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ABSTRACT
The increased popularity of mobile devices widens opportu-
nities for a user either to lose the device or to have the device
stolen and compromised. At the same time, user interaction
with a mobile device generates a unique set of features such
as dialed numbers, timestamps of communication activities,
contacted base stations, etc. This work proposes several
methods to identify the user based on her communications
history. Specifically, the proposed methods detect an ab-
normality based on the behavior fingerprint generated by a
set of features from the network for each user session. We
present an implementation of such methods that use fea-
tures from real SMS, and voice call records from a major
tier 1 cellular operator. This can potentially trigger a rapid
reaction upon an unauthorized user gaining control of a lost
or stolen terminal, preventing data compromise and device
misuse. The proposed solution can also detect background
malicious traffic originated by, for example, a malicious ap-
plication running on the mobile device. Our experiments
with annonymized data from 10,000 users, representing over
14 million SMS and voice call detail records, show that the
proposed methods are scalable and can continuously iden-
tify millions of mobile users while preserving data privacy,
and achieving low false positives and high misuse detection
rates with low storage and computation overhead.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
security and protection; D.4.6 [Operating Systems]: Secu-
rity and Protection—authentication, access controls; K.6.5
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rized access
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1. INTRODUCTION
Mobile devices, such as smartphones and tablets, are in-

creasingly being lost or stolen due to their widespread use,
tremendous popularity and price [8]. In turn, loss of a mo-
bile device increases the likelihood of account misuse and
stolen or compromised data, which calls for user identifica-
tion schemes superior to traditional use of passwords, which
are very often not strong enough [3].

In parallel, data theft and compromise are often also linked
to a malware or trojan infection in a mobile terminal. There
have been reports of malicious applications posting sensitive
phone information, such as the IMSI (International Mobile
Subscriber Identity) and the IMEI (International Mobile
Equipment Identity), on remote servers [15]. Cell-phones
are becoming the latest platform for malware spreading in
data networks [10], with malicious applications constantly
being reported in the media and industry [2,4,5,24].

Device misuse can potentially have an economic impact
on the device user, which leads to customer dissatisfaction.
This is the case of known instances of malware that send
messages to premium rate numbers [1], with the resulting
spike in the customer’s monthly bill, or identity theft as a
result of an unauthorized access to an email account through
a stolen cell-phone [17]. Note that most user credentials,
including online banking, can be reset via an email sent to
the email account that an attacker could access in the case
of compromising a lost or stolen device [27].

There are currently no means for rapid network-based de-
tection of mobile device misbehavior, either originated by a
piece of malware running in the background or as a result of
misuse of the device after being lost/stolen. Most schemes
addressing this problem rely on heavy processes running on
the device, with the resulting limitations in terms of battery
life impact and data storage. In the case of a lost or stolen
mobile terminal, all preventive measures to avoid misuse or
data compromise rely on a rapid reaction by the end user
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to, for example, change email passwords and, if necessary,
contact the cellular provider to block the SIM (Subscriber
Identity Module). In certain situations it might take a long
time from the moment the device is lost until the user re-
ports it. This would give a potential attacker plenty of time
to compromise the device.

Cellular infrastructures need to provide means of network-
based misuse detection independent - yet transparent - from
the user that do not rely on any local computation or pro-
cessing on the device. For example, if a cell-phone is lost
or stolen at an airport prior to boarding a 14 hour inter-
continental flight, the network should be able to indepen-
dently detect and block any misbehavior originating from
the stranded device. And eventually block the terminal if ap-
propriate. Relying on the user reporting the incident would
give the attacker 14 hours of time to compromise the device.

In this paper we tackle the problem of non-intrusive identi-
fication of a user that legitimately interacted with the device
previously. In general there are several ways to identify a
device user based on:

1) what the user knows (i.e. password, passphrase, etc.),
2) what the user has (i.e. biometrics, token, etc.),
3) what the user does (i.e. behavior, tasks patterns, etc.)
4) who user knows (i.e. user contacts).

This work focuses on finding a method that covers the last
two categories: what the user does and who the user knows.
More specifically, we analyze the network Call Detail Records
(CDR) generated by the device in present and in the recent
past, continuously extracting a behavior fingerprint for each
time period under consideration (i.e. hour of day, day of
week, etc). Then, for each new observation time window,
we compute the distance, in a behavior fingerprint metric,
between the current fingerprint sample and the one observed
in the past. If the distance is larger than a threshold, that
user is identified as illegitimate (not the one interacting with
the device in the past). That triggers an alert sent that
could be sent to the legitimate user on an alternate channel,
or could be handled by the network operator which can po-
tentially decide to block user access until her identification
is confirmed. To the best of the author’s knowledge, this is
the first time that such an analysis on real data has been
performed and shown to work.

The proposed methods are generic and can be applied to
multiple attack scenarios. However, our solution is aimed to
detect unauthorized access to user resources and to provide a
detection mechanism in two possible scenarios: 1) stolen mo-
bile devices (i.e. smart-phones, tablets, etc) and 2) mobile
malware compromised devices. The same methods could be
implemented on other portable computers and even desktop
computers. The only difference would rely in the nature of
the fingerprint features being extracted and processed. Note
that the proposed system is not intended to detect a phone
or tablet that is turned off after being lost or stolen, but for
the case when the attacker does use the device. With this
work we make the following key contributions:

• We formalize the problem of user identification based
on behavior fingerprint and propose several methods
to represent and compare user behavior in order to
identify illegitimate users for different scenarios: nor-
mal different user, random attacker, informed attacker
and compromised device.

• We implemented and tested seven possible user iden-
tification methods and reported the experiments with
10,000 users SMS and data calls from a tier-1 wireless
carrier, representing over 14 million records. Our re-
sults show that in most cases the proposed methods
can detect with over 90% accuracy most types of at-
tacks within an hour with less than 5% false positives.

• We analyze the privacy properties of our method and
show that in many cases, the information about raw
user data that must be given to the identification sys-
tem is minimal. In particular, privacy of contact in-
formation is always preserved, and even the communi-
cation pattern can be hidden to some degree.

The remainder of this paper is organized as follows. An
overview of our methods is presented in Section 2. The
behavior fingerprints extracted in each one of the meth-
ods under analysis are described in Section 3. Section 4
discusses the potential information leakage about each user
profile from the information that we store. Our experimen-
tal results are summarized in Section 5 and related work is
discussed in Section 6. Finally, the paper is concluded in
Section 7.

2. METHOD OVERVIEW

2.1 Adversarial Model
Throughout this paper we consider the following adver-

sarial models. In all cases, the goal of the adversary is to
continue using the device for as long as possible while avoid-
ing triggering the authentication mechanism.

2.1.1 User Swap
In this scenario we assume that an unsophisticated at-

tacker has gained possession and control of the device. An
unsophisticated attacker completely ignores the prior behav-
ior of the user, and simply starts using the device as her own.
The device usage behavior of the attacker in this case is in-
dependent from the behavior of the legitimate owner of the
device. We believe that this scenario is applicable in many
practical situations, where the attacker has gained posses-
sion of a device and has no familiarity with the legitimate
owner as may be the case when the phone is lost or stolen
by a pickpocket.

2.1.2 Informed Attacker
The second scenario that we consider is when the attacker

knows the behavior pattern of the legitimate user, but is
unable to fake certain activities. For example, the attacker
can dial the same numbers as the owner, but is unlikely
to be able to maintain a conversation for the same length
of time because the person on the other end will recognize
that the caller is not the owner of the device, and will refuse
to continue the conversation. More precisely, the informed
attacker generates events from a distribution which is a func-
tion of the real distribution of the owner behavior, but with
an additional “noise” component which represents the ac-
tions taken by the adversary for her own purposes.

2.1.3 Compromised Device
In this scenario we assume the device is used in parallel

by the legitimate user and a piece of malware or a trojan
running in the background without the user knowledge. For
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Figure 1: Schematic representation of a behavior based identification method.

example, the well known Android trojan GGTracker [1] at-
tempts to dial or send SMS messages to premium numbers
without user consent, incurring unexpected charges. In this
scenario, the victim’s device would be generating the exact
same fingerprint as in the past, given the continued legit-
imate interaction of the user with the phone. In parallel,
network traces would be created from the malicious connec-
tions that the malware or trojan operates. For our measure-
ments, we generated adversarial events randomly according
to what we believe is a reasonable distribution (described in
detail in Section 5).

2.2 Problem Statement
In this section we focus on defining the behavior identifica-

tion problem and identifying the properties of a robust and
efficient solution. More formally, suppose that we have n
different types of session (e.g., phone calls, SMS, data, etc),
and that session of type i has mi different features. For ex-
ample, a feature in the “phone calls” session may correspond
to a dialed number. We define user behavior over a period
T = [t0, t1] by a set of recorded sessions {S1(T ), . . . , Sn(T )},
where each recorded session Si(T ) is a subset of the features
fi,j that were measured for the j-th feature of session type
i, for a user during time period T . Then, given a user with
behavior S(T ∗) = S1(T

∗), . . . , Sn(T
∗) over a period T ∗ we

want to find an efficient, reliable and robust way to deter-
mine whether the same users’ behavior recorded during an-
other period T ∗ is sufficiently similar to the behavior during
the period T . To do so we define two functions: ρ(S(T )) is
some representation of the behavior S(T ) that is sufficient
to compute a score, and β(ρ(S(T ∗)), ρ(S(T ))) is a measure
of similarity between behavior S(T ∗) and S(T ). To deter-
mine whether S(T ∗) is sufficiently close to S(T ), we check
whether

|β(ρ(S(T )), ρ(S(T ∗)))| ≤ ε (1)

For some identification threshold ε > 0. Note that to per-
form the test, we must only store ρ(S(T ∗)) and not the entire
behavior record S(T ∗).

Besides being robust and accurate, the behavior finger-
print should preserve the privacy of the user behavior and
should not reveal any information that can lead to the recon-
struction of past user activity. A key challenge is to define
the function ρ to retain enough information about the origi-
nal recorded behavior to compute the score, while removing
enough unneeded information to guarantee privacy.

Figure 1 shows an intuitive representation of how a be-
havior fingerprint method could be used by an identifica-
tion system. The behavior fingerprint can be recorded for

a rolling time window T and sent to the identification sys-
tem. Whenever an identification decision should be made,
the current behavior fingerprint could be compared to the
behavior recorded in the corresponding time window of the
previous day, or the previous week day. If the difference
is above the identification threshold then, based on the ap-
plication, an action will be triggered. For example, in the
case of mobile user behavior identification the system might
react by requiring the user to identify herself using an alter-
nate channel such as a web questionnaire or another factor
of authentication.

3. BEHAVIOR FINGERPRINT
In this section we present the features used to generate the

behavior fingerprint and three base methods to represent it
along with the metrics to assess the behavior distance. The
goal is to choose only methods that store fingerprints in en-
coded format so that they maintain the privacy of the user
data even when the data is stored for longer periods of time
in an adversarial environment. The aim behind consider-
ing privacy preservation using the suggested methods is to
be compliant with the privacy regulations on the network
providers. Having a privacy preserving identification sys-
tem can also allow for the provision of such a service by a
third party using the cellular network as a platform. We
consider using the following three base methods to repre-
sent the set of features for each period of time: 1) a hash
set , 2) a standard Bloom filter and 3) a counting Bloom
filter. Starting from these three methods we experimented
with other three derived combinations of them and reported
the experimental results in Section 5.

3.1 Features
In general, a feature set should include measurable ele-

ments that have the potential to uniquely identify a user.
For example, the set of numbers that the user calls on a
regular basis, the duration of the calls with those numbers,
the set of numbers that the user sends SMS to, base station
identification numbers that serve the device, a list of URLs
visited in the data transactions, a set of IP address that the
device contacted, etc. However, for the scope of this paper
we limited the feature set to the CDR records representing
details from SMS and voice call transactions, used by most
wireless carriers for billing. Thus, for each user, we consider
a set of features containing data from the CDR records cor-
responding to the SMS and voice transactions within each
observation time interval. Table 1 lists the set of features
extracted from the CDRs. The left column represents the
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type of session, the center column contains the feature de-
scription and the right column lists the data type for that
specific feature. In the next subsections we will describe the
three methods to represent the set of features along with the
metric used to compute the difference between any two sets
of features.

Session Feature Type

SMS

# of outgoing msgs int
outgoing destinations list
SMS timestamps list
# of outgoing msgs for destination list
base station IDs list

Voice

# of outgoing calls int
outgoing destinations list
call timestamps list
call duration for destination list
base station IDs list

Table 1: Features for SMS and Voice sessions.

3.2 Hash Set
The first and most simplistic method to represent a set

and be able to answer membership queries is to use a hash
set. That is, instead of storing each element in the clear
we use a one-way cryptographic hash function (e.g., SHA-
1) [11] and store only a salted hash value of each element.
For each user U and for each time T interval we store a set
of hashes of the recorded feature values S(T ) together with
a per-user nonce nU that is generated once for each user.
Specifically, let H be a cryptographic hash function. Then
we define ρ(S(T )) = {H(f, nU )|f ∈ S(T )}.

3.2.1 Jaccard Distance
To measure the distance between two hash sets S and S∗,

we use the Jaccard distance, defined as follows:

J(S, S∗) =
|S ∪ S∗| − |S ∩ S∗|

|S ∪ S∗|
(2)

With this method, all set membership queries have a pre-
cise answer. This comes at the expense of storing the same
number of bits for each hash value of each feature in the set,
regardless of the size of the element. Moreover, computation
time for the Jaccard distance is linear in the size of the sets.
This aspect becomes crucial when assessing the scalability of
the fingerprinting method to hundreds of millions of users.

3.3 Standard Bloom Filter
A different more space efficient method to represent a

set and support membership queries is to use a Bloom fil-
ter. A standard Bloom filter is a space-efficient probabilistic
data structure used for representing a set in order to sup-
port membership queries. It was first introduced by Burton
Bloom in 1970 [7]. A Bloom filter is identified by a bit array
of size m with all the bits initially set to 0, and k inde-
pendent hash functions with the range {1,. . . ,m}. When an
element of a set is inserted into the Bloom filter, it is first
hashed with all k hash functions and all the corresponding
zero bits in the bit array are flipped to 1. If one of the
corresponding hash functions bits is already set to 1, then
a collision occurs and the bit is not changed. When an el-
ement is tested for membership in a set, the Bloom filter
is queried as follows. First, the element is hashed with all
k hash functions and all the corresponding bits in the bit
array are checked. If all bits checked are 1 then we say the

element was inserted in the Bloom filter with some proba-
bility, called the false positives rate, introduced because of
the collisions in the insertion process. If at least one corre-
sponding bit is 0 then we know precisely that the element
was not inserted in the Bloom filter. Thus, a Bloom filter
has no false negatives, and space-efficiency is achieved at the
cost of a small probability of false positives. After inserting
n elements in a Bloom filter, the false positives (FP) rate
for subsequent membership queries is given by Equation 3.

FP =

(

1−

(

1−
1

m

)kn
)k

≈ (1− e−kn/m)k (3)

Our second method for representing the feature set is to
use a Bloom filter for each time interval for each user. Be-
cause a Bloom filter can represent only a discrete set, from
the feature set we generate a set of labels and insert them
into the Bloom filter. The representation ρ(S(T )) is then
simply the bit array of the Bloom filter and the hash func-
tions.

3.3.1 Hamming Distance
We compute the difference between two Bloom filters cor-

responding to two different time intervals by using the Ham-
ming distance [21]. Thus, for any two Bloom filters with
their corresponding bit arrays B and B∗ the Hamming dis-
tance is given by Equation 4:

H(B,B∗) =

m
∑

i=1

B(i)⊕B∗(i) (4)

where B(i) represents the bit at index i for bit array B. Note
that, unlike the Jaccard distance, the computation time for
the Hamming distance is independent from the number of
elements inserted in each Bloom filter and is dependent only
on the size of the Bloom filter. Since standard Bloom filters
can be represented as binary strings, computing the distance
can be implemented as a simple XOR operation and a count
of set bits.

3.4 Counting Bloom Filter
One limitation of using a standard Bloom filter is given by

the fact that the insert operation is indempotent, that is, if
the same element is inserted multiple times, the Bloom filter
byte array will not change because of the way Bloom filter
handles collisions. In many occasions knowing the number of
times an element was inserted into a Bloom filter could be a
useful feature. For example, a Bloom filter that stores phone
numbers dialed by a user in a time interval will not show any
difference if the user dials a number once or multiple times.
The number of times a user calls a number could represent
a feature that one might want to capture to define the usage
pattern and user behavior.

In our method we use a variation of the standard Bloom
filter, called counting Bloom filter [22], introduced for the
first time in [14], that can capture the number of times an el-
ement was inserted into a Bloom filter. Essentially, a count-
ing Bloom filter uses an array of counting bins rather than
a single bit for each array position, representing the number
of matches that are encountered for each corresponding po-
sition. Thus, there is a tradeoff between the storage savings
achieved by the counting Bloom filter and the information
stored in the filter. For instance, if the application requires
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counting bins with a maximum counter up to 255 then an
array with bins of size 8 bits will suffice to represent the
counters. However, this causes an increase in the storage
by a factor of 8 compared to the space required for a stan-
dard Bloom filter. Another important property of a count-
ing Bloom filter is the ability to remove elements from the
Bloom filter by decrementing the counters corresponding to
a given element. This property can also be used when insert-
ing elements in overlapping time intervals. In this case, one
can only insert the elements that are new in the new interval,
and remove the elements that are no longer present. This
avoids the need to re-insert every element into the Bloom
filter.

The third method to represent the feature set is to use
counting Bloom filters. Similar to inserting into the stan-
dard Bloom filter, we insert a set of labels derived from the
set of features into the counting Bloom filter. The stored
representation ρ(S(T )) is then the array of bins along with
the definition of the hash functions used.

3.4.1 Euclidian Distance
We compute the difference between two counting Bloom

filters corresponding to two different time intervals by using
the Euclidian distance. Thus, for any two counting Bloom
filters bin arrays CB and CB∗ the Euclidian distance is
given by Equation 5:

E(CB,CB∗) =

√

√

√

√

m
∑

i=1

(CB(i)− CB∗(i))2 (5)

where CB(i) represents the value stored in the i-th bin of
the bins array CB. Similarly to the case of standard Bloom
filter, the computation time for the Euclidian distance is
independent from the number of elements inserted in each
counting Bloom filter and it is dependent only on the size of
the bins array.

3.5 Contact-based Method
This section proposes a network-based method for behav-

ior identification that improves the one in [26]. The idea
is to compare statistical distributions of current and past
user’s communication activities. Let tj and ctj represent
a timestamp of a communication activity and a hash of a
phone number contacted at time tj , respectively. Then the
pair (tj , ctj ) is the only information needed to analyze com-
munication activity j.

The training period for this method has two steps. The
first step makes the list Li = ∪tj∈[τ0,τ1]{ctj} of hashed phone
numbers that user i contacts (calls and messages) during
time period [τ0, τ1]. The second step monitors behavior of
user i during time period (τ1, τ2] and stores timestamps of
user communications with existing and new contacts:

T i
E = ∪tj∈(τ1,τ2],ct∈Li{tj} (6)

and

T i
N = ∪tj∈(τ1,τ2],ct /∈Li{tj}, (7)

respectively. For user i, the further analysis uses the follow-
ing three statistics:

(a) maximum number, M i, of communications with new
contacts per time interval, e.g. day, hour, 15 mins,
etc.;

(b) α1-percentile of the distribution of intervals between
each two consecutive communications with existing con-
tacts, pi, where 75 ≤ α1 ≤ 100; and

(c) α2-percentile of the distribution of intervals between
each two consecutive communications with new con-
tacts, P i, where 0 ≤ α2 ≤ 25.

For each pair (tk, ck), the testing stage checks whether
contact ck is in the contact list Li. If cj /∈ Li and the time
elapsed since the last communication activity with any new
contact is less than P i, the alert score is raised. Also if
the total number of communication events with new con-
tacts exceeds M i, the alert score is raised as well. In other
words, the alert score is raised when a user communicates ei-
ther with new contacts more frequently or with the existing
contacts less frequently compared to the past communica-
tion history. Specifically, the alert score is raised whenever
the time δet passed since the last communication with the
existing contact exceeds pi and there have been at least h
communications with a new contact during this time (the
last condition assures that the user is not simply inactive).

4. PRIVACY ANALYSIS
In this section we present an analysis of the privacy and

information leakage of user data in our systems. Recall that
for user behavior S(T ) during time period T , we must record
ρT = ρ(S(T )) in order to later compute the similarity mea-
sure β(ρT , ρT∗) with some other time period T ∗. We there-
fore concentrate on analyzing the information leakage from
the stored representation ρT of the user data for the four
different approaches that we described in Section 3. We
consider each case separately. Below, we denote by ρT (U)
the representation of the recorded behavior for user U during
time period T .

Hash sets.
In the hash set solution we store for each recorded feature

f , a hash H(f, nU ), where nU is a random nonce generated
for each user, and H is a cryptographic hash function. To
analyze the privacy of the scheme we follow the common
convention of modeling H as a random function (known
as the random oracle model [6]). The representation ρT
is therefore a set of random strings that is independently
chosen for each user. Indeed, if H is random, then the val-
ues H(f, nU ) and H(f, nU′) are independently random as
long as nU 6= nU′ . This implies that, for example, one can-
not determine whether the same feature appears in both
ρT (U) and ρT (U

′). However, our representation does reveal
whether the same feature f appears in two different time
periods T and T ′ for the same user U . In fact, revealing
this information is necessary to compute the Jaccard dis-
tance between S(T ) and S(T ′). Additionally, ρT (U) reveals
the number of features that were recorded for user U during
period T .

More formally, one can easily show that the representa-
tions of any two multi-user traces with the same feature
counts per user are identically distributed, and therefore in-
distinguishable.

Bloom Filters.
A Bloom Filter is a concise and lossy representation of a

set. Therefore, by storing the hash set in a Bloom Filter, we
gain all the privacy benefits of the hash set, and in addition
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we remove a large amount of information due to the concise-
ness of the Bloom Filter representation. In our solution, we
dynamically determine the size of the Bloom Filter for each
user during the training period T ∗ to be an n-bit long array
where n = |S(T ∗)| is the total number of recorded features.
Consequently, we store n bits of information about a set of
n features.

To determine the amount of information leakage about
the underlying hash set, we must consider the entropy of
the recorded features. Recall that an array of n bits has en-
tropy at most n, and suppose that a feature has entropy γ
and that all features are independent. Then, the amount of
uncertainty left after exposing the Bloom Filter is n(γ − 1).
For example, for data of 10,000 users, we calculated the
average entropy of CDR data to be roughly γn ≈ 3.49n.
Therefore, an adversary that is given the Bloom Filter rep-
resentation of the user behavior for the training period, has
a probability of roughly 1/23.49 ≈ 8% of correctly guessing a
specific element of the hash set. We calculated the average
number of CDR features for a customer is 44, and therefore
in expectation the adversary will be able to recover roughly
1/23.49 · 44 ≈ 4 features from the hash set. For the ele-
ments that are recovered, we fall back to the basic privacy
guarantees of the hash set as described above.

Counting Bloom Filters.
The analysis of privacy when counting Bloom Filters are

used is very similar to the analysis for regular Bloom Filters.
However, here each bucket is a counter instead of a bit.
Suppose that each counter is represented by ℓ bits, then
the amount of entropy left after exposing the counting array
to the adversary is max{0, n(γ − ℓ)}. Unfortunately, for
CDR data, this value is zero. Note that this does not mean
that the user data is leaked, but rather that counting Bloom
Filters may offer a privacy guarantee which is only as strong
as the guarantee provided by the hash set representation1.

Contact based method.
For the contact based solution, we must store hashed fea-

ture descriptions, as in the hash set representation. We addi-
tionally store the intervals between phone calls and messages
made by the user, and the maximal number of communica-
tions with new contacts during the time period. However,
if we set α1 = 100 and α2 = 0, we need only store the min-
imum and maximum intervals between communications to
existing contacts. We then obtain essentially the same level
of privacy as the hash set.

5. EXPERIMENTS

5.1 Data Set
The study presented in this paper uses 1 month of voice

and text message communication data (April 2012) of over
10,000 post-paid cell-phone accounts. The data is obtained
from more than 14 million anonymized Call Detail Records
(CDR) of one of the major tier-1 cellular providers in the
United States. CDRs are records that are logged each time
a phone call or text message is sent over the network. In the

1This is a purely information theoretic property. We be-
lieve that in practice, it is unlikely that an adversary will be
able to extract the entire hash set representation from the
counting Bloom Filter.

case where the two communicating entities are connected to
the same provider, a duple of records is stored. The Mobile
Originated (MO) record logs the data of the transmitting
party, while the Mobile Terminated (MT) record stores in-
formation of the receiver. We use MO CDRs in this work.

Time Transmission/Reception time and date
Orig Originating number
Term Terminating number
Call type Mobile originated/terminated SMS/call
Duration Duration of a voice call
LACCI Location Area Code and Cell Id

Table 2: Call Detail Record Fields

Table 2 lists the CDR fields handled in our analysis. The
originating and terminating phone numbers are completely
anonymized. Each transaction is marked with a time stamp
and we also record the Location Area Code and Cell Id
(LACCI) of the base station that handled the traffic in the
uplink (MO) or in the downlink (MT). The data is sampled
across US population.

Attribute Value
# of users 10,000
# of CDRs 14,874,731

duration of data 30 days
# of sessions 2
training data 14 days
testing data 16 days

Table 3: Data characteristics.

Data processing and anonymization

All the data utilized in this analysis is fully anonymized. No
personal identifiers, such as phone numbers, are processed,
substituting them for hashed values. The results presented
in this paper do not include any details or information from
the actual processed data, but just aggregated results on the
performance of the algorithms on the anonymized data.

5.1.1 Training Data for Hash Set and Bloom Filter
methods

We use the first 14 days of the original data as the train-
ing set for establishing the thresholds for each metric, and
the remaining 16 days for generating the testing data. We
assume there is no malicious activity in the training data.

5.1.2 Training Data for Contact based method
We use the first 9 days of the original data to make the list

of contacts Li and the following 5 days to store timestamps
of user communications with existing and new contacts and
compute the three statistics M i, P i and pi and the remain-
ing 16 days for generating the testing data.

5.1.3 Testing Data
We have generated several testing data sets in order to

test our methods in different scenarios from the original data
collected for the last 16 days, from day 15 to day 30.

Original data:The first testing set is represented by the
original data collected from day 15 to day 30 of all data set.
We use this data set to assess the False Positives rates, that
represent instances when the user was required to authenti-
cate with the system even though she was not supposed to.
We will call this data set the original data and the remaining
testing sets were generated from this data.
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Figure 3: False positives for all methods.

Splicing data: The second testing data set was gen-
erated by swapping the original data between any random
pairs of two users for the data from day 15 to day 30. This
data set was used to test the detection rates when the device
is used by an illegitimate normal user.

Random attacker data: Third testing data set was ob-
tained from the original data by generating completely ran-
dom communication activity for all users. This case was
used to measure the detection rate for the cases when, for
example, the device is stolen by an attacker that wants to
get the most out of using the device in a short period of time.
We assume the device connected to the same base stations.

Informed attacker data: Fourth testing data set was
obtained from the original data by judiciously generating
communication activity that is similar to the original ac-
tivity. As such, for each testing day we simulated the case
when a fraction of the SMS and voice calls, 10% in our ex-
periments, were to the original numbers with the voice calls
having zero duration. Note that if the attacker dials the
contacts of the victim’s phone, she will not be able to im-
personate the victim. Therefore, the calls will be of zero
duration or, at most, a couple of seconds if the attacker
remains silent. We believed is reasonable to assume, an in-
formed attacker cannot withstand a longer duration call with
a victims contact in order to not be detected. We assume
the device connected to the same base stations.

Malware communication data: This data set was gen-
erated to simulate a piece of malware communication activ-
ity. For this case we assumed the malware injects some
random communication activity within the legitimate user
activity. Thus, we generated a fraction of random communi-
cation activity, 50% in our experiments, on top of the orig-
inal user activity. We assume the device connected to the
same base stations.

5.2 Hash Set and Bloom Filter Methods

5.2.1 Feature Labels
For each session we consider a set of features that has

the potential to uniquely identify a user behavior. For each
feature of each session we derive a label that will represent
the value of that feature in an encoded and discrete set of
session features. Then we will use each of the first three

methods described in Section 3 to store the features sets
for all sessions and to define the behavior fingerprint. Our
behavior fingerprint design can accommodate any number
of sessions but for the scope of this paper we are concerned
to use features from the CDR records of SMS and voice calls
that represent the SMS session and the voice session.

SMS Session: We consider the set of features and the
corresponding labels listed in Table 4. For each day time
window we generate a label with zero, low or high if the
number of SMSes is either zero, smaller or larger than the
average training data. For each destination, dest, we gen-
erate two labels, first with the destination itself and second
with the destination concatenated with high or low, if the
number of SMSes to that destination is smaller or larger
than the average to that destination in the training data.
From the timestamp of each communication activity we cre-
ate a label from the destination concatenated with the cor-
responding day time shift. We partition the 24 hour day into
three shifts, shift 1 from hour 0 to hour 8, shift 2 from hour
8 to hour 16 and shift 3 from hour 16 to hour 24. Finally,
for each time window we create a label with the ID of each
base station that the device contacted.

SMS Feature Labels

# of outgoing msgs zero, low, high
outgoing dsts w. counts {dest} & ({dest}+low or {dest}+high)

day time shift {dest}+1 or {dest}+2 or {dest}+3
list of base station IDs {ID}

Table 4: SMS features and corresponding labels.

Voice Session: For the voice session we consider a similar
set of features and we generate the labels in a similar way
for number of outgoing destinations, day time shift and the
list of base stations. However, for the voice session we take
into account the duration of the voice calls and we generate
the label low if the voice call has zero duration and high
otherwise.

Voice Feature Labels

# of outgoing voice calls zero, low, high
outgoing dsts w. duration {dest}, {dest}+low, {dest}+high

day time shift {dest}+1 or {dest}+2 or {dest}+3
list of base station IDs {ID}

Table 5: Voice features and corresponding labels.
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5.2.2 Implementation, Parameters and Thresholds
We implemented the first three methods presented in Sec-

tion 3 and several combinations of them. More specifically,
we represent the behavior fingerprint using a hash set (HS), a
Bloom filter (BF), a counting Bloom filter (CBF) as the base
methods. From the base methods, we built other methods
by using all three methods together (HS+BF+CBF), only
standard Bloom filter and counting Bloom filter (BF+CBF),
and hash set and standard Bloom filter (HS+BF).

We used the training data in order to decide on the pa-
rameters used and the identification threshold. For each
user, we train on the first 14 days of communication activ-
ity (SMS and voice call) aggregated in daily slots, therefore
14 slots for training. When building the hash set we applied
SHA-256 on each label generated from the data in each time
window and we keep the first 128 bits as the hash value for
each label.

For building the behavior fingerprints with Bloom filters
we use two hash functions. We compute the SHA-256 on
each label and then split it into two parts, each part rep-
resenting a value of a hash function. We decide the size of
the Bloom filters by choosing the size that has the potential
to yield the most accurate distance between two Bloom fil-
ters and counting Bloom filters. We did so, by using Bloom
filters to represent two generated sets of random elements
that have a variable intersection size and observing the dis-
tance function. The size of each set is the average number
of labels that we expect to get for each time window for all
the users. Figure 2 shows, for each base method, how the
distance between the fingerprints varies with the variation
of the intersection size for the two random sets. The figure
represents the results for using a Bloom filter size equal with
the average number of elements inserted. That is, we use 1
bit to represent each label using a standard Bloom filter. We
used 1 bin to represent each label in a counting Bloom filter
for a total of 16 bits per element of storage for counters with
maximum value of 65536 (2 bytes).

In the next step, we get the identification thresholds by
computing the day maximum distance DM , day minimum
distance Dm between the fingerprint of the current time
window and the fingerprint of the previous day, and the
day maximum distance WM and the day minimum distance
Wm compared to the previous week day respectively for all
the days in the training data in order to get the day dis-
tance variation interval [Dm, DM ] and week variation inter-
val [Wm,WM ]. For example for a day of Tuesday, we first
get the fingerprint difference between Tuesday and Monday
as well as the fingerprint between Tuesday and Tuesday from
the previous week and then we compute the maximum and
minimum differences among all the day and week distances
for all the days.

5.2.3 False Positives
We tested the false positives rate by using the original data

test set representing the last 16 days of user CDRs. For each
day we compute the difference between the day fingerprint
and the previous day and previous week day fingerprints
into FD and FW respectively. In the analysis, we count a
false positive when we obtain that both FD /∈ [Dm, DM ]
and FW /∈ [Wm,WM ]. More specifically, we count a false
positive if the difference between the current day behavior
fingerprint and the behavior fingerprint observed in the pre-
vious day and in the previous week day are not in the cor-

responding variation interval. Figures 3 shows the number
of false positives that users get for the 16 days of original
testing data. The y-axis represents the percentage of users,
out of the total of 10,000 that have encountered the num-
ber of false positives on the x-axis, for each tested method.
For example, the point (1, 0.22) represents that 22% or the
users got exactly one false positive in the 16 days of testing
data. For the derived methods, HS+BF+CBF, BF+CBF
and HS+BF we count a false positive if the day fingerprint
distance is not in the variation interval for each base method.
By doing so we sum the probabilities of false positives for
each method, resulting in larger false positives for derived
methods than for the base methods. The figure shows that
for the base methods the expected false positive rates for
different number of false positives declines with the increase
in the number of false positives. For derived methods the
false positives rates are low for small numbers and climb up
to 22% for 3,4 and 5 false positives in the 16 days of testing
with original data.

5.2.4 Detection Rate
We tested the detection rate by using the generated splic-

ing data, the random attacker data, the informed attacker
data and the compromised device data for each method. We
used the same training data as in the case of false positives
testing in order to build the variation interval for each user
behavior fingerprint. Figure 4 shows the detection results
on splicing data. The x-axis represents the time window
when the user was detected as not being the legitimate user,
and the y-axis represents the percentage of users not de-
tected for that window. For example the point (1, 0.98)
on the HS+BF+CBF curve represents that 98% of the il-
legitimate users were detected as not being the legitimate
users in the first testing time window. The derived method,
HS+BF+CBF that combines all the base methods provides
the best detection rate of more than 98% from the first test-
ing day, for the splicing and random attacker cases shown
in Figure 4 and Figure 5. Figure 6 and Figure 7 show the
detection rates for informed attacker and compromised de-
vice. In these cases, as the behavior of the illegitimate users
becomes more similar to the legitimate user behavior, the
detection rate in the first time window starts to decrease
to 87% and 45% respectively compared to the random at-
tacker case. However, it increases significantly as more time
windows are processed to identify the legitimate user with
detection rates over 90% starting with time window 2 in the
informed attacker case and time window 6 in the compro-
mised device case.

Note that, because the counting Bloom filter retains more
information and the detection rates for counting Bloom filter
method are lower than those for standard Bloom filter, the
results seem counter-intuitive. These results are explained
by the use of Euclidean distance metric to compute the vari-
ation interval for counting Bloom filter which yields larger
values than the Hamming distance for standard Bloom filter
thus, larger variation intervals, hence lower detection rates.

If, in a real deployment each time window is shifted one
hour these results show that the illegitimate user that ex-
hibits a completely random network communication behav-
ior can be identified with 98% accuracy in the first hour.
Consequently, an informed attacker can be identified with
95% accuracy in the first 2 hours, and a compromised de-
vice with 90% accuracy within the first 6 hours. However,
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Figure 4: Detection rates for splicing.
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Figure 5: Detection rates for random attacker.
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Figure 6: Detection rates for informed attacker.
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Figure 7: Detection rates for compromised device.

the results presented could be influenced by the parame-
ters used such as Bloom filter sizes, the time window size,
the amount of storage and computation available, etc. One
could set the expected detection rate to be 99% and then
be concerned on the higher number of false positives that
could be mitigated by other means, by for example taking
into account information other than the CDR records such
as data call records, applications, communication content,
etc. Nonetheless, our proposed methods could be used to
represent other features as well, not only CDR records.

5.3 Contact-based Method Results
Since the contact-based method described in Section 3.5

uses statistical distributions of intervals between consecutive
communication activities, it is effective only when the train-
ing set for each user contains at least a certain minimum
number of events. To test the algorithm we consider only
customers with at least 20 network activities (SMS or voice)
to compute the probability distributions. This is opposed
to hash set and Bloom filter methods, which can be used
even when we have a few SMS or voice records available per
customer at the training stage. To test this method we set
α1 = 90 and α2 = 25.

As it can be seen in Figures 8 and 9, this method achieves
very high detection rates in all the scenarios while still per-
forming with acceptable false positive rate, always below
23% of users having one false positive in 16 days. The best
detection rate is achieved for splicing, with just 95% of the
users detected correctly. In the toughest scenario, a device
compromised with malware, the method still achieves a very
good result, with 1% users without false negatives.

5.4 Storage and Computation Requirements
The higher the detection rate a method has, the higher the

storage and computation requirements. Specifically, the de-
tection accuracy of each method is highly influenced by the
information retained by its corresponding fingerprint repre-
sentation. As such, the BF and CBF methods taken alone
seem to provide the lowest detection performance, consis-
tently lower than the hash set method. However, by com-
bining the HS and BF methods into HS+BF seems to im-
prove the HS method in all four scenarios. In other words,
by adding an extra bit to the hash value per element for the
Bloom filter representation has the potential to significantly
improve the detection rate. In all but the compromised de-
vice experiments, the HS+BF method ranked the second
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Figure 8: False positive rate for Contact-based

Method.
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Figure 9: Detection rates for Contact-based Method.

best in terms of detection rate while increasing the storage
requirements for the base HS method by a bit per element.
Table 6 shows roughly how all the methods compare in terms
of storage footprint, fingerprint construction and fingerprint
testing.

Method Storage (bits) Construction Testing

HS 128 x N O(N) O(N)
BF N O(N) O(1)
CBF 16 x N O(N) O(1)
HS+BF+CBF 145 x N O(N) O(N)
BF+CBF 17 x N O(N) O(1)
HS+BF 129 x N O(N) O(N)
Contact-based 128 x N O(N) O(N)

Table 6: Storage and processing requirements as a

function of the average number N of features for

each time window.

Based on the amount of information retained, each method
requires a different amount of storage. The standard Bloom
filter requires the least while the method where all the sub-
methods are combined requires the most storage. Construct-
ing the behavior fingerprint requires roughly the same com-
putational resources for all methods. However, the Bloom
filter based methods, because they use the same fixed amount
of storage for all time windows, require a constant number of
operations when performing the fingerprint checking as com-
pared to the other methods. In a real deployment, depend-
ing on the application and on the resource limitation, one
could use the combination of HS+BF+CBF methods if the
storage and computation requirements can be relaxed while
the detection rate is high priority. On the other hand, if
computation and storage are limited one could use BF+CBF
and sacrifice from the accuracy of the detection but having
lower false positives. Finally, if most of the entities to be
monitored are active and have at least a certain number of
transactions, one could use the Contact-based method that
provides both low false positives and detection rates and
reasonable storage requirements.

The implementation of the proposed methods can be highly
parallelized and optimized based on the fingerprinting method
used. For example, when using overlapping time windows,
when computing the subsequent fingerprints, one can just
discard the features that don’t belong to the new time win-

dow and insert into the set representation only the new ones.
In this way the fingerprint creating time might be reduces.

Finally, because user processing is independent from the
rest of the computation for each user, all the users identifi-
cation fingerprints could be processed in parallel in a sepa-
rate thread. Moreover, with the increase popularity of dis-
tributed computing frameworks, such as MapReduce [12],
the computation of data that belongs to million of users
could be split and processed independently in parallel by
different workers without the need to recombine the results
as in the traditional MapReduce Implementation. However,
the distributed computation aspect was not the main focus
of our paper therefore we don’t elaborate it here.

6. RELATED WORK
Several approaches exist in the literature to address the

user management, user authentication and user identifica-
tion problems for mobile terminals. In general, a user is
identified on a device either based on something she knows
(password), something she has (biometrics) or something she
does (behavior analysis). Using passwords is the most com-
mon technique for user authentication in telecommunication
systems. However, often users choose weak passwords con-
sisting on simple words, short and simple sequences of num-
bers or easily available information about themselves (i.e.
date of birth) [30]. Some solutions have been proposed aim-
ing to protect all the passwords a user requires. A strength-
ened cryptographic hash function is used to compute secure
passwords for arbitrarily many accounts while requiring the
user to memorize only a single short password [18]. Biomet-
rics is an alternative scheme for user authentication used in
all kinds of applications and devices [25]. In this context,
certain efforts aim to achieve highly accurate authentication
systems by combining multiple biometric signatures [28].
Other schemes combine biometrics and behavior analysis.
These are efficient authentication systems based on the fact
that device usage varies significantly from person to per-
son [13]. Implicit authentication systems have been pro-
posed previously in the literature. These are transparent to
the user, who is identified based on typing patterns [23] and
keystroke dynamics [19]. The approach introduced in our
paper resembles these in the sense that user identification is
implicit and performed in a transparent way to the user.
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Some recent work identifies users based on data from the
sensors of a smart phone [20]. Following the same approach
and proving its potential, the authors of [29] showed that
user input on a smart phone can be inferred from measure-
ment of the sensors on the device, such as the accelerome-
ter and the gyroscope. One may assume that users prefer
simple authentication schemes. Indeed, this would explain
the frequency in which weak passwords are chosen. Sur-
prisingly, the authors of [16] found that mobile users expect
a transparent authentication that increases security and is
performed continuously/periodically throughout the day. In
this context, the authors of [26] present a method of implicit
user authentication for mobile devices. However, in contrast
to our methods, their approach is tested with data from just
over 50 users and requires large storing of data in the device
itself. Further, authentication schemes are also being pro-
posed for different contexts other than mobile device access
as it is the case presented in [9] for cloud access.

The major difference between our approach and most of
the related methods is that in this work we are not focused
on finding another method of authentication but rather a
novel non-invasive robust, privacy preserving, accurate and
network-based method of user identification that can work
in conjunction with and confirm the authentication.

7. CONCLUSION
In this paper we introduce a set of methods to provide

implicit and transparent user identification for mobile ter-
minals. Based on the proposed networks, a cellular network
can automatically detect device misuse as a result of a lost
or stolen terminal or a piece of malicious software running in
the background. This provides means for a rapid network-
based detection and reaction that can potentially protect a
mobile user from economic losses and identity theft.

As future work we intend to investigate using different
combinations of contact-based method with the other meth-
ods, additional network feature sets and metrics to achieve
lower false positive and higher detection rates. We seek to
extend the recorded feature sets to the devices themselves
and combine events on the device with events on the net-
work. Moreover, we investigate using similar methods to
identify users or entities of other devices or systems based
on the past observed behavior.

Finally, because user data is very sensitive, an important
direction is to design new metrics with very strong privacy
guarantees that leak essentially no information about past
user behavior, yet allow accurate identification. A promising
direction is split the data among several servers, and rely on
cryptographic techniques of secure computation to compute
the identification outcomes.
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