
Binary Analysis - 1
REVERSE ENGINEERING

João Paulo Barraca

REVERSE ENGINEERING

Binary Objects

2João Paulo Barraca

REVERSE ENGINEERING

Binary files

• The result of a compilation process
─ Translating high level code (C/C++, etc…) into native code or bytecode

• Code is encapsulated in a binary format
─ It’s not a raw file with unstructured bytes

• Target system (CPU or VM) will process the resulting code
─ Which may be only part of the file content

João Paulo Barraca 3

REVERSE ENGINEERING

Compilation process

The C/C++ use case

João Paulo Barraca 4

REVERSE ENGINEERING

Compilation process

The C/C++ use case

João Paulo Barraca 5

Pre-processor (may be the compiler) processes code, validating its
structure and expanding existing macros.

Result is a text blob with content ready to be further processed,
and frequently without external dependencies

REVERSE ENGINEERING

hello.c

Source code

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

printf("Hello World\n");

return 0;

}

João Paulo Barraca 6

REVERSE ENGINEERING

hello.c

Pre-compile: gcc -E -o hello.e hello.c

produces >1500 lines
…
extern int rpmatch (const char *__response) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))) ;
980 "/usr/include/stdlib.h" 3 4
extern int getsubopt (char **__restrict __optionp,

char *const *__restrict __tokens,
char **__restrict __valuep)

__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2, 3))) ;
1026 "/usr/include/stdlib.h" 3 4
extern int getloadavg (double __loadavg[], int __nelem)

__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1)));
1036 "/usr/include/stdlib.h" 3 4
1 "/usr/include/x86_64-linux-gnu/bits/stdlib-float.h" 1 3 4
1037 "/usr/include/stdlib.h" 2 3 4
1048 "/usr/include/stdlib.h" 3 4

3 "hello.c" 2

5 "hello.c“
int main(int argc, char** argv) {
printf("Hello World\n");

return 0;
}

7

REVERSE ENGINEERING

Compilation process

The C/C++ use case

João Paulo Barraca 8

Compiler processes the file and produces assembly code. This may
result in assembly for an intermediate processor, and not the final
processor.

The processor will create abstract syntax trees (AST) and may
tweak or optimize the result according to the options it was
provided with.

Typically for GCC, -m and –f switches, and then -On switches are
able to modify the output. That is: the same source code can result
in different assembly based on the compiler, target and flags.

REVERSE ENGINEERING

hello.c
Compile: gcc -masm intel -S –o hello.s hello.c

João Paulo Barraca 9

Constant variables and symbols

Compiler additional data. In this case Call Frame
Information to handle exceptions

Assembly instructions. Notice that symbols are
kept as labels

File Metadata

Additional sections to produce:
Entry point
Compiler identification
Instruct linker to mark stack as NX

REVERSE ENGINEERING

Compilation process

The C/C++ use case

João Paulo Barraca 10

Input containing assembly code is transformed into machine code.
Output is a set of object files, or modules with a .o extension.

Code produced may use relative addresses, making it reusable
(technically relocatable) when integrated into a final binary file.

Symbols are also present as they are required at later stages.

Although the binary files contain machine code, it is not
executable as it doesn’t include all code required, only what was
present in the original .c and included .h.

REVERSE ENGINEERING

hello.c

Compile: gcc -c –o hello.o hello.c

João Paulo Barraca 11

Assemble the code into machine code

File is an Executable and Linkable
Format (ELF)

Cannot be executed

Defines a symbol main in the Text section

_GLOBAL_OFFSET_TABLE_ and puts
are not defined.
Code is not present on the object file

64 bit, Least Significant Byte (Little Endian)

Not stripped = Contains symbols

SYSV = System V ABI. Identifies
the target system (others:
Solaris, Tru64, FreeBSD,
NetBSD…)

REVERSE ENGINEERING

Compilation process

The C/C++ use case

12

Take all the object files belonging to a program and merge them
into a single coherent executable, typically intended to be loaded
at a particular memory address.

As the arrangement of all modules in the executable is known, the
linker can also resolve most symbolic references.

References to libraries may or may not be completely resolved,
depending on the type of library. In this case, the library is added
as a dependency and the symbol is resolved in real time.

REVERSE ENGINEERING

hello.c

Compile: gcc –o hello hello.c

João Paulo Barraca 13

- 64 bit, Little Endian Architecture
- Position Independent Executable (Can use ALSR)
- Uses shared libraries
- Uses the ld-linux-x86-64.so.2 loader
- sha1 build id
- Not stripped: contains symbol names

Shared libraries required to execute this file. Some code
is not on the hello binary and is on the libraries

REVERSE ENGINEERING

hello.c

João Paulo Barraca 14

Some are undefined.
Will be defined by the dynamic
linker. Code resides on an
external object.

Symbols present in the file

 Bb: in the BSS
 D: in the initialized data Sec.
 Rr: in the Read Only Data Sec.
 Tt: in the Text (code) Sec.
 U: Undefined
Ww: Weak
 - default impl. to be overridden

REVERSE ENGINEERING

Executable Symbols

Tables

• Symbols are names identifying addresses of a binary
─ Have a type, such as Function, and including Undefined

─ E.g. functions create symbols, especially external functions (puts)

• ELF files have two symbol tables
─ .dynsym: symbols which will be allocated to memory when the program loads.

• In the example, puts is provided by libc, required for operation, and exists as a dynamic symbol

─ .symtab: contains all symbols, including many used for linking and debugging, but not
related to code required for execution.

• These areas will not be allocated (mapped) to RAM

• Extremely useful to identify the name of functions/sections when reversing!

João Paulo Barraca 15

REVERSE ENGINEERING

Executable Symbols

Stripping

• Only symbols in the .dyntab are required
─ Identify allocated sections

─ Identify symbols that must be resolved in external libraries

─ Used for Dynamic Linking when the program is loaded

• Stripping is the process of removing unused symbols and code from
a binary
─ Stripped binaries take less space, and are not reversed so easily

• There is no hints about the purpose of a function from its name

João Paulo Barraca 16

REVERSE ENGINEERING

hello.c

João Paulo Barraca 17

REVERSE ENGINEERING

hello.c

João Paulo Barraca 18

Binary is stripped of extra symbols

Only the .dynsym table is kept
Required for identifying allocatable areas
Notice as all symbols here are undefined (must be dynamically linked)

REVERSE ENGINEERING

What is inside an Object File?

• An Object File contains information required to execute a program (not only code)
─ May not include all implementation, as this can be dynamically loaded

• Information is kept in sections, which are processed differently. Some are:
─ .rodata: readonly data, containing strings

─ .got: Global Offset Table - maps symbols to memory locations (offsets).

─ .plt: Procedure Linkage Table – uses the PLT to transfer execution to the correct location of a symbol,
dealing with external symbols and fixing the GOT

─ .bss: Block Starting Symbol – contains uninitialized variables

─ .dynsym: List of symbols in allocatable memory

─ … many others:

• To read sections: readelf -S hello
• To dump all code: objdump -M intel -d hello

João Paulo Barraca 19

REVERSE ENGINEERING

Hello ELF content

RODATA: objdump -sj .rodata

João Paulo Barraca 20

Contains Read Only Data (Strings and other constants)

REVERSE ENGINEERING

Hello ELF disassembly

João Paulo Barraca 21

Indirection at PLT

The entry point to the
program.
Prepares stack
Calls main function

The main function:
Allocates 0x10 in the stack
Sets arguments to puts
Calls puts@PLT
Sets the Return Code to 0
Leave

REVERSE ENGINEERING

hello Relocations

readelf --relocs hello

João Paulo Barraca 22

Symbol to be dynamically linked LIBC TAG to match

REVERSE ENGINEERING

How are objects loaded?

• File is split according to existing sections

─ Each loaded at a different location (with different access attributes)

• Libraries are also mapped in the program address space

─ All code from libraries is present

• Stack grows downwards, heap grows upwards

─ On modern OS, growth may be limited, not on microcontrollers

• Interpreter is required to setup the binary in memory

─ ld-Linux.so or ntdll.dll

• readelf -p .interp filename

─ Will handle relocations, resolving required symbols

─ If lazy-loading is used, relocation is done when the symbol is first used

João Paulo Barraca

Kernel

Stack

Memory
mapping area

Heap

Data

Code
Code Section 2

Code Section 1

Data Section 2

Data Section 1

Header

libZ.so

libX.so

Interpreter

Environment

Arguments

Virtual Memory
0x0

Ju
m

p
to

 e
n

tr
y

p
o

in
t

R
el

o
ca

ti
o

n
s

Binary

REVERSE ENGINEERING

ELF Files

24João Paulo Barraca

REVERSE ENGINEERING

ELF – Executable and Linkable Format

• Container for executable files, object files, shared libraries, and
core dumps
─ And other things out of this context like in Android

• Composed by several headers and sections:
─ Executable Header

─ Several Program Headers (optional)

─ Several Sections, with a header and content

João Paulo Barraca 25

REVERSE ENGINEERINGJoão Paulo Barraca 26

Executable Header

Program Header

Section

Section header

Header

Program Headers

Sections

Section Headers

REVERSE ENGINEERING

ELF Headers

Executable Header

• Mandatory header, with basic information about the file

─ Architecture

─ Entry Point

─ Header locations and number

─ Type

─ Type of data

• Follow the structure Elf64_Ehdr

─ defined in /usr/include/elf.h

João Paulo Barraca 27

REVERSE ENGINEERING

ELF Headers

Section Headers

• Sections are unstructured placeholders of data
(frequently code) targeting the Linker
─ Some sections are well known and follow a defined structure

─ Some sections can be arbitrary binary blob

─ Some sections may contain content not useful for execution

─ Section order is irrelevant

─ Symbols, relocation information is stored in sections

• Headers describe the properties of each section
─ Name, type, flags, address when loaded, file offset, size,

information…

• Files without linking, may omit section headers

João Paulo Barraca 28

REVERSE ENGINEERING

ELF Sections

.init and .fini

• Contains executable code required before/after the binary entry point is executed
─ Initialization tasks to prepare/clean the memory space

• Some uses:
─ prepare profiling tasks (__gmon_start__)

─ Invoke global constructors/destructors (C++)

─ Save program arguments

João Paulo Barraca 29

REVERSE ENGINEERING

ELF Sections

.text section

• Contains the main program code
─ The main target of a Reverse Engineering activity

─ Allocated as executable and read-only

─ Contains the user code, and additional code created by the compiler

• Cleanup/initialization functions, stack guards, etc..

• In this section resides the program entry point
─ When the binary is loaded, execution flow is transferred that address

─ Related to the main function in a C program (but not the main)

João Paulo Barraca 30

REVERSE ENGINEERING

ELF Sections

.text section: Entry Point

João Paulo Barraca 31

The hello program entry point address

Loads the address of the main
function into RDI (first argument)
of a function

Calls __libc_start_main@GLIBC_2.2.5
which transfers control to the
program main function

mailto:__libc_start_main@GLIBC_2.2.5

REVERSE ENGINEERING

ELF Sections

.bss, .data, .rodata

• .rodata: Read only data
─ Stores constant values

─ Mapped to a page marked as read only

• .data: Area with information to initialize variables
─ As the data can be modified, the section is writable

• .bss: Unitialized variables
─ Memory is allocated for a variable that may be required, but nothing else is done

─ As there is no data associated, the .bss doesn’t take space on the binary. Only instructs the system to reserve
memory.

João Paulo Barraca 32

REVERSE ENGINEERING

ELF Sections

.plt, .got, .got.plt

• Procedure Linkage Table and Global Offset Table
─ .PLT: Code to relocate symbols

─ .GOT: Array with addresses of each symbol requiring relocation

• .got is similar to .got.plt but it’s writable, while .got may be marked as Read Only as a security measure (-z relro)
• Using a table (GOT) allows patching this table, while keeping libraries in same address, shared to multiple processes

• Sections required for lazy binding (real time relocation)
─ Linker needs to resolve the effective address of a code identified by a symbol (e.g., puts)

─ The code may be on the program, or on an external library, mapped to the virtual memory

─ .plt and .got ensure the symbol location is found and the code jumps around correctly

─ This is executed as the symbols are required! (LAZY)

─ On Linux, the Env Variable LD_BIND_NOW forces linking by the linker (on program load)

• Will increase performance during execution, but will slow down startup

João Paulo Barraca 33

REVERSE ENGINEERING

ELF Sections

Lazy Binding

João Paulo Barraca 34

(1) The puts function is called.
The function is on an external
library, and it must be relocated.
So, it jumps to the puts@plt

REVERSE ENGINEERING

ELF Sections

Lazy Binding

João Paulo Barraca 35

(2) At the PLT, the code doesn’t
jump to the final location, as it is
not known (yet)

Instead, it jumps to an entry at
the GOT (0x4018). In this case,
the value is 0x1036, pointing to
the code at line 8.

Remember: This is a static
analysis, the dynamic linker is
not working, so the symbol is
unresolved

REVERSE ENGINEERING

ELF Sections

Lazy Binding

João Paulo Barraca 36

(3) A value 0 is pushed. This is an
identifier that is stored to the
stack. An index, actually.

The code then jumps to the .plt
generic functions at 0x1020.

A new identifier is pushed (the
address in the GOT that is
missing the entry)

Code jumps to the Dynamic
Linker

REVERSE ENGINEERING

ELF Sections

Lazy Binding

João Paulo Barraca 37

(4) At the dynamic linker, it
searches for the symbols in the
mapped libraries and writes a
value to the GOT at 0x4018.

Then he calls that address.

REVERSE ENGINEERING

ELF Sections

Lazy Binding

João Paulo Barraca 38

(2.1) At the PLT, the code doesn’t
jump to the final location, as it is
not known (yet)

Instead, it jumps to an entry at
the GOT (0x4018).

If the program is executing, and
it is the second time puts is
called, the entry has
0x7fffff651910, which points
to the real puts.

This was obtained by loading
the binary in GDB and using GEF

REVERSE ENGINEERING

ELF Sections

.rel.*, .rela.*

• Tables containing information to the dynamic linker about the required relocations
─ R_X86_64_GLOB_DAT: GOT offset should be filled with the symbol address (Lines 8-12)

─ R_X86_64_JUMP_SLO: Jump Slots to be represented in the .got.plt and .plt sections as shown previously (Line
16)

João Paulo Barraca 39

REVERSE ENGINEERING

ELF Sections

.dynamic section

• Contains information instructing the
operating system/dynamic linker to
load the binary

─ Address of important tables

─ Flags

─ Required libraries

─ Debug flags

─ INIT/FINI addresses

João Paulo Barraca 40

REVERSE ENGINEERING

ELF Program Headers

Overview

• Provide a segment view of the binary, complementing the section view
─ Type of segment, offset in the binary file, alignments, virtual addresses to be considered

─ Target the operating system that will load the program and not the linker as the sections do

João Paulo Barraca 41

REVERSE ENGINEERING

ELF Program Headers

Types

• LOAD: Segment should be loaded in memory

• INTERP: Segment containing the name of the interpreter to be used

• DYNAMIC: Segment containing the .dynamic section, to be used by the interpreter

João Paulo Barraca 42

REVERSE ENGINEERING

Dynamic Linker

43João Paulo Barraca

REVERSE ENGINEERING

Dynamic Linker

• Vital for the loading process, and can help reversing a program
─ Provide information about the loaded libraries

─ Help debugging the linking process

─ Force linking with custom libraries

─ And many other

• Communication is achieved through environmental variables
─ In the format LD_*

─ Setting a variable, or setting a variable with a specific value, activates Linker features

João Paulo Barraca 44

REVERSE ENGINEERING

Dynamic Linker

LD_LIBRARY_PATH

• A list of directories in which to search for ELF libraries at execution time.
─ The items in the list are separated by either colons or semicolons

─ A zero-length directory name indicates the current working directory.

• Activating: LD_LIBRARY_PATH=libs ./progname
─ Linker will look into ./libs while loading libraries for the program

─ Allows having a different set of libraries for the program (E.g., debug versions)

João Paulo Barraca 45

REVERSE ENGINEERING

Dynamic Linker

LD_BIND_NOW

• Causes the dynamic linker to resolve all symbols at program startup instead of deferring
function call resolution to the point when they are first referenced.
─ Especially useful for debug as all symbols point to their correct location

• Activated by setting the variable: LD_BIND_NOW=1 progname

 LD_BIND_NOT not set LD_BIND_NOW is set

João Paulo Barraca 46

REVERSE ENGINEERING

Dynamic Linker

LD_DEBUG

• Output verbose debugging information about the the dynamic linking
─ Allows tracing the operation of the linker

─ Debug where libraries are loading from

─ Determine if libraries are being loaded and which symbols trigger the event

─ Determine the search path used looking for libraries

• The content of this variable is one of more of the following categories,
separated by colons/commas, spaces:
─ help, all, bindings, files, reloc, scopes, statistics, symbols, unused, version

• Use: LD_DEBUG=option programname

João Paulo Barraca 47

REVERSE ENGINEERING

Dynamic Linker

LD_DEBUG

48

REVERSE ENGINEERING

Dynamic Linker

LD_PRELOAD

• A list of additional, user-specified, ELF shared objects to be loaded
before all others.
─ This feature can be used to selectively override functions in other shared objects.

─ Symbols present in the provided ELF Shared objects are used instead of the original

─ Only the functions available in the shared object will be over written

• Use: LD_PRELOAD=./liboverride.so progname
─ Useful to provide custom implementations of any function in the program

─ Custom implementation can call the original implementation through manual symbol loading

João Paulo Barraca 49

REVERSE ENGINEERING

hello_thread.c

João Paulo Barraca 50

REVERSE ENGINEERING

hello_thread.c

Dynamic symbols

João Paulo Barraca 51

REVERSE ENGINEERING

hello_thread.c
liboverride.c – compile with gcc -shared -fPIC -o liboverride.so liboverride.c -ldl

João Paulo Barraca 52

Manually load original function

Call original function

REVERSE ENGINEERING

hello_thread.c

Left: standard execution, right: LD_PRELOAD overriding some functions

João Paulo Barraca 53

	Slide 1: Binary Analysis - 1
	Slide 2: Binary Objects
	Slide 3: Binary files
	Slide 4: Compilation process
	Slide 5: Compilation process
	Slide 6: hello.c
	Slide 7: hello.c
	Slide 8: Compilation process
	Slide 9: hello.c
	Slide 10: Compilation process
	Slide 11: hello.c
	Slide 12: Compilation process
	Slide 13: hello.c
	Slide 14: hello.c
	Slide 15: Executable Symbols
	Slide 16: Executable Symbols
	Slide 17: hello.c
	Slide 18: hello.c
	Slide 19: What is inside an Object File?
	Slide 20: Hello ELF content
	Slide 21: Hello ELF disassembly
	Slide 22: hello Relocations
	Slide 23: How are objects loaded?
	Slide 24: ELF Files
	Slide 25: ELF – Executable and Linkable Format
	Slide 26
	Slide 27: ELF Headers
	Slide 28: ELF Headers
	Slide 29: ELF Sections
	Slide 30: ELF Sections
	Slide 31: ELF Sections
	Slide 32: ELF Sections
	Slide 33: ELF Sections
	Slide 34: ELF Sections
	Slide 35: ELF Sections
	Slide 36: ELF Sections
	Slide 37: ELF Sections
	Slide 38: ELF Sections
	Slide 39: ELF Sections
	Slide 40: ELF Sections
	Slide 41: ELF Program Headers
	Slide 42: ELF Program Headers
	Slide 43: Dynamic Linker
	Slide 44: Dynamic Linker
	Slide 45: Dynamic Linker
	Slide 46: Dynamic Linker
	Slide 47: Dynamic Linker
	Slide 48: Dynamic Linker
	Slide 49: Dynamic Linker
	Slide 50: hello_thread.c
	Slide 51: hello_thread.c
	Slide 52: hello_thread.c
	Slide 53: hello_thread.c

