of implementation.

The roles are highly depended on the task corresponding
to the maintenance request and have to be assigned respec-
tively. Because of the RBAC inherent data abstraction and
the possibility to implement hierarchical role structures, roles
can in advance be created for recurring or predefined tasks.
Nevertheless, the manual creation and assignment of roles
can be time-consuming, especially for non-standard tasks. For
easier usage a python program is written to initiate a mainte-
nance request and assign the correct roles to the servicebash
profile. The program uses error messages to identify task
fields for a maintenance technician and suggests suitable roles.
In the implemented scenario, a lookup table is created that
assigns specific roles to different error messages. This way, an
employee who creates the service request only has to check
and approve the request. Other approaches to both monitor the
condition of the system to initiate a maintenance request and
identify the correct roles for the session are also conceivable,
but not subject of this paper.

In addition, an automatic mode for establishing a mainte-
nance session that additionally identifies a suitable mainte-
nance technician from a database according to the require-
ments and automatically triggers a remote maintenance case

without human intervention was implemented and tested. A
flow diagram of the program is shown in “Fig. 4”.

trigger request

store
pubkey

edit servicebash
profile

condition
monitoring

match service
technician

lookup table
errors > roles

service technician
database

Start

Stoptimeout
during

maintenance
session remove pubkey

terminate ssh
session

Fig. 4. Flow diagram of maintenance application.

Depending on the analysis of the error, different require-
ments regarding the subject (expertise, skill level, clearance
and employer of the person performing the maintenance),
roles (roles needed for the maintenance) and context (time-
frame for the maintenance) are defined. According to the
assigned task, the correct roles are included in the profile
for the login shell. That followed the profile is reloaded
and put into enforce mode. The requirements regarding the
subject are compared to a local database of maintenance
technicians and additionally written into a XML-File. In a
more complex scenario, the XML-File could be transferred to
a server to find a suitable maintenance technician instead of
comparing locally. Once a maintenance technician is found,
the corresponding X.509 public key certificate is stored to
the service user’s authorized_keys directory. The subject’s
attributes such as the expertise, skill level, clearance and
employer could be integrated into the certificate as critical
extensions. However, since these attributes often both change
over time and are customer-specific this option is disregarded
in this use-case. Next, the maintenance technician is notified
about the task including connection details and the given time
frame. The application starts the ssh service at the announced
starting time and the maintenance technician can connect to
the machine. This implementation uses SSH-2 with standard
settings (AES 128), however other encryption algorithms such
as 3DES, Blowfish, Twofish, CAST, IDEA, Arcfour or SEED
and different key-length are supported as well. As soon as the
end time is reached, the user is disconnected, the ssh service

2018 Fifth International Conference on Internet of Things: Systems, Management and Security (IoTSMS)

111

Authorized licensed use limited to: b-on: UNIVERSIDADE DE AVEIRO. Downloaded on June 20,2022 at 07:19:19 UTC from IEEE Xplore. Restrictions apply.

is disabled and the public key certificate is removed from the
authorized_keys directory again. For monitoring purposes, all
activities performed by the maintenance technician are logged
with Linux’ build-in audit system (auditd) [1]. A manipulation
of the log files is not possible as long as the user is not given a
role that can edit the log files or manipulate the auditd service.

V. RESULTS AND DISCUSSION

The implementation is tested and compared to the initial
goals. Even though, the implemented use-case is limited to
ssh as a login method, the same implementation can easily be
extended to other login services such as gdm. Therefore, the
concept is not only valid for remote maintenance, but also for
the confinement of local users.

To validate the concept, the BSI requirement 7, that is not
satisfied by any of the current solutions available is revis-
ited. Using AppArmor, mandatory RBAC can be implement
to confine the user’s permissions to the required minimum
and enforce the principle of least privilege. Additionally, the
introduced implementation complies with requirements 2 and
6 that are mostly ignored by current solutions as well. Using
an ssh-tunnel, the remote maintenance technician establishes
a fully end-to-end encrypted tunnel. With the auditd service,
it is possible to fully log the remote maintenance session.

A. Efficiency of the implementation

To evaluate the suggested solution further, the efficiency is
tested. Efficiency in this manner is regarding the performance
overhead introduced by the security measure. For this purpose,
a tool called ssh-perf is used. The tool is specifically developed
to measure the performance of ssh connections, such as raw
connections per second, exec commands per second, SCP
or SFTP upload and download speeds and maximum open
connections.

For the performance test, two identical virtual machines
(A and B) are setup on a Sysgem Supermicro Server with
2 Haswell-Xeon E5-2643 v3 with12 physical cores, 128GB
DDR4 RAM and 8 times 4TB Storage storage running a
VMWare ESXi Server version 6.0.0, build 3620759. Both
machines are allocated one virtual core with 3.4 GHz, 1 GB
RAM, and run Ubuntu Server 16.04.4 LTS x86_64, Kernel
Version 4.4.0-128. The machines are connected via an internal
VM network to reduce any latency variations introduced
through physical networks. The test consists of two runs. In
the first run, a script running different test scenarios with ssh-
perf is run on machine A. In the test, machine A connects
to machine B and measures performance indicators that will
be described in more detail later. In a second run, the exact
same test is performed again. The only difference between
both runs is that the first time, AppArmor is completely turned
off and the second time, AppArmor is restricting access. For
this second run, an AppArmor profile that allows access to all
resources needed for the test is created with the aa-genprof
tool. The tool is used to create a profile for each test. To
create a similar structure as proposed in the concept, the rules
common to all tests and the test individual rules are each put

into separate files. Each file being the equivalent to a role.
Then an AppArmor profile for the servicebash is created and
the roles are included accordingly. Each test is run for one
hour to reduce the influence of short term variabilities.

The test results are shown in “Tab. I”. The first column on
the left side of the table lists the abbreviations of the different
tests carried out:

• raw connections per second: rcps
• executed commands per second: ecps
• sftp upload (put) performance (1GB file): sftpp
• sftp download (get) performance (1GB file): sftpg
• scp upload (put) performance (1GB file): scpp
• scp download (get) performance (1GB file): scpg

The remaining columns are split into groups of two. The
first pair shows the successes per second (sps) and latency
per second (lps) for the test run with AppArmor disabled
(unconfined). The second pair shows the results for the test
run with AppArmor enabled (confined). The last pair lists
the performance difference between the two. The perfor-
mance difference for successes per second is calculated by
spd = (1− confined/unconfined) ∗ 100. The performance
difference for latency per second is calculated by lpd =
(confined/unconfined − 1) ∗ 100. All results are rounded
to two decimal places after doing the calculations.

TABLE I
PERFORMANCE RESULTS

test
name

unconfined confined difference
sps lps sps lps spd lpd

rcps 6.96 0.09 5.59 0.10 19.71% 17.49%
ecps 5.29 0.18 4.46 0.22 15.66% 19.32%
sftpp 0.11 8.73 0.11 8.71 -0.18% -0.18%
sftpg 0.11 9.46 0.10 9.51 0.58% 0.55%
scpp 0.10 9.62 0.10 9.64 0.18% 0.18%
scpg 0.11 9.47 0.10 9.54 0.67% 0.68%

The first interesting observation to make is that the sftp
upload performance (sftpp) seems to have improved about
0.18%. This improvement can only be explained by the
testing procedure not being completely accurate. Therefore,
the results should be treated as a tendency rather than abso-
lute values. Having this in mind, the performance overhead
introduced through the AppArmor RBAC implementation is
almost negligible for both scp and sftp upload and download
performance, being less than 1%. These small performance
decreases are plausible, since the performance in these tests is
mostly depended on the upload and download speeds. The
authorization is only checked in the beginning of the file
transfer. Once the connection is established AppArmor has
no part in the rest of the test. For raw connections per second
and executed commands per second, a performance decrease
of maximum 20% can be observed. In these tests, AppArmor is
involved for every new connection and every execution, which
results in the performance decrease.

Even though, in the tests a performance decrease for con-
nections per second and executed commands per second was

2018 Fifth International Conference on Internet of Things: Systems, Management and Security (IoTSMS)

112

Authorized licensed use limited to: b-on: UNIVERSIDADE DE AVEIRO. Downloaded on June 20,2022 at 07:19:19 UTC from IEEE Xplore. Restrictions apply.

identified, the relevance in a real world maintenance scenario is
less significant. The latency difference for executed commands
per second for example, is less than 40 milliseconds and
therefore not noticeable for a service technician. Overall, the
performance overhead introduced through the proposed RBAC
implementation does not impair a maintenance session in any
way and is well suited for enforcing the principle of least
privilege in industrial remote maintenance sessions.

B. Limitations and possible solutions

However, RBAC still has some limitations. In the use-case,
the maintenance session depends on requirements regarding
the subject, role and context. For the implementation, three
mechanisms are needed to archive these requirements. First a
database is needed to select the correct subject and a script
is needed to assign a service technician (subject) to a user.
Then AppArmor is used to confine the subject depending on
its specific roles. Last, a script to terminate the ssh connection
is used to enforce the contextual requirement such as a time
frame for the maintenance session. Furthermore, the concept of
roles is very limited in itself. Roles have multiple dimensions.
The roles in AppArmor define actions (read, write, execute,
etc.) that can be performed on certain objects (resources).
However, it is not possible to require multiple roles to access
a certain resource (e.g. user can access system objectA if
exhibiting roles role1 and role2). Instead, a new role has
to be defined that includes both requirements and combines
them into a new role (role3). As shown in this example, roles
are either not very granular or very many roles are needed
to describe more complicated scenarios, which makes the
assignment of roles rather difficult.

In recent years, research efforts are focused on an more gen-
eral approach. A new access control paradigm called Attribute-
Based Access Control (ABAC) is being developed to combine
the advantages of MAC, DAC and RBAC, while resolving their
limitations [19]. With ABAC Boolean operations can be used
to define access policies. An example for such a policy would
be: “Allow access to all system objects with attribute A1 if
subject has attributes S1 and S2 and action is read or write
and context is between 9am and 3pm”. In this example, all
users exhibiting the attributes S1 and S2 are allowed to read
and write any resources with the attribute A1 between 9am and
3pm. However, ABAC cannot be integrated into preexisting
systems as easily, since tags for system objects are needed.
There does not exist an implementation of ABAC on system
level yet. The implementation of such system is a matter of
future research.

VI. CONCLUSION

In this paper, RBAC is used to enhance the system security
of industrial computers during remote maintenance sessions.
First a concept for using RBAC to protect a system is
presented. The concept is implemented on a linux system using
LSM and AppArmor. This approach leads to significantly more
system security than an ordinary DAC system as used in most
systems. The greatest advantage of this access control system

is the enforcement of good user behavior beyond the point of
known security issues. RBAC confines the user to the least
amount of access needed to perform a certain task (principle
of least privilege) and does not depend on the updates of attack
signature databases or else. The security does not necessarily
weaken when new vulnerabilities are being discovered. There-
fore, this security approach is particularly suitable for the use
in long-lived systems as seen with industrial computers and
machines.

Moreover, RBAC cannot only be used to confine users but
also applications and other connected systems. It is a conve-
nient addition to existing security systems and can oftentimes
easily be integrated. For the design of new systems, it is an
opportunity to facilitate long-term security as well.

In the discussion several shortcomings of RBAC were
identified. Some of which could be overcome using ABAC.
However, for preexisting systems ABAC is no valid addition
since the file system needs to be adapted. RBAC benefits with
its ease of integration in older systems. Nevertheless, using
ABAC for enhanced system security will be focus of future
research and seems to offer promising advantages.

ACKNOWLEDGMENT

This research was supported by the IUNO Project (National
Reference Project on IT-Security in the Industry 4.0). Espe-
cially, working group three supplied input for important ideas
and results in this paper.

REFERENCES

[1] auditd(8): Audit daemon - Linux man page. URL: https:
//linux.die.net/man/8/auditd (visited on 04/16/2018).

[2] Ryan Ausanka-Crues. “Methods for Access Control:
Advances and Limitations”. In: Harvey Mudd College
301 (2001), pp. 20–25.

[3] Mick Bauer. “Paranoid Penguin: An Introduction to
Novell AppArmor”. In: Linux J. 2006.148 (Aug. 2006),
pp. 1–13. ISSN: 1075-3583.

[4] D. Elliott Bell and Leonard J. La Padula. Secure com-
puter system: Unified exposition and multics interpre-
tation. MITRE CORP BEDFORD MA, 1976.

[5] Alan Calder and Steve G. Watkins. A dictionary of In-
formation Security Terms, Abbreviations and Acronyms.
Cambridgeshire, United Kingdom: IT Governance Pub-
lishing, 2007. ISBN: 978-1-905356-21-8. URL: www.
itgovernance.co.uk.

[6] Dana Al Kukhun and Florence Sedes. “Adaptive So-
lutions for Access Control within Pervasive Health-
care Systems.” In: Lecture Notes in Computer Science.
Springer, Berlin, Heidelberg, 2002, pp. 42–53. ISBN:
978-3-540-69914-9.

[7] Georg Disterer. “ISO/IEC 27000, 27001 and 27002
for Information Security Management”. In: Journal of
Information Security 04.2 (2013), pp. 92–100. ISSN:
2153-1234, 2153-1242. DOI: 10.4236/jis.2013.42011.

2018 Fifth International Conference on Internet of Things: Systems, Management and Security (IoTSMS)

113

Authorized licensed use limited to: b-on: UNIVERSIDADE DE AVEIRO. Downloaded on June 20,2022 at 07:19:19 UTC from IEEE Xplore. Restrictions apply.

[8] Claudia Eckert. IT-Sicherheit: Konzepte - Verfahren
- Protokolle. 8. Aufl. München: De Gruyter, 2013.
1016 pp. ISBN: 978-3-486-73587-1.

[9] Federal Office for Information Security. Grundregeln
zur Absicherung von Fernwartungszugängen. June 27,
2013. URL: https://www.allianz- fuer- cybersicherheit.
de/ACS/DE/_/downloads/BSI-CS_054.pdf;jsessionid=
CE2EAED31E61E2A7885A6206CF47773F.2_cid360?
__blob=publicationFile&v=3 (visited on 08/25/2017).

[10] Federal Office for Information Security. Industrial Con-
trol System Security - Top 10 Threats and Countermea-
sures 2016. Jan. 8, 2016. URL: https : / /www.allianz-
fuer- cybersicherheit . de / ACS / DE / _ / downloads / BSI -
CS_005E.pdf?__blob=publicationFile&v=3 (visited on
08/25/2017).

[11] Federal Office for Information Security. Remote main-
tenance in industrial environments. Jan. 12, 2015. URL:
https : / / www. allianz - fuer - cybersicherheit . de / ACS /
DE / _ / downloads / BSI - CS _ 108E . pdf ? _ _ blob =
publicationFile&v=2 (visited on 08/25/2017).

[12] David F. Ferraiolo, John F. Barkley, and D. Richard
Kuhn. “A role-based access control model and reference
implementation within a corporate intranet”. In: ACM
Transactions on Information and System Security 2.1
(Feb. 1, 1999), pp. 34–64. ISSN: 10949224. DOI: 10.
1145/300830.300834.

[13] David F. Ferraiolo, Janet A. Cugini, and D. Richard
Kuhn. “Role-Based Access Control (RBAC): Features
and Motivations”. In: Proceedings of 11th annual com-
puter security application conference. 1995, pp. 241–
248.

[14] Kurt Gutzmann. “Access control and session manage-
ment in the HTTP environment”. In: IEEE Internet
Computing 5.1 (Feb. 2001), pp. 26–35. ISSN: 10897801.
DOI: 10.1109/4236.895139.

[15] Michael A. Harrison and Walter L. Ruzzo. “Protection
in Operating Systems”. In: Communications of the ACM
19.8 (1976), pp. 461–471.

[16] J. Hoffman. “Implementing RBAC on a type enforced
system”. In: Proceedings 13th Annual Computer Secu-
rity Applications Conference. 13th Annual Computer
Security Applications Conference. San Diego, CA,
USA: IEEE Comput. Soc, 1997, pp. 158–163. ISBN:
978-0-8186-8274-2. DOI: 10.1109/CSAC.1997.646185.

[17] ISO 27000. Oct. 2017.
[18] Bokefode Jayant.D et al. “Analysis of DAC MAC

RBAC Access Control based Models for Security”. In:
International Journal of Computer Applications 104.5
(Oct. 18, 2014), pp. 6–13. ISSN: 09758887. DOI: 10.
5120/18196-9115.

[19] Xin Jin, Ram Krishnan, and Ravi Sandhu. “A Uni-
fied Attribute-Based Access Control Model Covering
DAC, MAC and RBAC”. In: Data and Applications
Security and Privacy XXVI. Ed. by Nora Cuppens-
Boulahia, Frederic Cuppens, and Joaquin Garcia-Alfaro.
Vol. 7371. Berlin, Heidelberg: Springer Berlin Heidel-

berg, 2012, pp. 41–55. ISBN: 978-3-642-31539-8 978-
3-642-31540-4. DOI: 10.1007/978-3-642-31540-4_4.

[20] E. A. Lee. “Cyber Physical Systems: Design Chal-
lenges”. In: 2008 11th IEEE International Symposium
on Object and Component-Oriented Real-Time Dis-
tributed Computing (ISORC). 2008 11th IEEE Interna-
tional Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC). May 2008,
pp. 363–369. DOI: 10.1109/ISORC.2008.25.

[21] Wolfgang Mahnke, Stefan-Helmut Leitner, and
Matthias Damm. OPC unified architecture. OCLC:
ocn268784080. Berlin: Springer, 2009. 339 pp. ISBN:
978-3-540-68898-3 978-3-540-68899-0.

[22] Gary McGraw and John Viega. “Building Secure Soft-
ware - A Difficult But Critical Step in Protecting
Your Business”. In: RTO/NATO Real-Time Intrusion
Detection Symposium. RTO/NATO Real-Time Intrusion
Detection Symposium. Cigital, Inc., 2002.

[23] James Morris, Stephen Smalley, and Greg Kroah-
Hartman. “Linux security modules: General security
support for the linux kernel”. In: USENIX Security
Symposium. 2002.

[24] Gustaf Neumann and Mark Strembeck. “A Scenario-
driven Role Engineering Process for Functional RBAC
Roles”. In: Proceedings of the seventh ACM symposium
on Access control models and technologies. ACM. 2002,
pp. 33–42.

[25] Gustaf Neumann and Mark Strembeck. “Design and Im-
plementation of a Flexible RBAC-Service in an Object-
Oriented Scripting Language”. In: Proceedings of the
8th ACM conference on Computer and Communications
Security. ACM. 2001, pp. 58–67.

[26] Sylvia Osborn, Ravi Sandhu, and Qamar Munawer.
“Configuring role-based access control to enforce
mandatory and discretionary access control policies”.
In: ACM Transactions on Information and System Se-
curity 3.2 (May 1, 2000), pp. 85–106. ISSN: 10949224.
DOI: 10.1145/354876.354878.

[27] Ravi S. Sandhu et al. “Role-based access control mod-
els”. In: Computer 29.2 (1996), pp. 38–47.

[28] Stefan Schweiger, ed. Lebenszykluskosten optimieren:
Paradigmenwechsel für Anbieter und Nutzer von In-
vestitionsgütern. 1. Aufl. OCLC: 269453821. Wies-
baden: Gabler, 2009. 188 pp. ISBN: 978-3-8349-0989-3.

[29] Stephen Smalley, Chris Vance, and Wayne Salamon.
“Implementing SELinux as a Linux security module”.
In: NAI Labs Report 1.43 (2001), p. 139.

[30] Erdal Tantik and Reiner Anderl. “Integrated Data Model
and Structure for the Asset Administration Shell in
Industrie 4.0”. In: Procedia CIRP 60 (2017), pp. 86–91.
ISSN: 22128271. DOI: 10.1016/j.procir.2017.01.048.

[31] Stephan Weyer et al. “Towards Industry 4.0 - Stan-
dardization as the crucial challenge for highly mod-
ular, multi-vendor production systems”. In: IFAC-
PapersOnLine 48.3 (2015), pp. 579–584. ISSN:
24058963. DOI: 10.1016/j.ifacol.2015.06.143.

2018 Fifth International Conference on Internet of Things: Systems, Management and Security (IoTSMS)

114

Authorized licensed use limited to: b-on: UNIVERSIDADE DE AVEIRO. Downloaded on June 20,2022 at 07:19:19 UTC from IEEE Xplore. Restrictions apply.

