
João Paulo Barraca Assessment and Exploration of Vulnerabilities 1

Concurrency
7PK - Time and State
JOÃO PAULO BARRACA

João Paulo Barraca Assessment and Exploration of Vulnerabilities 2

Concurrency

Current operational environments are typically distributed:
◦ composed by multiple systems
◦ distributed information/resources
◦ distributed clock

Algorithms are frequently developed as actions that use those resources
◦ Commonly mapped to sequential actions

However… interactions/side effects between systems can make some “naive“
assumptions false
◦ Information is available on demand
◦ Writing to an object makes it available to other components
◦ Time flows in a single direction

João Paulo Barraca Assessment and Exploration of Vulnerabilities 3

Concurrency

Even if algorithms account for the distributed execution, side effects may be
present
◦ Variable access latency

◦ Variable execution paths

◦ Variable object metadata

◦ Variable locks

Side effects can affect execution or disclose information between domains
◦ How an algorithm is implemented, what it is doing

◦ Keys used

◦ Users currently active

João Paulo Barraca Assessment and Exploration of Vulnerabilities 4

CWE-361 - 7PK - Time and State

.. improper management of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple systems, processes,
or threads.

Distributed computation is about time and state.
◦ in order for more than one component to communicate, state must be shared, and all that takes

time.
◦ … programmers anthropomorphize their work. They think about one thread of control carrying

out the entire program in the same way they would if they had to do the job themselves.
◦ Modern computers switch between tasks very quickly, and in multi-core, multi-CPU, or

distributed systems, two events may take place at exactly the same time.
◦ … unexpected interactions between threads, processes, time, and information.
◦ These interactions happen through shared state: semaphores, variables, the file system, and,

basically, anything that can store information

João Paulo Barraca Assessment and Exploration of Vulnerabilities 5

Basic Time Related CWEs

CWE-362 - Concurrent Execution using Shared Resource with Improper
Synchronization
1. The program contains a code sequence that can run concurrently with other code
2. and the code sequence requires temporary, exclusive access to a shared resource
3. but a timing window exists in which the shared resource can be modified by another code

sequence that is operating concurrently.

CWE-662 - Improper Synchronization
1. The software utilizes multiple threads or processes to allow temporary access to a shared

resource that can only be exclusive to one process at a time
2. but it does not properly synchronize these actions
3. which might cause simultaneous accesses of this resource by multiple threads or processes.

João Paulo Barraca Assessment and Exploration of Vulnerabilities 6

CWE-362 – Race Condition

A race condition occurs within concurrent environments and is effectively a
property of a code sequence.
◦ Depending on the context, a code sequence may be in the form of a function call, a small

number of instructions, a series of program invocations, etc.

A race condition violates basic properties:
◦ Exclusivity - the code sequence is given exclusive access to the shared resource

◦ no other code sequence can modify properties of the shared resource before the original sequence has completed
execution.

◦ Atomicity - the code sequence is behaviorally atomic
◦ no other thread or process can concurrently execute the same sequence of instructions (or a subset) against the

same resource.

João Paulo Barraca Assessment and Exploration of Vulnerabilities 7

CWE-362 – Race Condition

Race condition exists when an "interfering code sequence" can still access
the shared resource, violating exclusivity.

Programmers may assume that certain code sequences execute too quickly
to be affected by an interfering code sequence; when they are not, this
violates atomicity.
◦ “too quickly” may degrade with time to slower execution as functionality is added

◦ “too quickly” is system dependent

João Paulo Barraca Assessment and Exploration of Vulnerabilities 8

State Related CWEs

CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition
1. The software checks the state of a resource before using that resource

2. The resource's state can change between the check and the use in a way that
invalidates the results of the check.

◦ This can cause the software to perform invalid actions when the resource is in an
unexpected state.

João Paulo Barraca Assessment and Exploration of Vulnerabilities 9

Basic Side Effects Related CWEs (Covert Channel)

CWE-385: Covert Timing Channel
1. Covert timing channels convey information by modulating some aspect of system

behavior over time

2. so that the program receiving the information can observe system behavior and infer
protected information

João Paulo Barraca Assessment and Exploration of Vulnerabilities 10

Prevalence

Any concurrent hardware or software (aka, almost anything)

https://www.cvedetails.com/vulnerability-list/cweid-362/vulnerabilities.html
◦ OS Kernels
◦ XEN
◦ Libgcrypt20
◦ GNOME gvfs
◦ Eclipse OpenJ9
◦ GitLab Community and Enterprise Edition
◦ Firefox
◦ Elasticsearch
◦ X86 Intel CPUs
◦ Snapdragon JPG driver
◦ …

João Paulo Barraca Assessment and Exploration of Vulnerabilities 11

CWE-362 – Example – Banking

$transfer_amount = GetTransferAmount();
$balance = GetBalance();

if ($transfer_amount < 0) {
FatalError("Bad Transfer Amount");

}

$nb = $balance - $transfer_amount;
if (($balance - $transfer_amount) < 0) {

FatalError("Insufficient Funds");
}

SetNewBalanceToDB($nb);
NotifyUser("Transfer of $transfer_amount succeeded.");
NotifyUser("New balance: $newbalance");

Balance could have
changed between
these instructions

João Paulo Barraca Assessment and Exploration of Vulnerabilities 12

CWE-362 – Example – Banking

$transfer_amount = GetTransferAmount();
$balance = GetBalance();

if ($transfer_amount < 0) {
FatalError("Bad Transfer Amount");

}

$nb = $balance - $transfer_amount;
if (($balance - $transfer_amount) < 0) {

FatalError("Insufficient Funds");
}

SetNewBalanceToDB($nb);
NotifyUser("Transfer of $transfer_amount succeeded.");
NotifyUser("New balance: $newbalance");

Other operations
could have happened
between these lines.
$newbalance is set to

a static value

João Paulo Barraca Assessment and Exploration of Vulnerabilities 13

CWE-362 – Example – Banking
1

0
0

0
€

1
0

0
0

€

1
0

0
€

8
0

0
€

Initial balance: 1000€
Total transferred out: 1100€
Final balance: 800€
Result: Bank lost 700€

Time

GetBalance()

GetBalance()

$nb = $balance-200

$nb = $balance-900

SetNewBalanceToDB($nb)

SetNewBalanceToDB($nb)

João Paulo Barraca Assessment and Exploration of Vulnerabilities 14

Serializability

Serializability is the classical concurrency scheme.
◦ It ensures that a schedule for executing concurrent transactions is equivalent to one that

executes the transactions serially in some order.
◦ It assumes that all accesses to the database are done using read and write operations.

◦ A schedule is called ``correct'' if we can find a serial schedule that is ``equivalent'' to it.

Given a set of transactions, two schedules of these transactions are
equivalent if the following conditions are satisfied:
◦ Read-Write Synchronization: If a transaction reads a value written by another

transaction in one schedule, then it also does so in the other schedule.

◦ Write-Write Synchronization: If a transaction overwrites the value of another
transaction in one schedule, it also does so in the other schedule.

João Paulo Barraca Assessment and Exploration of Vulnerabilities 15

Serializability

9 8 7 6 5 4 3 2 1

Table A

Table B

João Paulo Barraca Assessment and Exploration of Vulnerabilities 16

Serializability

Table A

Table B

9

8

7

6

5

4

3

2 1

João Paulo Barraca Assessment and Exploration of Vulnerabilities 17

Database ACID characteristic

Database operation provides ACID characteristics
◦ Atomicity: All operations either occur or fail and are treated as single instructions

◦ Consistency: Any rules set (cascades, indexes, triggers) are correctly executed

◦ Isolation: Concurrent behavior shall be the same as sequential behavior

◦ Durability: Changes are persisted and shall not be lost, even with a DMBS crash

Caveat:
◦ In the banking scenario, each access (GetBalance, SetNewBalanceToDB) follows ACID, but

the database has no knowledge (or control) over the additional logic

Databases provide notions additional mechanisms to enforce ACID with
macro operations

João Paulo Barraca Assessment and Exploration of Vulnerabilities 18

Database ACID characteristic

Locks: DBMS provide the capability for applications to lock the state
◦ Only a single set of operations may be executed, while others must wait
◦ There may be a distinction between read locks and write locks

Versioning: DBMS advance DB state as versions and differences
◦ Read operations do not change state and can be executed
◦ Write operations can only be executed from the last persisted version
◦ Concurrent operations may require a refresh before commit

Transactions: DBMS create a context for a set of macro operations
◦ Software can operate over the context (READ, WRITE, etc…)
◦ The state then is discarded (rollback if required) or committed
◦ Commit is atomic.

João Paulo Barraca Assessment and Exploration of Vulnerabilities 19

Locks

Table A

Table B

9

8

7

6

5

4

3

2 1

João Paulo Barraca Assessment and Exploration of Vulnerabilities 20

Transactions

Table A

Table B

Transaction

Transaction

Transaction

João Paulo Barraca Assessment and Exploration of Vulnerabilities 21

CWE-362 – Example – Banking - Transaction

BeginTransaction();
$transfer_amount = GetTransferAmount();
$balance = GetBalance();

if ($transfer_amount < 0) {
EndTransaction();
FatalError("Bad Transfer Amount");

}

$nb = $balance - $transfer_amount;
if (($balance - $transfer_amount) < 0) {

EndTransaction();
FatalError("Insufficient Funds");

}

SetNewBalanceToDB($nb);
CommitTransaction();
NotifyUser("Transfer of $transfer_amount succeeded.");
NotifyUser("New balance: $newbalance");

DB Operations are queued
Queue is discarded or committed atomically

João Paulo Barraca Assessment and Exploration of Vulnerabilities 22

CWE-362 – Example – Banking - Lock

LockDB();
$transfer_amount = GetTransferAmount();
$balance = GetBalance();

if ($transfer_amount < 0) {
UnLockDB();
FatalError("Bad Transfer Amount");

}

$nb = $balance - $transfer_amount;
if (($balance - $transfer_amount) < 0) {

UnLockDB();
FatalError("Insufficient Funds");

}

SetNewBalanceToDB($nb);
UnLockDB();
NotifyUser("Transfer of $transfer_amount succeeded.");
NotifyUser("New balance: $newbalance");

DB is locked.
No other operations take place

João Paulo Barraca Assessment and Exploration of Vulnerabilities 23

CWE-362 – Example – Banking - Versioning

GetVersion();
$transfer_amount = GetTransferAmount();
$balance = GetBalance();

if ($transfer_amount < 0) {
FatalError("Bad Transfer Amount");

}

$nb = $balance - $transfer_amount;
if (($balance - $transfer_amount) < 0) {

FatalError("Insufficient Funds");
}

SetNewBalanceToDB($nb);
Commit();
NotifyUser("Transfer of $transfer_amount succeeded.");
NotifyUser("New balance: $newbalance");

DB version is acquired.
Commit may FAIL if another change took

place

João Paulo Barraca Assessment and Exploration of Vulnerabilities 24

CWE-362 – Example – Threads

// Global

shared_object_t data;

void update_data(char* cookie) {

// Manipulate global data object

}

João Paulo Barraca Assessment and Exploration of Vulnerabilities 25

CWE-366 – Threads

// Global

shared_object_t data;

void update_data(char* cookie, pthread_mutex_t * mutex) {

pthread_mutex_lock(mutex);

// Manipulate global data object

pthread_mutex_unlock(mutex);

}

Direct solution:
protect changes with

a mutex

João Paulo Barraca Assessment and Exploration of Vulnerabilities 26

CWE-366 – Threads

// Global

shared_object_t data;

void update_data(char* cookie, pthread_mutex_t * mutex) {

pthread_mutex_lock(mutex);

// Manipulate global data object

pthread_mutex_unlock(mutex);

}

Developer assumes
lock/unlock always

work

João Paulo Barraca Assessment and Exploration of Vulnerabilities 27

João Paulo Barraca Assessment and Exploration of Vulnerabilities 28

CWE-362 – Race Condition – Isolated Ops

X86_64: i++ with gcc
◦ add DWORD PTR [rbp-4], 1

X86_64: i++ with clang
◦ mov edi, dword ptr [rbp - 8]
◦ add edi, 1
◦ mov dword ptr [rbp - 8], edi

ARM: i++
◦ ldr r3, [fp, #-8]
◦ add r3, r3, #1
◦ str r3, [fp, #-8]

Developer thinks: i++ is a single operation

In reality… it depends, and varies with the architecture

Still (generic behavior)
• Value of “i" must be available (previous logic)
• Value must be fetched from RAM to Cache

• Page must be addressed and then loaded
• MMUs and other systems are used

• Value must be fetched from cache to Register
• Register as to be increased
• Result must be stored in Cache
• Result shall be committed to RAM

João Paulo Barraca Assessment and Exploration of Vulnerabilities 29

CWE-367 - TOCTOU

Time-Of-Check, Time-Of-Use

The software checks the state of a resource (TOC) before using that resource,

but the resource's state can change between the check and the use (TOU) in
a way that invalidates the results of the check.

This can cause the software to perform invalid actions when the resource is in
an unexpected state.

João Paulo Barraca Assessment and Exploration of Vulnerabilities 30

CWE-367 - TOCTOU

if os.access(filename):

headers = {“Authorization: “ + getAuth(username)}

f = open(filename, ‘r’)

data = f.read()

f.close()

requests.post(URL, data=data, headers=headers)

João Paulo Barraca Assessment and Exploration of Vulnerabilities 31

CWE-367 - TOCTOU

if os.access(filename):

headers = {“Authorization: “ + getAuth(username)}

f = open(filename, ‘r’)

data = f.read()

f.close()

requests.post(URL, data=data, headers=headers)

TOC

TOU

João Paulo Barraca Assessment and Exploration of Vulnerabilities 32

CWE-367 - TOCTOU

if os.access(filename):

headers = {“Authorization: “ + getAuth(username)}

f = open(filename, ‘r’)

data = f.read()

f.close()

requests.post(URL, data=data, headers=headers)

TOC

TOU

Vulnerability
Window

João Paulo Barraca Assessment and Exploration of Vulnerabilities 33

CWE-367 – TOCTOU attack

TOC TOU

program run with elevated privileges (setuid)
filename = data.txt

Access: Use the real uid/gid to test for access to path.

Open: Opens file using the effective uid/gid

os.access(filename) f = open(filename)

Vulnerability Window

rm data.txt ln –s /etc/shadow data.txt

Result
Program will upload /etc/shadow

João Paulo Barraca Assessment and Exploration of Vulnerabilities 34

CWE-367 - TOCTOU

And the list goes on…

if user_exists_in_db(username):

user = get_user(username)

Should be

user = get_user(username) #get_user makes a single query

TOC

TOU

Vulnerability
Window

João Paulo Barraca Assessment and Exploration of Vulnerabilities 35

CWE-367 – TOCTOU – Bad Logic

Some logic mistakes can create implicit TOCTOU errors
◦ Not attacks, but software mistakes

f = open(“file.txt”, “w”)

some code that does os.unlink(“file.txt”) by mistake

or the file is deleted externally

f.write(data)

f.close()

Write is works, but nothing will be
on disk!

João Paulo Barraca Assessment and Exploration of Vulnerabilities 36

CWE-365: Race Condition in Switch

The switch instruction is inherently dangerous as the expected behavior is
very different from the actual behavior

switch(a){

case 0: foo(); break;

case 1: bar(); break;

..

case n: zed(); break;

}

Expected

1. Evaluate the value of “a”

2. Execute the function

João Paulo Barraca Assessment and Exploration of Vulnerabilities 37

CWE-365: Race Condition in Switch

The switch instruction is inherently dangerous as the expected behavior is
very different from the actual behavior

switch(a){

case 0: foo(); break;

case 1: bar(); break;

..

case n: zed(); break;

}

Reality

1. Compare the value of “a” with one
option and execute if true

2. Compare the value of “a” with another
option and execute if true

3. ….

João Paulo Barraca Assessment and Exploration of Vulnerabilities 38

CWE-365: Race Condition in Switch

The switch instruction is inherently dangerous as the expected behavior is
very different from the actual behavior

switch(a){

case 0: foo(); break;

case 1: bar(); break;

..

case n: zed(); break;

}

Issue

1. “a” can change between comparisons

2. “a” may be matched to an incorrect
function

3. “a” may not be matched!

João Paulo Barraca Assessment and Exploration of Vulnerabilities 39

CWE-365: Race Condition in Switch

int f(int num) {

int a = num;

switch(a){

case 0: foo(); break;

case 1: bar(); break;

case 3: zed(); break;

}

}

test eax, eax

je .LBB3_1

jmp .LBB3_5

.LBB3_5:

mov eax, dword ptr [rbp - 16]

sub eax, 1

je .LBB3_2

jmp .LBB3_6

.LBB3_6:

mov eax, dword ptr [rbp - 16]

sub eax, 3

je .LBB3_3

jmp .LBB3_4

.LBB3_1:

call foo()

jmp .LBB3_4

.LBB3_2:

call bar()

jmp .LBB3_4

.LBB3_3:

call zed()

João Paulo Barraca Assessment and Exploration of Vulnerabilities 40

CWE-365: Race Condition in Switch

int f(int num) {

int a = num;

switch(a){

case 0: foo(); break;

case 1: bar(); break;

case 3: zed(); break;

}

}

test eax, eax

je .LBB3_1

jmp .LBB3_5

.LBB3_5:

mov eax, dword ptr [rbp - 16]

sub eax, 1

je .LBB3_2

jmp .LBB3_6

.LBB3_6:

mov eax, dword ptr [rbp - 16]

sub eax, 3

je .LBB3_3

jmp .LBB3_4

.LBB3_1:

call foo()

jmp .LBB3_4

.LBB3_2:

call bar()

jmp .LBB3_4

.LBB3_3:

call zed()

a is evaluated

João Paulo Barraca Assessment and Exploration of Vulnerabilities 41

TOCTOU

In practice, TOCTOU is extremely prevalent
◦ dependent on system performance

◦ Higher performance will make vuln. windows smaller, but the attacker may have similar resources if running locally

◦ dependent on target CPU architectures, compilers and flags
◦ The code produced may mask the vulnerability

◦ hard to debug dynamically
◦ Behavior under a debugger will be different

◦ Subject to small timings

Prevention
◦ Assert that actions are serialized as expected: may require lower layer knowledge
◦ Force serialization manually (for DBs and other shared objects)
◦ If possible, send macro ops to systems (whole transactions) which lock resources at source
◦ Reduce the use of filenames to a single call, then use File Descriptors

João Paulo Barraca Assessment and Exploration of Vulnerabilities 42

Exercise

Take the bank.zip package available at elearning and install the dependencies:
◦ pip3 install --user cherrypy

Run the server: python3 server.py

Run the client: python3 client.py
◦ The client will withdraw $10 from an account initialized with $10000
◦ 256 clients are started, each withdrawing $10
◦ If everything is ok: $2560 will be removed, final balance is $7440

Check the balance at http://127.0.0.1:8080 and analyze the file log.txt
◦ Example of a text run: Final balance is $9940 and $2560 was withdrawn. Bank lost $2500.

Can you fix the code? Where is the problem? How can it be fixed?
◦ Remember: locks, transactions, versioning, etc… try ☺

http://127.0.0.1:8080/

João Paulo Barraca Assessment and Exploration of Vulnerabilities 43

Covert Channels and Discrepancies

CWE-514: A covert channel is a path that can be used to transfer information in a
way not intended by the system's designers.

Some relation to Time and State issues as External State can be determined from
observation of side effects, or internal state

CWE-515: Covert Storage Channel

CWE-385: Covert Timing Channel

CWE-203: Observable Discrepancy

João Paulo Barraca Assessment and Exploration of Vulnerabilities 44

Covert Timing Channel

Covert timing channels convey information
◦ by modulating some aspect of system behavior over time
◦ so that the program receiving the information can observe system behavior and infer protected

information

Covert channels are long used to exfiltrate information from systems
◦ Modulate system response time, packet interval, etc..

But undesirable Cover Timing Channels can be present due to flaws
◦ Unknown to the developer/sysadmin
◦ But perceived to the attacker, allowing attackers to guess state from timing discrepancies

Covert channels can be limited and reduced of usefulness
◦ Can be prevent in specific cases, especially time based
◦ Covert channels for malicious purposes can not be avoided altogether

João Paulo Barraca Assessment and Exploration of Vulnerabilities 45

Covert Timing Channel
Code checks if two passwords are the same

◦ First the length
◦ Then byte comparison, exiting on first unmatching byte

Provides a covert channel making it possible to guess
the password

Same password: 0.710 usecs

Different length: 0.147 usecs

First byte wrong: 0.366 usecs

Second byte wrong: 0.401 usecs

Last byte wrong: 0.656 usecs

Solutions may consider:
◦ Different logic
◦ Making functions time constant
◦ Adding random delay (delay should be dominant)

def validate_password(actual_pw, typed_pw):

if len(actual_pw) != len(typed_pw):
return False

for i in range(len(actual_pw)):
if actual_pw[i] != typed_pw[i]:

return False

return False

def validate_password(actual_pw, typed_pw):

time.sleep(random() / 100) # Throw random time

if len(actual_pw) != len(typed_pw):
return False

for i in range(len(actual_pw)):
if actual_pw[i] != typed_pw[i]:
return False

return False

João Paulo Barraca Assessment and Exploration of Vulnerabilities 46

Covert Channel

Some covert channels are created by physical
interactions

◦ Keyboards, smartphones

◦ Typing creates patterns due to hand anatomy and keyboard
layout

◦ Touching a smartphone to enter a code produces small axis
rotations

Some covert chanels are inherent to the protocol
operation

◦ Delay between packets can help discriminate a VPN from VoIP
◦ VoIP produces packets with constant packet intervals

◦ A download has a request upstream, many packets with
content downstream, and a few Acks upstream Timing Analysis of Keystrokes and Timing Attacks on SSH

João Paulo Barraca Assessment and Exploration of Vulnerabilities 47

João Paulo Barraca Assessment and Exploration of Vulnerabilities 48

Microarchitectural Covert Channels

Since 2017 a new class of bugs was published which exploits microarchitectural
behavioral changes
◦ Related to the access mechanisms to RAM by the CPU
◦ Potentiated by speculative and out of order execution mechanisms in present CPUs

General strategy: measure timing differences accessing resources, which will
provide information about private data
◦ Resources are memory pages, memory addresses in the program address space or outside it

Impact:
◦ Attacker can read memory content from other parts of process space, or even kernel space
◦ Attacker can also read memory from other VMs, processes, maybe enclaves…
◦ Can be explored remotely through network card drivers

◦ In the beginning even Javascript engines were vulnerable

João Paulo Barraca Assessment and Exploration of Vulnerabilities 49

Meltdown Type

Affected systems include most Intel CPUs since 1995
◦ Also some ARM and PowerPC, AMD Phenom, EPYC, ZEN

IEEE Spectrum

João Paulo Barraca Assessment and Exploration of Vulnerabilities 50

Meltdown

The problem:
◦ Out of order execution implies that instructions will be executed before they should
◦ Executing future operations causes side effects to the present

Basic algorithm:
1. Allocate a 256*4096 chunk of memory

◦ 256 because the objective is to find the value of a byte, which can have a value from 0 to 256
◦ Because pages are not accessed, they exist in RAM but not in cache
◦ There is a timing cover channel present as access cache is faster than accessing RAM

2. Create an exception
3. Read byte from the target memory (outside the scope of the program)
4. Multiply byte by 4096
5. Use value to access the memory allocated in 1

Test code: https://github.com/IAIK/meltdown

João Paulo Barraca Assessment and Exploration of Vulnerabilities 51

Meltdown – information sender

(2) will block execution
◦ (3-5) are not expected to be executed
◦ But they are….

(5) will cause a page to be loaded in the
cache
◦ The page will be dependent on the value of

the byte accessed (due to (4-5))

The presence of a page on cache
constitutes a timing covert channel
◦ Time to access this page will be lower than

the time to access other pages

1. Allocate a 256*4096 chunk of memory
2. Create an exception
3. Read secret byte from the target memory

(outside the scope of the program)
4. Multiply byte by 4096
5. Use value to access the memory allocated

in 1

João Paulo Barraca Assessment and Exploration of Vulnerabilities 52

Meltdown – information receiver

Attack is dependent on accurate timing
◦ Reducing the granularity of timers mitigates

the attack to some extent
◦ Other applications executing will add entropy
◦ May require some training to acquire the

most adequate timing

Any memory address can be accessed
◦ But only a byte can be exfiltrated at once
◦ Addresses are virtual and not actual RAM

addresses

Original work achieved 500kb/s

1. Catch exception
2. Loop through array of allocated pages
3. Measure time to access each page
4. Page with lower access time corresponds

to value of secret byte

João Paulo Barraca Assessment and Exploration of Vulnerabilities 53

Meltdown – Information Sender

; rcx = kernel address, rbx = probe array

xor rax, rax

retry:

mov al, byte [rcx]

shl rax, 0xc

jz retry

mov rbx, qword [rbx + rax]

Access a byte at an invalid address (out of of the virtual address space)
raising an exception

Multiply by 4096 in order to access a specific page

Access a position in our array. Position is a page dependent on
the value of read from the target memory

João Paulo Barraca Assessment and Exploration of Vulnerabilities 54

Meltdown – information receiver

//Sender:

char *kernel = 0x1000;

char secret = kernel[10]; //Will raise an exception and secret is never set

//Receiver

for (int i=0; i < 256; i++) {

t1 = now();

char dummy = probe[i * 4096];

t2 = now();

accessTimes[i] = t2-t1;

}

João Paulo Barraca Assessment and Exploration of Vulnerabilities 55

char dummy = userspace[10 * 4096];

char dummy = userspace[kernel[17] * 4096];

João Paulo Barraca Assessment and Exploration of Vulnerabilities 56

Spectre

Similar to Meltdown but exploring different flaws
◦ Meltdown explores an exception, expecting that following instructions are still executed, causing

side effects which can be measured

Spectre explores branch predictors
1. Train branch predictor so that CPU predict a positive branch (that is, doesn’t branch)
2. Execute a condition that will fail

1. Code inside that condition will be executed speculatively and result will be discarded

2. Timing side effects will be present in the cache lines

3. Proceed as with meltdown

Doesn’t generate any exception, can be explore by remote attackers
◦ Javascript in browsers
◦ Network drivers when processing packets

João Paulo Barraca Assessment and Exploration of Vulnerabilities 57

Spectre

João Paulo Barraca Assessment and Exploration of Vulnerabilities 58

Mitigating Spectre and Meldown

For remotely exposed systems (browsers, network), limiting the accuracy of
timers is a quick solution
◦ Although the vulnerability exists, data exfiltration will not be possible

For local systems, microcode and kernel updates are required
◦ Adding barriers to exceptions, preventing speculative execution

◦ Generating bytecode not presenting an attack potential

Problem… new variants are being presented, exploring an ever increasing
surface

João Paulo Barraca Assessment and Exploration of Vulnerabilities 59

João Paulo Barraca Assessment and Exploration of Vulnerabilities 60

Mitigating Spectre and Meldown

