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Abstract

Linux capabilities have been partially implemented for
many years, and in their incomplete state have been
nearly unusable. In light of recent kernel develop-
ments, including VFS support and per-process support
for bounding-set and secure-bits, capabilities have fi-
nally come of age. In this paper we demonstrate, with
examples, how capabilities enhance the security of the
modern Linux system.

1 Introduction

Linux helps users manage their data, and a single Linux
system simultaneously manages the data of multiple
users. Within the system, a particular user’s property is
generally contained in files which are annotated with a
numerical ownership user-identifier (UID). Linux also
manages and abstracts the computer hardware, offer-
ing programs an environment in which to execute. Part
of this abstraction enforces data ownership. In order
to honor the ownership of such data, Linux adheres to
context-specific rules limiting how programs can manip-
ulate, via system-calls, a specific user’s data (the context
in this case being the value of attributes like the user’s
UID).

To start running programs on a Linux system, an
applicant-user generally leverages a program (such as
login, sshd, or gdm) to authenticate their identity to
the system and create a working context for them to in-
voke other programs that access their data. Such login
programs are exceptionally special, insofar as they have
the ability to change the user context (set the current
UID). Changing user context is clearly a special oper-
ation, since if it were not then programs run from the
context of any user could trivially be leveraged to create
a different user’s context and manipulate data belonging
to that other user. The special property of these appli-
cations is commonly known as privilege, and this paper

concerns a newly completed mechanism for managing
privilege within the Linux operating system.

Programs, in the context of authenticated users, can cre-
ate data with access controls associated with them: cre-
ate a file that anyone can read; create a file that only the
creator can read or modify; etc. These forms of protec-
tion are known as Discretionary Access Control (DAC),
and with more recent Linux extensions such as Access
Control Lists (ACLs) can be quite elaborate [1]. The
protection of such data is at the discretion of the owner
of these files. Other mechanisms, such as Mandatory
Access Control (MAC), enforce a system policy that
restricts the ways in which users can share their data.
Linux, via the Linux Security Module (LSM) [2] pro-
gramming abstraction, natively supports simple MAC
[3] and the more modern type-enforcement model [4, 5].
All of these mechanisms follow a tradition [6] of at-
tempting to add real security to Linux and UNIX [7].

Managing a Linux system in the real world requires
levels of reliability (continuity of service for multiple
simultaneous users and uses) that must anticipate fu-
ture problems: the need for data backups; configuration
changes and upgrades to failing/obsolete hardware etc.
There is also a recurrent need to work around and correct
urgent issues: users accidentally instructing programs to
delete files, users being removed from the system (and
their data being archived or redistributed to other users);
etc. These requirements, in addition to the need to login
users (discussed above), lead to the fact that any system
must provide the ability to override DAC and MAC se-
curity protections to “get things done.” Viable systems
need a privilege model.

The classic UNIX model for wielding privilege is to as-
sign a special UID the right to do anything. Programs
running in the context of this super-user are not bound
by the normal DAC/MAC rules. They can read, mod-
ify, and change any user’s data. In UNIX, UID=0 is the
special context assigned to this administrative identity.
To give this entity a more human touch, this user is also
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known as root. What this means for programs is that,
when they run in the context of root’s UID, system-
calls can do special (privileged) things. The converse of
this is also significant: when they run in this context,
programs can’t help breaking the normal DAC/MAC
rules, potentially causing unintended damage to the sys-
tem. For example, executing: rm -rf /, as root can
have spectacularly bad consequences to a system. How-
ever, running this command as a normal user (in this pa-
per, we’ll call such a user: luser) results in a prompt
error and no negative effects. This luser doesn’t have
a right to delete anything in the base directory of the
filesystem.

Unprivileged users, however, must always perform
some tasks which do require privilege. For instance, our
luser must be able to change his password. That be-
ing said, the system must prevent luser from being
able to read or change passwords for other users. Users
execute programs that act for them, and a program ex-
ists to change passwords: passwd. This program must
be invoked from the context of the luser but oper-
ate with sufficient privilege to manipulate the shared-
system’s password file (/etc/shadow). To this end,
Linux executable files can have a special attribute se-
tuid-bit set, meaning that the program can execute with
the effective UID (EUID1) of the user owning the pro-
gram file. If the setuid passwd program file’s owner is
root,2 then independent of the user context in which
the program is launched, it will execute with the effec-
tive context of the super-user. That is, a program such
as passwd will not be bound by any of the DAC/MAC
rules that constrain other regular programs.

2 The Linux capability model

While the simple UNIX privilege mechanism has more
or less sufficed for decades, it has long been observed
that it has a significant shortcoming: that programs that
require only some privilege must in fact run with full
privilege. The dangers of such a lack of flexibility are
well known, as they ensure that programming errors in
privileged programs can be leveraged by hostile users

1Details about effective, saved, and filesystem UIDs, groups, and
group membership have been omitted from this discussion. That be-
ing said, through complexity, they have greatly added to the usability
of the system.

2In practice, a shared need to edit a protected file like this can be
achieved with ACLs—requiring a shadow-UID or group for exam-
ple.

to lead to full system compromise [8]. Such compro-
mises can be mitigated through the use of MAC, but
at some fundamental level any privileged access to the
hardware underpinning an operating system can violate
even MAC rules, and bogging MAC implementations
down with details about root privilege separation only
increases policy complexity. In the real world, adminis-
trative access to override normal access control mecha-
nisms is a necessary feature.

Over the years, the proponents of a more secure UNIX
[7] explored various alternatives to the concept of an
all powerful root user. An aborted attempt was even
made to unify these enhancements into a single stan-
dard [9]. The downward trajectory in the mid to late
1990’s of the closed-source vendor-constrained rival
commercial UNIX implementations mired, and eventu-
ally halted, the ratification of this standard. However,
not entirely disconnected from this slowdown was the
rapid and perhaps inevitable rise of Linux—a truly open
(free) system in the original spirit of the UNIX tradition.
These modern ideas of incremental enhancements to the
UNIX security model have now found a home in Linux
[1, 10, 3, 11].

The proposed privilege model [9] introduced a separa-
tion of root privilege into a set of capabilities. These
capabilities break the super-user’s privilege into a set
of meaningfully separable privileges [7]. In Linux,
for instance, the ability to switch UIDs is enabled by
CAP_SETUID while the ability to change the owner-
ship of an object is enabled by CAP_CHOWN.

A key insight is the observation that programs, not peo-
ple, exercise privilege. That is, everything done in a
computer is via agents—programs—and only if these
programs know what to do with privilege can they be
trusted to wield it. The UID=0 model of privilege makes
privilege a feature of the super-user context, and means
that it is arbitrary which programs can do privileged
things. Capabilities, however, limit which programs can
wield any privilege to only those programs marked with
filesystem-capabilities. This feature is especially impor-
tant in the aftermath of a hostile user exploiting a flaw in
a setuid-root program to gain super-user context in the
system.

This paper describes how to use the Linux implemen-
tation of these capabilities. As we will show, while
support of legacy software requires that we sometimes
maintain a privileged root user, the full implementation
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of Linux capabilities enables one to box-in certain sub-
systems in such a way that the UID=0 context becomes
that of an unprivileged user. As legacy software is up-
dated to be capability-aware, a fully root-less system be-
comes a very real possibility [12].

2.1 Capability rules

Processes and files each carry three capability sets. The
process effective set contains those capabilities which
will be applied to any privilege checks. The permit-
ted set contains those capabilities which the task may
move, via the capset() system call, into its effective
set. The effective set is never a superset of the permit-
ted set. The inheritable set is used in the calculation of
capability sets at file execution time.

Capabilities are first established, at program execution
time, according to the following formulas:

pI′ = pI (1)

pP′ = (X& f P) | (pI& f I) (2)

pE ′ = f E ? pP′ : /0. (3)

Here pI, pE, and pP are the process’ inheritable, effec-
tive, and permitted capability sets (respectively) before
exec(). Post-exec(), the process capabilities sets
become pI′, pE ′, and pP′. The capability sets for the file
being executed are f I, f E, and f P. Equation 1 shows
the task retains its pre-exec() inheritable set. Equa-
tion 2 shows the file inheritable and process inherita-
ble sets are and’ed together to form a context-dependent
component of the new process permitted set. The file
inheritable set, f I, is sometimes referred to as the file’s
optional set because the program will only acquire capa-
bilities from it if the invoking user context includes them
in pI. By optional, we mean the program can gracefully
adjust to the corresponding privileges being available or
not. The file permitted set, f P, is also called the forced
set because capabilities in that set will be in the process’
new permitted set whether it previously had them in any
capability sets or not (subject to masking with X). In
Equation 3, the file effective capability set is interpreted
as a boolean. If f E (also called the legacy bit) is set, then
the process’ new effective set is equal to the new permit-
ted set. If unset, then pE ′ is empty when the exec()d
program starts executing.

The remaining object in these rules, X , has, until re-
cently, been an unwieldy system-wide capability bound-
ing set. However, it has now become the per-process

capability bounding set. X is inherited without modifi-
cation at fork() from the parent task. A process can
remove capabilities from its own X so long as its ef-
fective set has CAP_SETPCAP. A task can never add
capabilities to its X . However, note that a task can gain
capabilities in pP′ which are not in X , so long as they
are both in pI and f I. The bounding set will be further
discussed in Section 3.3.

When a new process is created, via fork(), its capa-
bility sets are the same as its parent’s. A system call,
capset(), can be used by a process to modify its
three capability sets: pI, pP and pE. As can be seen
in Equation 1, the inheritable set pI remains unchanged
across file execution. Indeed it is only changed when the
running process uses the system call to modify its con-
tents. Unless pE contains CAP_SETPCAP, Linux will
only allow a process to add a capabilities to pI that are
present in pP. No special privilege is required to remove
capabilities from pI. The only change to the permitted
set, pP, that a process can make is to drop raised capa-
bilities. The effective set is calculated at file execution,
and immediately after exec() will be either equal to
the permitted set or will be empty. Via capset() the
process can modify its effective set, pE, but Linux re-
quires that it is never a superset of the contents of the
process’ permitted set, pP.

Most software and distributions available currently de-
pend on the notion of a fully privileged root user.
Linux still supports this behavior in what we call legacy-
fixup mode, which is actually the default. Legacy-fixup
mode acts outwardly in a manner consistent with there
being a root user, but implements super-user privilege
with capabilities, and tracks UID-changes to fixup the
prevailing capability sets. This behavior allows a root
user to execute any file with privilege, and an ordinary
user to execute a setuid-root file with privilege. When
active, legacy-fixup mode force-fills the file capability
sets for every setuid-root file and every file executed
by the root user. By faking a full f P and full f I we
turn a setuid-root file or a file executed by the root
user into a file carrying privilege. This may appear dis-
tasteful, but the desire to support legacy software while
only implementing one privilege model within the ker-
nel requires it. As we will show in Section 4 legacy-
fixup mode can be turned off when user-space needs no
privilege or supports pure privilege through capabilities.

In the absence of VFS support for capabilities, a num-
ber of extensions to the basic capability model [9] were
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introduced into the kernel: an unwieldy (global, asyn-
chronous,3 and system crippling) bounding set [13];
the unwieldy (asynchronous and questionable) remote
bestowal of capabilities by one process on another;4

the unwieldy (global, asynchronous, and system crip-
pling) secure-bits;5 and the more moderately scoped
prctl(PR_SET_KEEPCAPS) extension.

All but the last of these have recently been made vi-
able through limiting their scope to the current process,
becoming synchronous features in the Linux capability
model. The prctl(PR_SET_KEEPCAPS) extension of
legacy-fixup mode, which can be used as a VFS-free
method for giving capabilities to otherwise unprivileged
processes, remains so. When switching from the privi-
leged root user to a non-root user, the task’s permit-
ted and effective capability sets are cleared.6 But, using
prctl(PR_SET_KEEPCAPS), a task can request keep-
ing its capabilities across the next setuid() system
call. This makes it possible for a capability-aware pro-
gram started with root privilege to reach a state where
it runs locked in a non-root user context with partial
privilege. As we discuss in Section 4, while legacy-
fixup remains the default operating mode of the kernel,
each of these legacy features can be disabled on a per-
process basis to create process-trees in which legacy-
fixup is neither available nor, indeed, needed.

3 Worked Examples

In this section we provide some explicit examples for
how to use capabilities. The examples show how tradi-
tional setuid-root solutions can be emulated, and also
what is newly possible with capabilities.

3Asynchronocity with respect to security context means that a
task’s security context can be changed by another task without the
victim’s awareness.

4The ability for one process to asynchronously change, with-
out notification, the capabilities of another process, via the hijacked
CAP_SETPCAP capability, was so dangerous to system integrity
that it has been disabled by default since its inception in the ker-
nel. The addition of VFS support disables this feature and restores
CAP_SETPCAP to its intended use as documented in this paper (see
Section 3.1).

5Securebits have been implemented in the kernel for many
years, but have also been cut off from being available—without any
API/ABI for manipulating them for almost as long.

6The actual semantics of legacy-fixup are more complicated.

3.1 Minimum privilege

In this example we consider an application, ping, that
one might not even realize requires privilege to work.
If you examine the regular file attributes of a non-
capability attributed ping binary, you will see some-
thing like this:

$ ls -l /bin/ping
-rwsr-xr-x 1 root root 36568 May 2 2007 /bin/ping
$ /bin/ping -q -c1 localhost
PING localhost.localdomain (127.0.0.1) 56(84)
bytes of data.
--- localhost.localdomain ping statistics ---
1 packets transmitted, 1 received, 0% packet loss,
time 0ms
rtt min/avg/max/mdev = 0.027/0.027/0.027/0.000 ms,
pipe 2
$

The s bit of the file’s mode is the familiar setuid-
executable bit. If we copy the file as an unprivileged
user (luser) it loses its privilege and ceases to work:

$ cp /bin/ping .
$ ls -l ping
-rwxr-xr-x 1 luser luser 36568 Mar 26 17:54 ping
$ ./ping localhost
ping: icmp open socket: Operation not permitted
$

Running this same program as root will make it work
again:

# ./ping -q -c1 localhost
PING localhost.localdomain (127.0.0.1) 56(84)
bytes of data.
--- localhost.localdomain ping statistics ---
1 packets transmitted, 1 received, 0% packet loss,
time 0ms
rtt min/avg/max/mdev = 0.027/0.027/0.027/0.000 ms,
pipe 2
#

In short, ping requires privilege to write the specially
crafted network packets that are used to probe the net-
work.

Within the Linux kernel there is a check to see whether
this application is capable(CAP_NET_RAW), which
means cap_effective (pE) for the current process
includes CAP_NET_RAW. By default, root gets all ef-
fective capabilities, so it defaults to having more-than-
enough privilege to successfully use ping. Similarly,
when setuid-root, the /bin/ping version is also
overly privileged. If some attacker were to discover
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a new buffer-overflow [14] or more subtle bug in the
ping application, then they might be able to exploit it
to invoke a shell with root privilege.

Filesystem capability support adds the ability to bestow
just-enough privilege to the ping application. To emu-
late just enough of its legacy privilege, one can use the
utilities from libcap [10] to do as follows:

# /sbin/setcap cap_net_raw=ep ./ping
# /sbin/getcap ./ping
./ping = cap_net_raw+ep

What this does is add a permitted capability for CAP_
NET_RAW and also sets the legacy effective bit, f E, to
automatically raise this effective bit in the ping process
(pE) at the time it is invoked:

$ ./ping -q -c1 localhost
PING localhost.localdomain (127.0.0.1) 56(84)
bytes of data.
--- localhost.localdomain ping statistics ---
1 packets transmitted, 1 received, 0% packet
loss, time 0ms
rtt min/avg/max/mdev = 0.093/0.093/0.093/0.000
ms, pipe 2
$

Unlike the setuid-root version, the binary ping is not
bestowed with any privilege to modify a file that is not
owned by the calling user, or to insert a kernel module,
etc. That is, there is no direct way for some malicious
user to subvert this privileged version of ping to do
anything privileged other than craft a malicious network
packet.7

So far, we have explained how to replace the setuid-
root privilege of ping with file capabilities. This is
for an unmodified version of ping. It is also possible to
lock ping down further by modifying the ping source
code to use capabilities explicitly. The key change from
the administrator’s perspective is to set ping’s capabil-
ities as follows:

# /sbin/setcap cap_net_raw=p ./ping

That is, no legacy effective bit, and no enabled privilege
(just the potential for it) at exec() time. Within the
ping application one can, using the API provided by
libcap [10], prepare to manipulate the application’s
privilege by crafting three capability sets as follows:

7Of course, it may prove possible to leverage a rogue network
packet to cause system damage, but only indirectly—by subverting
some other privileged program.

/* the one cap ping needs */
const cap_value_t cap_vector[1] =

{ CAP_NET_RAW };
cap_t privilege_dropped = cap_init();
cap_t privilege_off = cap_dup(privilege_dropped);
cap_set_flag(privilege_off, CAP_PERMITTED, 1,

cap_vector, CAP_SET);
cap_t privilege_on = cap_dup(privilege_off);
cap_set_flag(privilege_on, CAP_EFFECTIVE, 1,

cap_vector, CAP_SET);

Then, as needed, the capability sets can be used with the
following three commands:

/* activate: cap_net_raw=ep */
if (cap_set_proc(privilege_on) != 0)

abort("unable to enable privilege");
/* ...do privileged operation... */
/* suspend: cap_net_raw=p */
if (cap_set_proc(privilege_off) != 0)

abort("unable to suspend privilege");
/* ...when app has no further need of privilege */
if (cap_set_proc(privilege_dropped) != 0)

abort("failed to irrevocably drop privilege");

Also, remember to clean up allocated memory, using
cap_free(privilege_on) etc., once the capabil-
ity sets are no longer needed by the application. These
code snippets can be adapted for other applications, as
appropriate.

In these code snippets, the inheritable capability set is
forced to become empty. This is appropriate and suf-
fices for applications that do not expect to execute any
files requiring privilege, or which expect any privilege
in subsequently executed programs to come from the
file’s forced set ( f P). For an application like a user
shell, the above snippets might be changed so as to pre-
serve pI. This can be achieved by replacing the use of
cap_init(), above, with the following sequence:

cap_t privilege_dropped = cap_get_proc();
cap_clear_flag(privilege_dropped, CAP_EFFECTIVE);
cap_clear_flag(privilege_dropped, CAP_PERMITTED);

A login process, in turn, would likely be authorized
with CAP_SETPCAP, allowing it to actually fill pI fur-
ther with specific capabilities assigned to the user being
logged-in. Section 3.2 will begin to show how to use
inherited privilege.

3.2 Inherited privilege

There are some programs that don’t have privilege, per
se, but wield it in certain circumstances: for example,
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when they are invoked by root. One such application
is /bin/rm. When invoked by root, /bin/rm can
delete a file owned by anyone. Clearly, forcing privilege
with the file permitted bits, as we did in the previous
section, would give any invoker of /bin/rm such abil-
ities and not represent an increase in security at all! To
emulate root-is-special semantics for certain users, we
employ the inheritable capability set (pI).

The basic setup for leveraging inheritable capabilities is
to add file capabilities to /bin/rm as follows (in this
case, we’ll add the capability to the official rm binary):

# /sbin/setcap cap_dac_override=ei /bin/rm

Reviewing the capability formula, Equation 1, one can
see that a process inherits its inheritable capabilities, pI,
directly from its parent. In order to use inheritable ca-
pabilities, therefore, a process has to first acquire them.
The libcap package provides a utility for reading the
capabilities of a process:

$ /sbin/getpcaps 1
Capabilities for ‘1’: =ep cap_setpcap-e
$

This says that init, the top of the process tree, and
ancestor to all processes in a system, does not have
any inheritable capabilities. That is, by default, no
process will passively obtain any inheritable capabili-
ties. However, init and its many privileged descen-
dants, such as login and su, do have access to ca-
pabilities through their permitted sets, pP. To add a
capability to its inheritable set, a process must either
have that capability present in its permitted set, or be
capable(CAP_SETPCAP)—have the single capabil-
ity, CAP_SETPCAP in its effective set, pE. Leverag-
ing this feature, the libcap package [10] contains two
convenient methods to introduce inheritable capabilities
to a process-tree: a simple wrapper program, capsh,
and a PAM [15] module, pam_cap.so.

The capsh command is intended to provide a conve-
nient command-line wrapper for testing and exploring
capability use. It is able to alter and display capabilities
of the current process and can be used to explore the nu-
ances of the present example. We shall use capsh in
Section 3.3. Here we will describe how to make use of
the pam_cap.so PAM module.

The PAM module pam_cap.so, as directed by a local
configuration file, sets inheritable capabilities based on
the user being authenticated. In our example, we give
a student administrator (studadmin) the ability to re-
move files owned by others. We set up a test file and
a configuration file (as root) with the following com-
mands:

# cat > /etc/security/su-caps.conf <<EOT
cap_dac_override studadmin
none *
EOT
# touch /etc/empty.file

# ls -l /etc/{empty.file,security/su-caps.conf}
-rw-r--r-- 1 root root 0 Mar 30 14:00 /etc/empty.file
-rw-r--r-- 1 root root 52 Mar 30 13:59 /etc/security/su-caps.conf

We then put the following line at the very beginning of
the /etc/pam.d/su file:

auth optional pam_cap.so \
config=/etc/security/su-caps.conf

Now anyone able to authenticate via su studadmin
will become the regular user studadmin with the
enhancement that they have an inheritable capability,
CAP_DAC_OVERRIDE:

$ whoami
luser
$ su studadmin
Password:
$ whoami
studadmin
$ /sbin/getpcaps $$
Capabilities for ‘11180’: = cap_dac_override+i
$

Having obtained this inheritable capability,
studadmin can try it out by deleting a root-owned
file:

$ rm /etc/empty.file
rm: remove write-protected regular
file ‘/etc/empty.file’? y
$ ls -l /etc/empty.file
ls: /etc/empty.file: No such file or directory

In passing, we note that when the rm command was
prompting for the y response, it was possible to find the
PID for this process and, from a separate terminal:

$ /sbin/getpcaps 15310
Capabilities for ‘15310’: = cap_dac_override+eip
$
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That is, observe that the formula Equation 2 did its work
to raise the permitted, pP, capability for rm, and the
legacy f E bit caused it to become effective for the pro-
cess at exec() time.

It is instructive to try to remove something else using
another program. For example, using unlink:

$ unlink /etc/security/su-caps.conf
unlink: cannot unlink
‘/etc/security/su-caps.conf’: Permission denied
$

Because this unlink application has no filesystem ca-
pabilities, f I = f P = f E = 0, despite the prevailing in-
heritable capability in pI, unlink cannot wield any
privilege. A key feature of the capability support is
that only applications bearing filesystem capabilities can
wield any system privilege.

In this example, we have demonstrated how legacy ap-
plications can be used to exercise privilege through in-
heritable capabilities. As was the case in the previ-
ous example, legacy applications can be modified at the
source code level, to manipulate capabilities natively
via the API provided by libcap. Such a modified
application would not have its legacy capability raised
( f E = 0). The code samples from the previous section
are equally applicable to situations in which an applica-
tion obtains its capabilities from its inheritable set, we
do not repeat them here.

3.3 Bounding privilege

The capability bounding set is a per-process mask lim-
iting the capabilities that a process can receive through
the file permitted set. In Equation 2, the bounding set is
X . The bounding set also limits the capabilities which
a process can add to its pI, though it does not auto-
matically cause the limited capabilities to be removed
from a task which already has them in pI. When orig-
inally introduced [13], the capability bounding set was
a system-wide setting applying to all processes. An ex-
ample intended usage would have been to prevent any
further kernel modules from being loaded by removing
CAP_SYS_MODULE from the bounding set.

Recently, the bounding set became a per-process at-
tribute. At fork(), a child receives a copy of its
parent’s bounding set. A process can remove capabil-
ities from its bounding set so long as it has the CAP_

SETPCAP capability [16]. Neither a process itself, nor
any of its fork()d children, can ever add capabili-
ties back into its bounding set. The specific use case
motivating making the bounding set per-process was to
permanently remove privilege from containers[17] or
jails[18]. For instance, it might be desirable to create
a container unable to access certain devices. With per-
process capability bounding sets, this becomes possible
by providing it with a /dev that does not contain these
devices and removing CAP_MKNOD from its capabili-
ties.8

The reader will note, in Equation 2, that X masks only
f P. In other words, a process’ permitted set can receive
capabilities which are not in its bounding set, so long as
the capabilities are present in both f I and pI. Ordinarily
this means that a process creating a “secure container”
by removing some capabilities should take care to re-
move the unwanted capabilities from both its bounding
and inheritable sets. Thereafter they cannot be added
back to pI. However, there may be cases where keep-
ing the bits in the inheritable and not the bounding set
is in fact desirable. Perhaps it is known and trusted that
the capability will only be in f I for trusted programs, so
any process in the container executing those programs
can be trusted with the privilege. Or, the initial con-
tainer task may take care to spawn only one task with
the capability in its pI, then drop the capability from its
own pI before continuing. In this way the initial task
in a container without CAP_MKNOD, rather than mount-
ing a static /dev, could keep CAP_MKNOD in pI while
running a trusted copy of udev, from outside the con-
tainer, which has CAP_MKNOD in its f I. The udev pro-
cess becomes the only task capable of creating devices,
allowing it to fill the container’s /dev.

Here is an example of dropping CAP_NET_RAW from
the bounding set, using capsh [10]. So doing, we can
cause ping to fail to work as follows:

# id -nu
root
# /sbin/getcap ./ping
./ping = cap_net_raw+ep
# /sbin/capsh --drop=cap_net_raw \

--uid=$(id -u luser) --
$ id -nu
luser
$ ./ping -q -c1 localhost
ping: icmp open socket: Operation not permitted
$ /bin/ping -q -c1 localhost
ping: icmp open socket: Operation not permitted

8This requires a (hopefully) upcoming patch causing mounts by a
process which is not capable(CAP_MKNOD) to be MNT_NODEV.



170 • Linux Capabilities: making them work

The --drop=cap_net_raw argument to /sbin/
capsh causes the wrapper program to drop CAP_NET_
RAW from the bounding set of the subsequently invoked
bash shell. In this process tree, we are unable to gain
enough privilege to successfully run ping. That is, both
our capability-attributed version, and the setuid-root
version attempt to force the needed privilege, but the
prevailing bounding set, X , suppresses it at execution
time.

In an environment in which the bounding set suppresses
one or more capabilities, it is still possible for a process
to run with these privileges. This is achieved via use of
the inheritable set:

# id -nu
root
# /sbin/setcap cap_net_raw=eip ./ping
# /sbin/capsh --{inh,drop}=cap_net_raw \

--uid=$(id -u luser) --
$ ./ping -q -c1 localhost
PING localhost.localdomain (127.0.0.1) 56(84)
bytes of data.
--- localhost.localdomain ping statistics ---
1 packets transmitted, 1 received, 0% packet loss,
time 0ms
rtt min/avg/max/mdev = 0.037/0.037/0.037/0.000 ms,
pipe 2

That is, as per Equation 2, the bounding set, X , does not
interfere with the pI& f I component to pP′.

There are some subtleties associated with bounding set
manipulation that are worth pointing out here.

The first is that the bounding set does limit what capa-
bilities can be added to a process’ inheritable set, pI.
For example, as root:

# /sbin/capsh --drop=cap_net_raw --inh=cap_net_raw
Unable to set inheritable capabilities:
Operation not permitted
#

This fails because, by the time we attempt to add an in-
heritable capability in the working process, we have al-
ready removed it from the bounding set. The kernel is
just enforcing the rule that once pI and X are both with-
out a particular capability, it is irrevocably suppressed.

The second subtlety is a warning, and relates to a bug
first highlighted in association with the sendmail pro-
gram [16]. Namely, for legacy programs that require
forced capabilities to work correctly, you can cause
them to fail in an unsafe way by selectively denying
them privilege.

When a legacy program makes the (common) assump-
tion that an operation must work because the program is
known to be operating with privilege (a previous privi-
leged operation has succeeded), with capabilities, it can
be fooled into thinking it is operating in one privilege
level when it actually isn’t. Since privilege is now rep-
resented by independent capabilities, one can leverage
the bounding set to deny a single capability that is only
needed later at a more vulnerable time in the program’s
execution.

The sendmail issue was in a context where the dropping
of an inheritable capability by an unprivileged parent of
the setuid-root sendmail caused sendmail to launch a
program as root when it thought it was running in the
context of the luser. The significance of the bug was
that an unprivileged luser could exploit it.

The kernel was fixed to make this particular situation
not occur. However, the bounding set actually recre-
ates a similar situation, and while sendmail has since
been fixed to protect it from this problem, many other
legacy setuid-root applications are expected to suffer
from this same issue. Non-legacy applications are not
susceptible to this subtlety because they can leverage the
libcap API to look-before-they-leap and check if they
have the needed privilege explicitly at runtime.

The significant difference between the old problematic
situation and this present case, is that to exploit this issue
you need to be able to alter the bounding set and that,
itself, requires privilege. That being said, this subtlety
remains. Be careful, when using the bounding set, to
avoid leveraging it suppress privilege in general when
it is more appropriate to supply optional capabilities as
needed via the inheritable set. Caveat emptor!

3.4 No privilege at all

In general, unprivileged users need to run privileged ap-
plications. However, sometimes it may be desirable to
confine a process, and any of its children, ensuring that it
can never obtain privilege. In a traditional UNIX system
this would not be possible, as executing a setuid-root
program would always raise its privilege.

To completely remove privilege from a process in a
capability-enabled Linux system, we must make sure
that both sides of Equation 2 are, and always will be,
empty. We can suppress f P by emptying the bounding
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set, X . Since a capability can never be added back into
X , this is irrevocable. Next, we can suppress the sec-
ond half of the equation by emptying pI using capset.
Thereafter the process cannot add any bits not in X
(which is empty), back into pI. The legacy compati-
bility mode refills f I whenever a setuid root binary is
executed, but we can see in Equation 2 that capabili-
ties must be in both f I and pI to appear in pP′. Now,
regardless of what the process may execute, neither the
process nor any of its children will ever be able to regain
privilege.

4 Future changes

At the conclusion of Section 2.1 we observed that the
capability rules are perverted for files run by the super-
user. When the super-user executes a file, or when any
user executes a setuid-root file, the file’s capability
sets are filled. Since historically Linux had no sup-
port for file capabilities, and since without file capa-
bilities a process can never wield privilege in a pure
capability system, this hack was unfortunate but nec-
essary. Now that the kernel supports file capabilities,
it is only userspace which must catch up. As applica-
tions become capability-aware, it will be desirable to re-
move the legacy root-as-super-user support for those
applications. While infrastructure to support disabling it
system-wide has been present for as long as the root-
as-super-user hack has existed, support to do this for ap-
plication sets has only recently been accepted into the
experimental -mm tree [19]. It is expected to be adopted
in the main Linux tree [20], and may have done so by
the time of publication.

With the per-process securebits, the root user excep-
tion can be “turned off” for capability-aware applica-
tions by setting the SECURE_NOROOT and SECURE_

NO_SETUID_FIXUP flags using prctl(). These are
per-process flags, so that a system can simultaneously
support legacy software and capability-aware software.
In order to lock capability-aware software into the more
secure state in a such a way that an attacker can-
not revert it, both bits can be locked by also setting
SECURE_NOROOT_LOCKED and SECURE_NO_SETUID_

FIXUP_LOCKED.

To nail the residue of problematic partial privilege for
legacy applications, discussed in Section 3.3, we are
considering adding a requirement that any legacy ap-
plication which is made privileged with f E 6= 0 must

execute with pP′ ≥ f P. That is, if the bounding set, X ,
suppresses a forced capability ( f P < f P&X), and the
inheritable sets (pI& f I) do not make up for its suppres-
sion (see Equation 2), exec() will fail with errno =
EPRIV. This change will enforce what is presently only
a convention that legacy applications should run with all
of their forced ( f P) capabilities raised, or are not safe to
run at all.

5 Conclusion

The intent of this paper has been to demonstrate that
the Linux capability implementation, with VFS support,
is a viable privilege mechanism for the Linux kernel.
With examples, we have shown how these capabilities
can and should be used. What remains is for user-space
applications to start using them.

That being said, privilege is not the only use of the root
identity. There are many files, such as are to be found
in /proc/ and /etc/, that are owned by root. Even
without super-user privilege, a process running in the
context of an impotent root user, can still do a large
amount of damage to a system by altering these files.
Here, DAC and MAC based security will continue to be
important in securing your Linux system.
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