
Enhancing User Authentication in Claim-Based Identity Management

Waleed A. Alrodhan and Chris J. Mitchell
Information Security Group

Royal Holloway, University of London
{W.A.Alrodhan, C.Mitchell}@rhul.ac.uk

http://www.isg.rhul.ac.uk

ABSTRACT

In claim-based identity management (CBIM) systems, users
identify themselves using security tokens that contain per-
sonally identifiable information, and that are signed by an
identity provider. However, a malicious identity provider
could readily impersonate any user by generating appro-
priate tokens. The growing number of identity theft tech-
niques raises the risk of service providers being deceived
by untrustworthy identity providers. We show how this vul-
nerability can be mitigated by adding an authentication
layer, between the user and the service provider, to a CBIM
system. We propose two possible implementations of this
layer. The first approach requires a user to perform an
additional step before the service provider completes the
authentication process. That is, the user must present to
the service provider certain information sent to the user by
the service provider during the most recent successful use
of the scheme. A proof-of-concept implementation of this
scheme has been produced. The second approach involves
a challenge-response exchange between the user and the
service provider. This requires a minor modification to
the service provider XML-based security policy declaration
message.

KEYWORDS: Claim-based Identity CardSpace User-
centric Authentication.

1. INTRODUCTION

Identity management is one of the fundamental building
blocks for collaborative environments. Collaborative ap-
plications like Wiki, for example, rely on identity manage-
ment schemes to identify users and protect their person-
ally identifiable information (PII), as a preparatory step for
user authorisation. However, it has become common, or
even necessary, for Internet users to possess multiple digi-

tal identities. Managing these identities and protecting the
corresponding credentials is a difficult problem because of
the threats of identity theft and phishing techniques, and
also the growing number of such identities.

User-centric identity management [9, 11] has been pro-
posed as a means of easing the user task of managing digital
identities, by providing users with more control over their
identities. Such systems have been developed primarily
from the perspective of end-users, enabling a user to main-
tain control over how PII is both created and used, thereby
enhancing user privacy. Examples of user-centric systems
include OpenID1 and Windows CardSpace2 (henceforth
abbreviated to CardSpace). Claim-based systems [1, 12]
are one particular class of such systems.

In this paper we aim to enhance user authentication within
claim-based identity management systems. We propose
two possible ways in which such an enhancement could be
provided. In the first approach, a user must present certain
information obtained during the last interaction with a ser-
vice provider in order to be authenticated to that provider.
The second approach involves a challenge-response proce-
dure between the user platform and the service provider, re-
quiring a minor modification to the service provider XML-
based security policy declaration.

The remainder of this paper is organised as follows. Sec-
tion 2 provides an overview of claim-based identity man-
agement. In section 3 we propose two methods for enhanc-
ing user authentication. In section 4 we describe a pro-
totype implementation of one of the proposed techniques,
and section 5 discusses their effectiveness. Finally, section
6 concludes the paper.

1http://openid.net
2http://www.microsoft.com/net/cardspace.aspx

75978-1-4244-6622-1/10/$26.00 ©2010 IEEE

Authorized licensed use limited to: b-on: UNIVERSIDADE DE AVEIRO. Downloaded on May 27,2023 at 01:17:28 UTC from IEEE Xplore. Restrictions apply.

2. CBIM

In this section we provide a brief overview of claim-based
identity management. We then discuss the notion of ‘user
consent’.

2.1. Overview

Many Internet identity management systems are designed
to be cost effective from the perspective of service
providers rather than users. For example, many service
providers manage digital identities using automated sys-
tems, whereas users are required to manage their digital
identities manually. Also, in most identity management
systems, service providers authenticate users using an ap-
plication layer technique (e.g. username and password),
whereas users authenticate service providers using a lower
layer technique (such as SSL/TLS). Hence, managing mul-
tiple digital identities and protecting the associated creden-
tials can become very difficult for users. Moreover, most
such systems are isolated, i.e. there is no co-operation be-
tween systems for user authentication purposes [11]. As
shown in figure 1, when using isolated systems, users must
manage multiple identifiers manually, and must maintain a
distinct identifier for each service provider.

Figure 1. Isolated Identity Management Model

Claim-based identity management (CBIM) has been de-
signed to make identity management easier for Internet
users. As shown in figure 2, every human user has spe-
cific PII. The idea is to enable users to use their PII to
identify themselves to service providers, instead of using
service provider specific identifiers (e.g. usernames) and
access credentials (e.g. passwords).
In a CBIM system, each individual has an associated set of
claims, where a claim is an assertion of the truth of some
piece of PII for the associated user. In order to authenti-

Figure 2. The Relationship between Entities and
Identifiers

cate the user, the service provider can demand a security
token that asserts the truth of values for certain pieces of
user PII. This security token must be signed by a trusted
identity provider. Figure 3 shows the claim-based identity
management model.

Figure 3. Claim-Based Identity Management Model

The most widely discussed example of a CBIM system
is CardSpace. CardSpace is designed to satisfy the re-
quirements of the Laws of Identity [3, 4]. The CardSpace
framework is based on the identification process we expe-
rience in the real world using physical identification cards.
Within the CardSpace framework, an identity provider is-
sues Internet users with virtual cards called Information
Cards (or InfoCards), that hold (relatively) non-sensitive
meta-information related to them, including a list of the
supported claims. Subsequently, the Internet user selects
one of the InfoCards that supports the claims that the ser-
vice provider wishes to have assurance of, and requests a

76

Authorized licensed use limited to: b-on: UNIVERSIDADE DE AVEIRO. Downloaded on May 27,2023 at 01:17:28 UTC from IEEE Xplore. Restrictions apply.

signed security token from the identity provider that issued
this InfoCard. The request sent to the identity provider
specifies the types of the claims sought by the service
provider. The provided security token lists the values of
the requested claims and, after receiving it, the CardSpace-
enabling component on the user machine forwards it to the
service provider. InfoCards can also be self-issued by the
Internet users themselves.

Other CBIM systems include OpenInfoCard3, Higgins, and
DigitalMe4. Higgins and DigitalMe are supported by the
Bandit Project5. We focus here on CardSpace because of
its ubiquity as part of Windows Vista; however, many of
the observations made below also apply to other CBIM sys-
tems, since they have strong similarities to one another.

2.2. User consent

In the currently deployed implementations of CBIM, ser-
vice providers are not provided with a proof of the legit-
imacy of the user that wishes to log in. Instead, service
providers are given a proof of rightful possession of the se-
curity token (i.e. a proof that the user who forwarded the
security token has the right to possess it). However, all the
implemented “proof of rightful possession” techniques are
based on information included within the security token it-
self [20]. Moreover, the only means for the service provider
to judge the validity of a security token is by verifying the
identity provider’s digital signature. This means that, if the
identity provider is lying, then the ‘proof of rightful pos-
session’ will be false.

The first of the Laws of Identity is to provide a high de-
gree of ‘user control and consent’; we therefore suggest
that support for user consent in systems that adhere to these
laws, such as CardSpace, needs to be enhanced. Also, there
is a potential vulnerability because of the lack of robust ev-
idence of user consent.

We believe that our proposed schemes will enhance the ser-
vice provider ability to make more accurate decisions about
the legitimacy of the user by adding an additional authen-
tication layer. This layer could be deemed as providing
implicit indication that the log-in attempts are initiated by
the legitimate users.

Finally, we observe that the problem we have described is
less significant for self-issued InfoCards.

3http://code.google.com/p/openinfocard
4More implementations are listed at: http://www.osis.idcommons.net
5http://bandit-project.org

3. ENHANCING USER AUTHENTICATION

In this section we propose two methods for enhancing user
authentication in CBIM systems. The proposed methods
are independent, and can be combined if desired. We de-
scribe the techniques as they apply to CardSpace; however,
we believe that they could also be applied to other CBIM
systems.

3.1. The CardSpace Framework

CardSpace provides a way to represent identities using
claims, and a means to bridge technology and organisa-
tional boundaries using claims transformations [13]. It is a
CBIM system, and is not a single sign-on system. It aims to
reduce the reliance on passwords for Internet user authen-
tication by service providers (or Relaying Parties (RPs) in
Microsoft terminology), and to improve the privacy of per-
sonal information.

The CardSpace identity management architecture is de-
signed to provide the user with control over his digital
identities in a user friendly manner, and to tackle identity
management security problems such as breaches of pri-
vacy and identity theft, with no single identity authority
control. CardSpace works with Internet Explorer browsers
(CardSpace plug-ins for browsers other than Microsoft In-
ternet Explorer have also been developed, such as the Fire-
fox Plug-in6).

Digital identities in CardSpace are represented as claims
made by one digital subject (e.g. an Internet user) about it-
self or another digital subject. A claim is an assertion that
certain identifying information (e.g. given name, social se-
curity number, credit card number, etc.) belongs to a given
digital subject [4, 13]. Under this definition, user identifiers
(e.g. a username) and user attributes (e.g. user gender) are
both treated as claims.

CardSpace requires users to install an enabling compo-
nent on their machines called the Identity Selector [14].
This component performs several important tasks includ-
ing: providing a user-friendly interface for Information
Card management and security token viewing, negotiating
the security requirements of the RPs and identity providers
(IdPs), supporting identity provider discovery, controlling
and managing user authentication to the IdP, and generating
self-issued security tokens. These tokens contain assertions
made by the users about themselves, and are generated by
the Self-issued Identity Provider (SIP), part of the Identity
Selector.

6http://xmldap.blogspot.com/2006/05/firefox-identity-selector.html

77

Authorized licensed use limited to: b-on: UNIVERSIDADE DE AVEIRO. Downloaded on May 27,2023 at 01:17:28 UTC from IEEE Xplore. Restrictions apply.

The Security Token Service (STS) is a software component
in the CardSpace framework, responsible for security pol-
icy and token management at the IdP and, optionally, at the
RP [10].

The framework is based on the identification process we
experience in the real world using physical ID cards. In-
foCards are issued either by an IdP or by the SIP on the
user machine (in which case they are referred to as self-
issued cards). Infocards are stored on the user machine,
and are XML files with the extension ‘*.crd’. An InfoCard
is signed by the IdP, and contains (relatively) non-sensitive
meta-information, such as: the name of the IdP that has is-
sued it, a list of the claims that can be asserted by the IdP,
the types of security tokens that can be requested from this
IdP (e.g. a SAML 2.0 assertion), and the InfoCard creation
and expiry times.

When a user tries to log-in to a CardSpace-enabled RP,
the RP declares its security policy to the Identity Selec-
tor. The RP security policy can be retrieved using the
WS-MetadataExchange protocol [7], and is expressed us-
ing the WS-SecurityPolicy [17] and WS-Trust [18] proto-
cols. The policy includes: the claims to be asserted, the
requested security token type, a list of IdPs trusted to is-
sue the requested token, and the required proof-of-rightful-
possession method. The RP security policy also specifies
constraints on the retrieved security token (e.g. the maxi-
mum token age).

After processing that policy, the Identity Selector checks
which InfoCards satisfy it, and prompts the user to select
one of them. The Identity Selector retrieves the IdP security
policy from the IdP that issued the selected InfoCard. This
policy specifies how the Identity Selector must be authenti-
cated, and how to retrieve a security token from the IdP. The
policy is contained within a WSDL description [6], speci-
fying the protocol messages to be used to access the IdP-
STS. The policy contains details of the security measures
that should be applied to the request token (e.g. whether the
security token should be encrypted by the IdP using a short-
term symmetric session key, or if the encryption provided
by SSL/TLS is sufficient) [5]. The IdP security policy must
always contain the IdP’s X.509 public key certificate.

The security token is then requested from the issuer IdP.
After receiving the request, and prior to authenticating the
user and generating the token, the IdP checks its policy to
decide how it should authenticate the user, what claims it
can assert, and whether its policy permits it to generate the
requested security token. On receipt of the token from the
IdP, the Identity Selector optionally shows its contents to
the user (the displayed information is deleted from the sys-

tem after the user has given consent to proceed). Finally,
the Identity Selector forwards the security token to the RP,
which will deem the user authenticated if the received to-
ken is valid and meets its requirements.

Figure 4. The CardSpace Framework

Figure 4 provides a simplified sketch of the CardSpace
framework. In the figure it is assumed that the user has al-
ready been issued an InfoCard by an IdP, and has retrieved
the RP web page that offers a CardSpace-based log-in. In
step 1, the user clicks on the CardSpace icon in the RP
web page using a CardSpace-Enabled User Agent (CEUA),
also known as the Service Requester, which is essentially
a CardSpace-enabled web browser. In step 2, the RP iden-
tifies itself using a public key certificate (e.g. a certificate
used for SSL/TLS), and triggers the Identity Selector us-
ing XHTML code or HTML object tags. After the Identity
Selector has been triggered, it retrieves the RP’s security
policy from the RP-STS in step 3 [20].

In step 4 the Identity Selector matches the RP’s security
policy against the InfoCards possessed by the user in or-
der to find one that satisfies the policy. If one or more
suitable InfoCards are found, the user is prompted to se-
lect one of them. After the user has selected an InfoCard,
the Identity Selector initiates a connection with the IdP that
issued that InfoCard, and retrieves the IdP security policy
in step 5. In step 6, the user performs an authentication
process with the IdP via the Identity Selector. The current
version of the Identity Selector supports four authentica-
tion methods, namely: username/password, Kerberos V5
ticket, X.509 certificate (either software-based or using a

78

Authorized licensed use limited to: b-on: UNIVERSIDADE DE AVEIRO. Downloaded on May 27,2023 at 01:17:28 UTC from IEEE Xplore. Restrictions apply.

smart card), or self-issued SAML 1.1 assertion (generated
by the SIP) [20].

Then, in step 7, the Identity Selector requests the IdP to
provide a security token that asserts the truth of the claims
whose types are listed in the selected InfoCard; this request
is sent in a request security token (RST) message. The IdP
then checks whether its security policy permits it to gen-
erate the requested security token. If so, the IdP replies
by sending a security token within a request security token
response (RSTR) message. Finally, the Identity Selector
forwards the security token to the RP-STS in step 8 (after,
optionally, showing its contents to the user) and, if the RP
verifies it successfully, the service is granted in step 9.

The RP will get an assertion from the IdP that the se-
curity token was issued to a particular user. This asser-
tion is bound to the user by a secret ‘proof-key’, where a
user asserts ownership of a security token by demonstrat-
ing knowledge of the proof-key included in the token [15].
This helps to prevent token replay attacks, i.e. where an
attacker ‘steals’ a token for another user. The RP can se-
lect one of three types of proof of rightful possession tech-
niques, namely: bearer, symmetric and asymmetric [14].

The CardSpace identity metasystem relies on a number of
Web Services protocols and SOAP [16]. Most of these pro-
tocols require the SP to have an STS server in order to
process the messages [2, 10, 19]. The CardSpace message
flows are as follows:

1. CEUA→ RP : User clicks on the CardSpace logo on the
RP log-in web page

2. RP→ CEUA : InfoCard Tags (XHTML or HTML object
tags), to trigger the Identity Selector

3. Identity Selector ↔ RP-STS : Identity Selector re-
trieves the RP security policy via WS-MetadataExchange

4. Identity Selector↔ User : User picks an InfoCard

5. Identity Selector ↔ IdP-STS : Identity Selector re-
trieves the IdP security policy

6. Identity Selector↔ IdP : User Authentication

7. Identity Selector ↔ IdP-STS : Identity Selector re-
trieves security token via WS-MetadataExchange

8. Identity Selector → RP-STS : Identity Selector for-
wards the security token (after, optionally, showing its con-
tents to the user)

9. RP→ CEUA : Welcome, you are now logged in!

The messages in steps 3, 5, 7 and 8 are carried over SOAP,
and must be transmitted over an SSL/TLS channel to pre-
serve their confidentiality. If the SP does not have an STS

server, then the messages in steps 3 and 8 will be carried
using HTTP over an SSL/TLS channel. The security token
must be encapsulated in a WS-Trust message [18], and its
integrity is preserved using an XML-Signature, as part of
the WS-Security protocol [19].

3.2. A Proof-of-Authenticity Method

We now describe an approach to the provision of an ad-
ditional layer of authentication which we call a ‘proof-of-
authenticity’ method. It requires the user platform to store a
secret proof-of-authenticity value (known only to the client
and the RP), that is sent to the RP during the authentica-
tion process. Provision of this secret value proves to the
RP that the genuine user is involved, and hence implicitly
gives indication that the log-in attempt was initiated by the
legitimate user.

The proof-of-authenticity value is randomly generated by
the RP, and a new value is sent to the user platform after
every successful authentication (e.g. in the form of HTTP
cookie). That is, when a user inaugurates a log in procedure
using the CBIM system, the RP will request the current
proof-of-authenticity value from the user platform. The RP
will verify that the provided value is as expected and, if so,
will continue with the authentication process of the CBIM
system. If a value is not available to the user platform (e.g.
because this is the first occasion that the system has been
used from this platform), or the provided value is incor-
rect (e.g. because the user has switched platforms), then the
CBIM system authentication procedure will be aborted; the
user will then be requested to authenticate him/herself by
some other means (e.g. user name and password). This lat-
ter means should involve the use of information not known
to the identity provider. Once the user has been authenti-
cated (using the CBIM system or by some other means),
the RP will generate a new random proof-of-authenticity
value, store it, and send it to the user via a secure channel.

The provision of the proof-of-authenticity value should be
transparent to the user, and hence will not affect the usabil-
ity of the system. To demonstrate this fact, a prototype im-
plementation of this scheme has been developed (see sec-
tion below).

3.3. A Challenge-Response Method

The second approach requires the user platform to either
share a secret key with the RP or possess a signature key
pair for which the RP has a trusted copy of the public key.
The key is used as the basis of a challenge-response authen-
tication of the user to the RP.

This method requires modifying the XML-based security

79

Authorized licensed use limited to: b-on: UNIVERSIDADE DE AVEIRO. Downloaded on May 27,2023 at 01:17:28 UTC from IEEE Xplore. Restrictions apply.

policy declaration message sent from the RP to the user
platform (i.e. the CardSpace enabled web browser) during
security policy negotiation. Apart from presenting the re-
quested token, the user platform is required to provide a
valid response to a challenge sent by the RP. This response
is computed using either a secret key shared by the user
and the RP, or a private signature key belonging to the user.
We now describe the operation of these two possibilities in
greater detail.

3.3.1 MACed-Response Mechanism

This mechanism requires the RP and the user to share a se-
cret key. This key can be issued by the RP during the reg-
istration phase (i.e. when the user first registers an account
with the RP). It can be replaced if lost or compromised,
and can be stored on the user machine or on a security to-
ken such as a smartcard. We assume that the user estab-
lishes the shared secret key with the RP before any attempt
at user impersonation by a malicious IdP.

Use of the mechanism also requires the RP and the user
platform to agree on the use of a Message Authentication
Code (MAC) algorithm, where we write MAC k(x) to de-
note the MAC computed on data x using the key k.

The RP must also have the ability to request a user-consent
assertion. This request can be embedded within its secu-
rity policy declaration message. This requires certain mi-
nor modifications to be made to the the WS-SecurityPolicy
message that contains the RP security policy. To achieve
this we propose the introduction of a new tag. This new
tag, which we call <UserConsentRequest>, contains
three data fields. The first holds the mechanism to be used,
the second holds a boolean value that indicates whether or
not the SP requires a user-participation assertion, and the
third holds the challenge value (explained below).

Figure 5 shows an XML Schema for the added tags, and
a Document Type Definition (DTD) of these tags is as
follows.

<!ELEMENT UserConsentRequest (Type,
AssertionRequested, Challenge)>
<!ATTLIST Type Method (MACed | Signed) "MACed">
<!ATTLIST AssertionRequested Enhanced (True |
False) "False">

<!ELEMENT Challenge (]PCDATA)>

Figure 6 gives an example of an XML message declaring an
RP security policy expressed using the WS-SecurityPolicy
standard. The policy states that the security token to be re-
ceived must be issued by a specific identity provider (con-
toso.com), and that the desired proof of rightful possession
method is the Symmetric method [20]. The policy also lists

Figure 5. The XML Schema of the New Tags

the claims to be asserted (i.e. by listing their values in the
security token). In this example, the requested claims are
the given name and the surname, and each claim is defined
using a specific URI. The novel tags are marked by inclu-
sion within a box.
After processing the security policy of the RP, the
CardSpace enabling component on the user ma-
chine checks whether or not the RP is requesting a
user-consent assertion by checking the value of the
<AssertionRequested> field. If the value is true,
then the enabling component extracts the value of the
<Challenge> field, which is essentially a randomly
generated nonce (i.e. a Number used ONCE). If the value
of the <Method> field is MACed, then the user agent
(or the enabling component) uses this nonce to generate a
MAC:

MAC k(idRP ‖n)

where || denotes concatenation; idRP is an identifier for the
RP, e.g. the RP’s domain name; n is the nonce; and k is the

80

Authorized licensed use limited to: b-on: UNIVERSIDADE DE AVEIRO. Downloaded on May 27,2023 at 01:17:28 UTC from IEEE Xplore. Restrictions apply.

Figure 6. Modified RP Security Policy

shared key.

The generated response is then sent to the RP along with the
security token. Finally, the RP checks the response using
the shared key k. If the MACed-response is correct, then
this acts as an implicit assertion of user-consent. The use
of a nonce as a challenge helps to prevent replay attacks.

3.3.2 Signed-Response Mechanism

To use this mechanism, the user platform must have access
to a key pair for a digital signature scheme. The user and
RP must also agree on the use of a particular such scheme;
we write Suser(x) to denote the user signature on data x.
The key pair can be issued to the user either by the RP dur-
ing the registration phase (i.e. when the user first registers
an account with the RP), or by a trusted Certification Au-
thority (in this case the user must provide its public key
certificate to the RP before this mechanism can be used).
The key pair can be replaced if lost or compromised, and
can be stored on the user machine or on a security token
such as a smartcard.

An obvious question would be: Why use CardSpace if

there is already a PKI in use? The answer is simple: be-
cause the user and/or the RP might wish to use CardSpace
to retrieve attributes from the IdP for authorisation pur-
poses.

This mechanism works in exactly the same way as
the MACed-response mechanism, except that, instead of
MACing the challenge value, the user platform signs the
value using its private key. The value of the <Method>
field must be Signed. The response will be as follows:

Suser(idRP ‖n)

where idRP is an identifier for the RP, e.g. the RP’s domain
name; and n is the nonce.

4. IMPLEMENTING A PoA METHOD

A proof of concept implementation of the proof-of-
authenticity method has been successfully tested. The pro-
totype was built on the Pamela Project’s7 implementation
of the RP CardSpace component. The implementation in-
volved modifying the component by creating two software
modules to be held on the RP server; the two modules
were written using the PHP programming langauge (ver-
sion 5). The implementation has been successfully tested
on an Apache web server (version 2.2.8) running on the
Linux-Fedora operating system.

The proof-of-authenticity (PoA) is stored on the user ma-
chine in the form of an HTTP cookie. The PoA value is
generated by hashing a combination of a random value and
transaction-specific information, to minimise the possibil-
ity of accidental re-use of the same value.

The two software modules that perform the required op-
erations for the proof-of-authenticity method are called
PoASet and PoACheck. These two modules are integrated
with the CardSpace-enabling software on the RP’s server.
PoASet operates after the user has been authenticated us-
ing a mechanism that does not rely on information known
by the identity provider (e.g. using username/password).
PoASet creates a PoA, stores it in a server database, and
sends it to the user in the form of an HTTP cookie.
PoACheck decides whether or not the user can use the
CardSpace authentication system. It first checks whether or
not the user platform possesses the valid PoA. If not, then
PoACheck denies the user request to use the CardSpace sys-
tem and informs the user that it will need to be authenti-
cated using another authentication mechanism. If the sup-
plied PoA is correct, PoACheck creates a new PoA, stores
it in its database, and sends a copy of it to the user in the

7http://pamelaproject.com/

81

Authorized licensed use limited to: b-on: UNIVERSIDADE DE AVEIRO. Downloaded on May 27,2023 at 01:17:28 UTC from IEEE Xplore. Restrictions apply.

form of an HTTP cookie. Finally, it redirects the user’s
browser to a web page where the user can perform the au-
thentication process using the CardSpace framework.

Figure 7. Initial Login Using the Proof-of-Authenticity
Method

Figure 7 shows the message flow for the first user login (i.e.
where the user does not have a correct PoA). The message
flow steps are:

1. User→ RP : Login request using CardSpace.

2. User ↔ RP : RP checks whether or not the user has got
the correct PoA.

3. User← RP : Sorry you cannot use CardSpace this time!

4. User ↔ RP : Authentication of the user using another
mechanism (e.g. username/password).

5. User← RP : You have been authenticated, Welcome!

6. User← RP : PoA to be presented next time.

After being issued with a PoA, the user will be able to
use CardSpace in subsequent login attempts from this host
machine.

5. DISCUSSION

The proposed methods have the capability to increase the
privacy level of CBIM systems. They can also help to make
the RP’s judgement regarding the validity of the security
token less critical.

If one of the proposed method is deployed, then dishonest
identity providers are prevented from impersonating users.
This will not only enhance the reliability of the system from
the perspective of service providers, but will also indirectly
benefit users by reducing the risk to information held by
service providers on their behalf. The proposed methods
will also reduce the significance of ‘token-stealing’ attacks,
such as those described in [8].

One possible disadvantage of the proposed methods is that
they have an impact on user mobility. This can be ad-
dressed by storing the PoA or the user keys on a portable

security token such as a smart card, or by storing them at a
trusted third party. The latter solution would, however, add
complexity to the system.

One obvious limitation of the proof-of-authenticity method
is that it requires the user to be authenticated at least once
using another authentication system before the CBIM sys-
tem can be used. However, we believe that the security risk
of this limitation is not significant, especially if the user is
a frequent visitor to the RP’s web site.

The proposed challenge-response method is built on the
WS-SecurityPolicy standard, which is widely used in
CBIM systems. Hence, integrating the method into cur-
rently deployed CBIM systems should be straightforward.

A limitation of the challenge-response method is that it re-
quires modifications to the CBIM-enabling components on
the user machine and the RP server (including the RP Se-
curity Token Service, an RP server based component re-
sponsible for declaring the RP security policy and manag-
ing received security tokens). A further limitation is the
key management overhead. However, if the shared key is
compromised or stolen by an attacker, then it would not by
itself give immediate access to the RP, since it only pro-
vides an additional layer of authentication. That is, the key
management process is arguably less security-critical than
in many other applications.

6. CONCLUDING REMARKS

Since collaborative environments rely on identity manage-
ment to securely identify and authenticate the users, we be-
lieve that enhancing the user authentication in CBIM sys-
tems, as one of the most prominent identity management
solutions, will open the door for more reliable collabora-
tive applications.

In this paper we have proposed two independent methods to
enhance user authentication in CBIM systems, namely the
proof-of-authenticity method and the challenge-response
method. These methods, if implemented correctly, provide
the RP with an implicit indication that the log-in attempts
are initiated by the legitimate users. A proof-of-concept
implementation of the first method has been described.

The proposed techniques do add a certain degree of com-
plexity and overhead to the system. However, we believe
that implementing them should help to increase user ac-
ceptance of CBIM systems, and also help to enhance the
accuracy of the RP judgement of the legitimacy of the user.

82

Authorized licensed use limited to: b-on: UNIVERSIDADE DE AVEIRO. Downloaded on May 27,2023 at 01:17:28 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] V. Bertocci, G. Serack, and C. Baker. UNDER-
STANDING WINDOWS CARDSPACE. Addison-
Wesley, 2008.

[2] K. Beznosov, D. J. Flinn, S. Kawamoto, and B. Hart-
man. “Introduction to Web services and their secu-
rity”. Information Security Technical Report, 10:2–14,
2005.

[3] K. Cameron. “The laws of identity”, May 2005. Mi-
crosoft Corporation.

[4] K. Cameron and M. B. Jones. “Design rationale be-
hind the identity metasystem architecture”, February
2006. Microsoft Corporation.

[5] D. W. Chadwick. “Federated identity management”.
In International School on Foundations of Secu-
rity Analysis and Design (FOSAD08), volume 5705
of Lecture Notes in Computer Science, pages 96120.
Springer-Verlag, 2008.

[6] E. Christensen, F. Curbera, G. Meredith, and
S.Weerawarana. “Web Services Description Lan-
guage (WSDL) – version 1.1”, March 2001. The
World Wide Web Consortium (W3C).

[7] F. Curbera, S. Parastatidis, and J. Schlimmer (ed-
itors). “Web services metadata exchange (WS-
MetadataExchange) – version 1.1”, August 2006.
BEA Systems, Computer Associates, IBM, Mi-
crosoft, SAP AG, Sun Microsystems, and webMeth-
ods.

[8] S. Gajek, J. Schwenk, and C. Xuan. “On the insecu-
rity of Microsofts identity metasystem”. Technical
Report TR-HGI-2008-003, Horst Görtz Institute for
IT Security, Ruhr-Universität Bochum, June 2008.

[9] International Organization for Standardization,
Genève, Switzerland. “ISO/IEC FCD 24760, In-
formation technology – Security techniques – A
framework for identity management”, July 2009.

[10] M. B. Jones. “A guide to supporting InfoCard v1.0
within web applications and browsers”, March 2006.
Microsoft Corporation.

[11] A. Jøsang and S. Pope. “User centric identity man-
agement”. In Proceedings of Australian Computer
Emergency Response Team Conference (AusCERT
2005), 2005.

[12] Microsoft Corporation. “Microsofts vision for an
identity metasystem”, May 2005.

[13] Microsoft Corporation. “A technical reference for
InfoCard v1.0 in windows”, August 2005.

[14] Microsoft Corporation. “A Guide to Using the Iden-
tity Selector Interoperability Profile V1.5 within
Web Applications and Browsers”, July 2008.

[15] Microsoft Corporation and Ping Identity Corpora-
tion. “A guide to integrating with InfoCard v1.0”,
August 2005.

[16] N. Mitra and Y. Lafon (editors). “SOAP – version
1.2”, April 2007. The World Wide Web Consortium
(W3C).

[17] A. Nadalin, M. Goodner, M. Gudgin, A. Barbir, and
H. Granqvist (editors). “WS-SecurityPolicy – ver-
sion 1.2”, July 2007. OASIS Standard.

[18] A. Nadalin, M. Goodner, M. Gudgin, A. Barbir, and
H. Granqvist (editors). “WS-Trust – version 1.3”,
March 2007. OASIS Standard.

[19] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-
Baker (editors). “Web services security: SOAP mes-
sage security – version 1.1”, February 2006. OASIS
Standard Specification.

[20] A. Nanda. “Identity selector interoperability profile
v1.0”, April 2007. Microsoft Corporation.

83

Authorized licensed use limited to: b-on: UNIVERSIDADE DE AVEIRO. Downloaded on May 27,2023 at 01:17:28 UTC from IEEE Xplore. Restrictions apply.

 HistoryItem_V1
 TrimAndShift

 Range: From page 2 to page 9
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20100406105426
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 1227
 130

 Fixed
 Down
 18.0000
 0.0000

 Both
 2
 SubDoc
 9

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 1
 9
 8
 8

 1

 HistoryList_V1
 qi2base

