
João Paulo Barraca Assessment and Exploration of Vulnerabilities 1

Buffer issues - Heap
JOÃO PAULO BARRACA

João Paulo Barraca Assessment and Exploration of Vulnerabilities 2

Heap Overflow

➢ Heap is used to store dynamically allocated variables
▪ Allocation: malloc, calloc and new (C++), release: free or delete (C++)

➢ Call reserves a chunk and returns a pointer to the buffer
▪ buffer: (8 + (n / 8)*8 bytes)
▪ If chunk is free data will have:

▪ Forward Pointer (4 bytes), pointer to next free chunk

▪ Backwards Pointer (4 bytes), pointer to previous free chunk

▪ Headers used for housekeeping
▪ Previous Chunk Size (previous chunk is free), 4 bytes

▪ Chunk Size + flags, 4 bytes

▪ Flags
▪ 0x01 PREV_INUSE – set when previous chunk is in use

▪ 0x02 IS_MMAPPED – set if chunk was obtained with mmap()

▪ 0x04 NON_MAIN_ARENA – set if chunk belongs to a thread arena

prev size

size

buffer

prev size

size

buffer

prev size

size

buffer

João Paulo Barraca Assessment and Exploration of Vulnerabilities 3

Heap Overflow: overflow.c

➢ Overflow/underflow will write/read over control structures and
then data
▪ Control structures are implementation specific

▪ As well as reuse and actual buffer location

int main(int argc, char **argv) {
char *buf1 = (char *) malloc(BUFSIZE);
char *buf2 = (char *) malloc(BUFSIZE);
memset(buf1, 0, BUFSIZE); //Clear data
memset(buf2, 0, BUFSIZE);

printf("Buf2: %s\n", buf2); //Should print “Buf2: “
strcpy(buf1, argv[1]);
printf("Buf2: %s\n", buf2); //Should print “Buf2: “

}

prev size

size

buffer

prev size

size

buffer

prev size

size

buffer

João Paulo Barraca Assessment and Exploration of Vulnerabilities 4

Heap Overflow: dangling.c

➢ Dangling references can give access to memory
▪ Both for read and write purposes

➢ Access to buf1 should be denied: it isn’t

➢ Access to buf1 should not give access to other ranges: it gives to buf2

char *buf1 = (char *) malloc(BUFSIZE*100); //Allocate buffer
memset(buf1, 'U', BUFSIZE); //Fill it with 0x55
free(buf1); //Free the memory

char *buf2 = (char *) malloc(BUFSIZE); //Allocate new buffer
memset(buf2, 'A', BUFSIZE); //Fill it with 0x41

printf("%s\n", buf1); //buf1 was freed

prev size

size

buffer

prev size

size

buffer

prev size

size

buffer

João Paulo Barraca Assessment and Exploration of Vulnerabilities 5

Chunks

➢Chunks are structures to provide the program with data storage
▪They are composed by a payload and metadata.

▪The actual content varies if the chunk is free of used

▪Managed by malloc/free

João Paulo Barraca Assessment and Exploration of Vulnerabilities 6

Arenas

➢Malloc allows for more than one region of memory to be active at a
time.

➢Different threads can access different regions of memory without
interfering with each other.
▪ Interference may require mutex locks, which is expensive

➢ These regions of memory are collectively called "arenas".
▪Applications start with a “Main area”
▪New threads will use another arenas
▪ If too many arenas are created, malloc will reuse existing arenas (max is 8xCPUs)

➢Arenas have heaps where memory is allocated from
▪Memory is mmaped to the heaps as the program requires more memory

João Paulo Barraca Assessment and Exploration of Vulnerabilities 7

Arenas

João Paulo Barraca Assessment and Exploration of Vulnerabilities 8

Bins

➢Glibc has lists of recently freed chunks
▪Each list (bin) stores chunks with a specific size

▪Blocks are reused in future allocations if size is compatible
▪ Great for performance as the memory is already reserved

▪ Horrible for security as dangling pointers will give a view to memory areas

➢Bins are also used to detect double free
▪We cannot free a chunk that rests at the top of the bin

▪Which is great for security as a double free could corrupt the linked list

João Paulo Barraca Assessment and Exploration of Vulnerabilities 9

Other bins

➢ Unsorted: stores chunks rapidly without taking in consideration their size
▪Malloc will later consolidade these chunks into other bins

➢ largebins: stores large chunks from the unsorted bins
▪ Chunks in the unsorted bins are coaleshed into larger chunks and stored here
▪ Allocation from largebins requires “finding” the “best suited” chunk for a given allocation
▪ Getting a chunk may involve leaving the “remaining” as a new chunk

➢ smallbins: stores small chunks
▪ Usually never contiguous as they are the remaining chunks not coaleshed into larger chunks
▪ Stored in a ordered manner by fixed size
▪ There are 62 small bins for specific sizes

João Paulo Barraca Assessment and Exploration of Vulnerabilities 10

Other bins

https://devel0pment.de/?p=688

João Paulo Barraca Assessment and Exploration of Vulnerabilities 11

fastbins

➢ A set of single linked lists of free chunks with specific sizes
▪ up to 0xb0 bytes

▪ They are consumed from the top, as the logic is minimal.

▪ Chunks are first placed here and later consolidated/processed into other bins

▪ This is meant for fast access of recent chunks (common objects/chunks)
▪ Overlaps with other bins

➢ As a linked list, chunks will point to the next free chunk

➢ LIFO Pattern: Last freed will be first allocated

João Paulo Barraca Assessment and Exploration of Vulnerabilities 12

fastbins

https://devel0pment.de/?p=688

João Paulo Barraca Assessment and Exploration of Vulnerabilities 13

Tcache (Thread Local Cache)

➢ In multi-threaded applications, arena contention is expensive, tcache is the optimization
▪ per-thread cache containing a small collection of chunks which can be accessed without needing to lock an arena

➢ Singly-linked lists, like fastbins, but with links pointing to the payload (user area) not the chunk
header.

➢ Malloc will try to allocate chunks from this
▪ Recent freed chunks, local to the thread
▪ Exploits code locality aspects
▪ Failure will result in using the normal slow path (lock arena, and search for chunks)

João Paulo Barraca Assessment and Exploration of Vulnerabilities 14

Heap Overflow: fastbin attacks

➢ Fast Bin attack explores Bins to get a pointer to an already allocated area
▪ Result is program will have two pointers to the same memory
▪ Especially useful if memory stores dynamic objects with function, as function pointers can be overwritten

▪ The first pointer is legitimate
▪ The second is a shadow pointer

➢ Attack strategy
▪ Allocate at least three buffers (a, b, c) with the same size
▪ To use same bin

▪ free(a), then free(b), then free(a) again
▪ Double freeing a will ensure that the fast bin will have duplicated entries (a)
▪ Bin will have three pointers ready to use: a b a

▪ Allocate three buffers again with the same size.
▪ Result is a legitimate pointer, another legitimate pointer, and a shadow pointer

João Paulo Barraca Assessment and Exploration of Vulnerabilities 15

fastbin attacks

➢ Payload of an used chunk maps to FD and BK pointers of a free chunk

João Paulo Barraca Assessment and Exploration of Vulnerabilities 16

fastbin attacks

➢ Impact: attacker can gain access to
memory region
▪ If victim has chunk a with data and leaks

▪Attacker can fill free list and allocate again

// Allocating 3 buffers
int *a = calloc(1, 8);
int *b = calloc(1, 8);
int *c = calloc(1, 8);

free(a);
free(b);
free(a); //AGAIN!

//Free list now has: a b a

int *d = calloc(1, 8);
int *e = calloc(1, 8);
int *f = calloc(1, 8);

// d will be equal to f

João Paulo Barraca Assessment and Exploration of Vulnerabilities 17

Heap Overflow: overflow.c

➢ Exercise: Observe and document the behavior in both programs
▪dangling.c and overflow.c

▪Use GDB to analyse the addresses
▪ x/10gx address

▪ heap bins

▪ heap chunks

▪What is the impact of writing to a freed pointer?

João Paulo Barraca Assessment and Exploration of Vulnerabilities 18

Countermeasures: ASLR

➢Address Space Layout Randomization (ASLR)
▪Address are dynamic across process execution
▪ Different architectures and configurations apply randomization to different segments

▪ Only Stack is randomized, all segments are randomized

▪Not trivial to predict the address to issue a jump or change memory

➢echo $n > /proc/sys/kernel/randomize_va_space
▪0 = No randomization

▪1 = Conservative Randomization: Stack, Heap, Shared Libs

▪2 = Full Randomization: 1 + memory managed via brk())

João Paulo Barraca Assessment and Exploration of Vulnerabilities 19

Effects of ASLR (WSL1 on Windows 10)

➢ randomize_va_space =2

main: 0x7f80def82189, argc: 0x7fffbfce569c, local: 0x7fffbfce56ac, heap: 0x7fffb8c4b2a0, libc: 0x7f80ded85410
main: 0x7fb811d47189, argc: 0x7fffdbd2928c, local: 0x7fffdbd2929c, heap: 0x7fffd47952a0, libc: 0x7fb811b55410
main: 0x7f95178f0189, argc: 0x7fffee962b7c, local: 0x7fffee962b8c, heap: 0x7fffe67082a0, libc: 0x7f95176f5410

➢ randomize_va_space =1

main: 0x7f1672f77189, argc: 0x7fffe5835f0c, local: 0x7fffe5835f1c, heap: 0x7f1672f7b2a0, libc: 0x7f1672d85410
main: 0x7f6f0aed0189, argc: 0x7fffd8eb4e9c, local: 0x7fffd8eb4eac, heap: 0x7f6f0aed42a0, libc: 0x7f6f0acd5410
main: 0x7f8106545189, argc: 0x7ffff8601bdc, local: 0x7ffff8601bec, heap: 0x7f81065492a0, libc: 0x7f8106355410

➢ randomize_va_space=0

main: 0x8001189, argc: 0x7ffffffee0ec, local: 0x7ffffffee0fc, heap: 0x80052a0, libc: 0x7fffff5f5410
main: 0x8001189, argc: 0x7ffffffee0ec, local: 0x7ffffffee0fc, heap: 0x80052a0, libc: 0x7fffff5f5410
main: 0x8001189, argc: 0x7ffffffee0ec, local: 0x7ffffffee0fc, heap: 0x80052a0, libc: 0x7fffff5f5410

João Paulo Barraca Assessment and Exploration of Vulnerabilities 20

Coutermeasures: PIE

➢ Position Independent Executables
▪Executables compiled such that their base address does not matter, ‘position

independent code’

➢ PIE fully enables ASLR as code can be placed dynamically
▪Must be enabled at compile time!!
▪ gcc –pie –fPIE

➢Breaking ASLR and PIE: Find a reference to some known function
▪Because while addresses change, the change keeps relative distance
▪e.g.: if we know printf is at 0xbf00332, we will know where is system.

João Paulo Barraca Assessment and Exploration of Vulnerabilities 21

ASLR and relative offsets

main: 0x7f80def82189, argc: 0x7fffbfce569c
main: 0x7fb811d47189, argc: 0x7fffdbd2928c
main: 0x7f95178f0189, argc: 0x7fffee962b7c

local: 0x7fffbfce56ac, heap: 0x7fffb8c4b2a0
local: 0x7fffdbd2929c, heap: 0x7fffd47952a0
local: 0x7fffee962b8c, heap: 0x7fffe67082a0

libc: 0x7f80ded85410
libc: 0x7fb811b55410
libc: 0x7f95176f5410

