
João Paulo Barraca Assessment and Exploration of Vulnerabilities 1

Buffer overflows
JOÃO PAULO BARRACA

João Paulo Barraca Assessment and Exploration of Vulnerabilities 2

BO - According to CAPEC-100

➢Targets improper or missing bounds checking on buffer operations
▪ typically triggered by input injected by an adversary.

➢An adversary is able to write past the boundaries of allocated
buffer regions in memory

➢Causes a program crash or potentially redirection of execution as
per the adversaries' choice.
▪Denial of Service

▪ (Remote) Code Execution

João Paulo Barraca Assessment and Exploration of Vulnerabilities 3

BO - Scope

➢CWE-119 is extremely broad as there are many types of BO

➢Characteristics of a BO
▪Type of access: Read or Write

▪Type of memory: stack, heap

▪Location: before or after the buffer

▪Reason: iteration, copy, pointer arithmetic, memory clear, mapping

João Paulo Barraca Assessment and Exploration of Vulnerabilities 4

Other Direct Child CWEs

CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE-125 Out-of-bounds Read

CWE-466 Return of Pointer Value Outside of Expected Range

CWE-786 Access of Memory Location Before Start of Buffer

CWE-787 Out-of-bounds Write

CWE-788 Access of Memory Location After End of Buffer

CWE-805 Buffer Access with Incorrect Length Value

CWE-822 Untrusted Pointer Dereference

CWE-823 Use of Out-of-range Pointer Offset

CWE-824 Access of Uninitialized Pointer

CWE-825 Expired Pointer Dereference

João Paulo Barraca Assessment and Exploration of Vulnerabilities 5

Relevant CWEs with specific types

CWE-120: Classic Buffer Overflow: copy without checking the size of the input

CWE-121: Stack-based Buffer Overflow: overwrite over data in the Stack Segment

CWE-122: Heap-based Buffer Overflow: overwrite over data in the Heap Segment

CWE-123: Write-what-where Condition: ability to write to any memory of choice

CWE-124: Buffer Underwrite ('Buffer Underflow’): Write to memory before the buffer

CWE-126: Buffer Over-read: Read after the buffer ends (e.g., using an index)

CWE-127: Buffer Under-read: Read before the buffer start (e.g., using an index)

João Paulo Barraca Assessment and Exploration of Vulnerabilities 6

Popularity at NVD

João Paulo Barraca Assessment and Exploration of Vulnerabilities 7

Popularity decline

➢Better tools to check for the vulnerability
▪Static/Dynamic Code analysis

➢Dissemination of bound checking mechanisms in compilers
▪Standard in most distributions and enabled by default

▪Still lacking in embedded devices

➢ Increasingly higher adoption of higher layer languages
▪Extensive use and Open Sources libraries improves security

▪Security focused languages such as Rust

João Paulo Barraca Assessment and Exploration of Vulnerabilities 8

Potentially Vulnerable Software

➢Any software that gets information from external sources
▪Sockets, PIPEs and other IPC

▪Files

▪Program arguments

▪Environment Variables

➢Software developed in languages with direct memory access
▪Mostly C and C++ (or at least with most devastating impact)

▪But also: Go when using “unsafe”, PHP, Python, Java, etc…

João Paulo Barraca Assessment and Exploration of Vulnerabilities 9

Dominant prevalence

➢Anything that was made in a language with access to memory
▪Server software packages (nginx, apache, mysql, …)

➢Embedded and IoT devices
▪Due to lack of compiler support

▪Due to lack of hardware capabilities

João Paulo Barraca Assessment and Exploration of Vulnerabilities 10

… in python

bo_1.py

message = "Hello World"

buffer = [None] * 10

print(message)

for i in range(15):

buffer[i] = 'A'

print(message)

$ python3 bo_1.py

Hello World

Traceback (most recent call last):

File "bo_1.py", line 7, in <module>

buffer[i] = 'A'

IndexError: list assignment index out of
range

João Paulo Barraca Assessment and Exploration of Vulnerabilities 11

… in C

#include <stdio.h>

void main(int argc, char* argv[]){

char message[] = "Hello World";

int buffer[5];

int i;

printf("%s\n", message);

for(i = 0;i < 15; i++) {

buffer[i] = 'A';

}

printf("%s\n", message);

}

./bo_1

Hello World

AAAAAAAAAAAAAAAd AAAAAAAAAAd

João Paulo Barraca Assessment and Exploration of Vulnerabilities 12

Vulnerabilities in languages (mostly C/C++)

➢ Not memory safe: programmers can read/write memory freely and are not constrained by the address
or size of the variables

▪ Great flexibility, but huge risk as mistakes lead to accessing memory that otherwise should not be accessed

▪ C/C++ compilers have freedom to optimize code and even sometimes undefined behavior

➢ Memory safe languages intercept such errors, raising errors
▪ Program will crash (DoS), but impact is limited

// Correct usage
printf("%d\n", *value);

// Reading memory after the variable
printf("%d\n", *(value + 4));

// Reading memory before the variable
printf("%d\n", *(value - 4));

João Paulo Barraca Assessment and Exploration of Vulnerabilities 13

Vulnerabilities in languages (mostly C/C++)

➢ Not memory safe: programmers can read/write memory freely and are not constrained by the address
or size of the variables

▪ Great flexibility, but huge risk as mistakes lead to accessing memory that otherwise should not be accessed

▪ C/C++ compilers have freedom to optimize code and even sometimes undefined behavior

➢ Memory safe languages intercept such errors, raising errors
▪ Program will crash (DoS), but impact is limited

// Correct usage
printf("%d\n", *value);

// Reading memory after the variable
printf("%d\n", *(value + 4));

// Reading memory before the variable
printf("%d\n", *(value - 4));

$./not_memory_safe
42
0
32767

João Paulo Barraca Assessment and Exploration of Vulnerabilities 14

Vulnerabilities in languages (mostly C/C++)

➢ Not type safe: memory content can be reinterpreted as required by the programmer
▪ Casts may be arbitrarily allowed and not checked

➢ Type safe languages do not allow reinterpretation, or only safe reintrepertation
▪ Cast a byte to int is safe, a buffer to int is not.

int value = 42;

// Correct usage
printf("%d\n", value);

// Cast to variable with different storage
printf("%f\n", *((double*) &value));

// Cast to variable with different size
printf("%llu\n", *((unsigned long long*) &value));

João Paulo Barraca Assessment and Exploration of Vulnerabilities 15

Vulnerabilities in languages (mostly C/C++)

➢ Not type safe: memory content can be reinterpreted as required by the programmer
▪ Casts may be arbitrarily allowed and not checked

➢ Type safe languages do not allow reinterpretation, or only safe reinterpretation
▪ Cast a byte to int is safe, a buffer to int is not.

int value = 42;

// Correct usage
printf("%d\n", value);

// Cast to variable with different storage
printf("%f\n", *((double*) &value));

// Cast to variable with different size
printf("%llu\n", *((unsigned long long*) &value));

$./not_type_safe
42
0.000000
1170988679674462250

João Paulo Barraca Assessment and Exploration of Vulnerabilities 16

Vulnerabilities in languages (mostly C/C++)

➢ Dynamically allocated memory has no implicit management mechanism
▪Programmer must allocate and deallocate all memory

▪Programmer must know how memory was allocated

▪Programmer must free memory only after there is no other reference

char* buffer = (char*) malloc(10);
char* str = buffer;

free(buffer);

// Write after free (and write beyond buffer)
memcpy(str, "Hello World!!!!", 15);
// Read after free (and read beyond buffer)
printf("%s\n", str);

$./dynamic_memory
Hello World!!!!

João Paulo Barraca Assessment and Exploration of Vulnerabilities 17

Why? Memory Structure 101

➢ Kernel organizes memory in pages
▪Typically 4096 bytes

➢ Processes operate in a Virtual Memory Space
▪Mapped to real pages, which can be in RAM or Swapped

➢ Kernel splits program in several segments
▪ Increases security
▪ segment based permissions

▪ Increases performance
▪ some are dynamic: invalidated when program terminates
▪ some are static: can be retained, speed repeated startup

João Paulo Barraca Assessment and Exploration of Vulnerabilities 18

Memory Structure

➢ SS: Local variables and execution flow

➢ Shared Libraries: .so/dlls loaded.
▪ Addresses are shared between programs

➢ Heap: memory allocated with malloc/new

➢ BSS: Global Variables

➢ Data: Constants

➢ Code: Actual instructions

Stack
grows top->bottom

…

Shared Libraries

Heap
grows bottom->top

malloc(sizeof(int))

BSS
Unitialized global variables (char a[5])

Data
Constant variables (const int i = 0)

Code
Program Code

…

Data Segment (DS)

Code Segment (CS)

Stack Segment (SS)

0xfffffff

0x00000000

…

João Paulo Barraca Assessment and Exploration of Vulnerabilities 19

mem.c (available in course web page)

➢Simple program showing the memory map of itself

➢Features:
▪Prints the address of objects of different types
▪ Argument

▪ Dynamic memory with malloc

▪ Global Variable

▪ Constant

▪ Function

▪Prints the memory maps as exposed in /proc/self/maps
▪Creates a recursive function and prints the address of local variables
▪Crashes with a Stack Overflow

João Paulo Barraca Assessment and Exploration of Vulnerabilities 20

mem.c

Internal Variables (Page = 4096)

&argc = bfeb8590 -> stack = bfeb8000

malloc = 08435008 -> heap = 08435000

bssvar = 0804a034 -> bss = 0804a000

cntvar = 08048920 -> const = 08048000

&main = 0804865c -> text = 08048000

Stack

Libraries

Heap

BSS

Data

Code

0xFFFFFFFF
Top of memory

Start of Memory
0x00000000

João Paulo Barraca Assessment and Exploration of Vulnerabilities 21

mem.c

Content of /proc/self/maps

08048000-08049000 r-xp 00000000 08:01 26845750 /home/s/mem

08049000-0804a000 r--p 00000000 08:01 26845750 /home/s/mem

0804a000-0804b000 rw-p 00001000 08:01 26845750 /home/s/mem

08435000-08456000 rw-p 00000000 00:00 0 [heap]

b7616000-b7617000 rw-p 00000000 00:00 0

b7617000-b776a000 r-xp 00000000 08:01 1574823 /lib/tls/i686/cmov/libc-2.11.1.so

b776a000-b776b000 ---p 00153000 08:01 1574823 /lib/tls/i686/cmov/libc-2.11.1.so

b776b000-b776d000 r--p 00153000 08:01 1574823 /lib/tls/i686/cmov/libc-2.11.1.so

b776d000-b776e000 rw-p 00155000 08:01 1574823 /lib/tls/i686/cmov/libc-2.11.1.so

b776e000-b7771000 rw-p 00000000 00:00 0

b777e000-b7782000 rw-p 00000000 00:00 0

b7782000-b7783000 r-xp 00000000 00:00 0 [vdso]

b7783000-b779e000 r-xp 00000000 08:01 1565567 /lib/ld-2.11.1.so

b779e000-b779f000 r--p 0001a000 08:01 1565567 /lib/ld-2.11.1.so

b779f000-b77a0000 rw-p 0001b000 08:01 1565567 /lib/ld-2.11.1.so

bfe99000-bfeba000 rw-p 00000000 00:00 0 [stack]

Stack

Libraries

Heap

BSS

Data

Code

0xFFFFFFFF
Top of memory

Start of Memory
0x00000000

João Paulo Barraca Assessment and Exploration of Vulnerabilities 22

mem.c

Stack evolution:
foo [000]: &argc = bfeb8140 -> stack = bfeb8000
foo [001]: &argc = bfdb8110 -> stack = bfdb8000
foo [002]: &argc = bfcb80e0 -> stack = bfcb8000
foo [003]: &argc = bfbb80b0 -> stack = bfbb8000
foo [004]: &argc = bfab8080 -> stack = bfab8000
foo [005]: &argc = bf9b8050 -> stack = bf9b8000
foo [006]: &argc = bf8b8020 -> stack = bf8b8000
foo [007]: &argc = bf7b7ff0 -> stack = bf7b7000
foo [008]: &argc = bf6b7fc0 -> stack = bf6b7000
Segmentation fault

Stack

Libraries

Heap

BSS

Data

Code

0xFFFFFFFF
Top of memory

Start of Memory
0x00000000

Stack grows downwards

João Paulo Barraca Assessment and Exploration of Vulnerabilities 23

Stack organization

➢ Stack is organized by frames, one for each
function call
▪ Memory reserved for the function to use as it requires

➢ Each stack frame stores:
▪ Return Information

▪ Local Variables

▪ Arguments to following functions (x32: all, x64: +5th)

void main(){
foo();

}

void foo(){
bar();

}

João Paulo Barraca Assessment and Exploration of Vulnerabilities 24

Stack organization

➢ Stack is organized by frames, one for each
function call
▪ Memory reserved for the function to use as it requires

➢ Each stack frame stores:
▪ Return Information

▪ Local Variables

▪ Arguments to following functions

João Paulo Barraca Assessment and Exploration of Vulnerabilities 25

Stack organization

➢ Return information has 2 major objectives
▪ Chaining frames as new functions are called

▪ Return to the next instruction after the function ends

➢ Frame chaining
▪ When a function is called, the address of the current stack

frame (Register RBP in x64) is push to the frame

▪ When the function ends, RBP is popped
▪ Caller function has it’s frame restored

➢ Function chaining
▪ When a function is called, the address of the next instruction

is push to the stack (RIP register)

▪ When a function ends, that address is popped
▪ Execution resumes at the caller function

RIP

RBP

RIP

RBP

João Paulo Barraca Assessment and Exploration of Vulnerabilities 26

mem_local.c (available in course web page)

➢ Prints the address to several variables
▪ Local variables declared in the main function

▪ Arguments passed to the foo function

▪ Local variables in the foo function

char foo(int a,){
char local_a = 3;
char buffer[16];
int local_b = 5;

printf(“%p\n”, &a);
printf(“%p\n”, &local_a);
printf(“%p\n”, &buffer);
printf(“%p\n”, &local_b);

buffer[0] = local_a;
return buffer[0];

}

int main(int argc, char* argv[]){
printf(“%p\n”, &argc);
printf(“%p\n”, argv);

return foo(argc);
}

main
argc : 0x7fffd6baeddc
argv : 0x7fffd6baeed8

foo
a : 0x7fffd6baed8c
local_a: 0x7fffd6baed9b
buffer : 0x7fffd6baeda0
local_b: 0x7fffd6baed9c

João Paulo Barraca Assessment and Exploration of Vulnerabilities 27

mem_local.c – Conclusions

➢ Stack frame grows from higher addresses to
lower addresses
▪ Main has variables at 0xbaedb.

▪ Foo has variables at 0xbaed6-8.

char foo(int a,){
char local_a = 3;
char buffer[16];
int local_b = 5;

printf(“%p\n”, &a);
printf(“%p\n”, &local_a);
printf(“%p\n”, &buffer);
printf(“%p\n”, &local_b);

buffer[0] = local_a;
return buffer[0];

}

int main(int argc, char* argv[]){
printf(“%p\n”, &argc);
printf(“%p\n”, argv);

return foo(argc);
}

main
argc : 0x7fffd6baeddc
argv : 0x7fffd6baeed8

foo
a : 0x7fffd6baed8c
local_a: 0x7fffd6baed9b
buffer : 0x7fffd6baeda0
local_b: 0x7fffd6baed9c

João Paulo Barraca Assessment and Exploration of Vulnerabilities 28

mem_local.c – Conclusions

➢ Declaration order doesn’t matter!

➢ Compiler will place variables are he seems adequate
▪ Will keep information aligned

▪ May create empty spaces

▪ May deploy additional protection mechanisms (canaries)

char foo(int a,){
char local_a = 3;
char buffer[16];
int local_b = 5;

printf(“%p\n”, &a);
printf(“%p\n”, &local_a);
printf(“%p\n”, &buffer);
printf(“%p\n”, &local_b);

buffer[0] = local_a;
return buffer[0];

}

int main(int argc, char* argv[]){
printf(“%p\n”, &argc);
printf(“%p\n”, argv);

return foo(argc);
}

main
argc : 0x7fffd6baeddc
argv : 0x7fffd6baeed8

foo
a : 0x7fffd6baed8c
local_a: 0x7fffd6baed9b (3rd)
buffer : 0x7fffd6baeda0 (1st)
local_b: 0x7fffd6baed9c (2nd)

João Paulo Barraca Assessment and Exploration of Vulnerabilities 29

mem.c

Stack evolution:
foo [000]: &argc = bfeb8140 -> stack = bfeb8000
foo [001]: &argc = bfdb8110 -> stack = bfdb8000
foo [002]: &argc = bfcb80e0 -> stack = bfcb8000
foo [003]: &argc = bfbb80b0 -> stack = bfbb8000
foo [004]: &argc = bfab8080 -> stack = bfab8000
foo [005]: &argc = bf9b8050 -> stack = bf9b8000
foo [006]: &argc = bf8b8020 -> stack = bf8b8000
foo [007]: &argc = bf7b7ff0 -> stack = bf7b7000
foo [008]: &argc = bf6b7fc0 -> stack = bf6b7000
Segmentation fault

Stack

Libraries

Heap

BSS

Data

Code

0xFFFFFFFF
Top of memory

Start of Memory
0x00000000

Stack grows downwards

Q: How much can it grow?

João Paulo Barraca Assessment and Exploration of Vulnerabilities 30

mem.c

Stack evolution:
foo [000]: &argc = bfeb8140 -> stack = bfeb8000
foo [001]: &argc = bfdb8110 -> stack = bfdb8000
foo [002]: &argc = bfcb80e0 -> stack = bfcb8000
foo [003]: &argc = bfbb80b0 -> stack = bfbb8000
foo [004]: &argc = bfab8080 -> stack = bfab8000
foo [005]: &argc = bf9b8050 -> stack = bf9b8000
foo [006]: &argc = bf8b8020 -> stack = bf8b8000
foo [007]: &argc = bf7b7ff0 -> stack = bf7b7000
foo [008]: &argc = bf6b7fc0 -> stack = bf6b7000
Segmentation fault

Stack

Libraries

Heap

BSS

Data

Code

0xFFFFFFFF
Top of memory

Start of Memory
0x00000000

Stack grows
downwards1. Until a limit imposed by the SO is reached. Ex:

- glibc i386, x86_64 7.4 MB
- Tru64 5.1 5.2 MB
- Cygwin 1.8 MB
- Solaris 7..10 1 MB
- MacOS X 10.5 460 KB
- AIX 5 98 KB
- OpenBSD 4.0 64 KB
- HP-UX 11 16 KB

2. Until vital memory is overwritten
- …mostly in embedded devices

João Paulo Barraca Assessment and Exploration of Vulnerabilities 31

CWE-120 Classic Overflow

➢Given an input buffer, data is copied without checking its size
▪ If destination buffer is larger than input data, nothing bad happens
▪ If destination buffer is smaller than input data, memory is overwritten

➢ Impact: memory is overwritten
▪Mostly affects local variables
▪May change the execution flow
▪ Change of local control variables

▪ Change of stored Instruction Pointer

▪May be used to inject external code

➢Solution: take in consideration the size of the destination buffer!

João Paulo Barraca Assessment and Exploration of Vulnerabilities 32

Classic Overflow – prog 1

➢ Description:
▪ Reads the username from the command line

▪ Input is stored in variable username

▪ Variable can hold strings up to 31 chars
▪ Why 31 and not 32?

▪ gets functions has no limit on input size

▪ printf will print the content

➢ Shows a simple write beyond boundaries
▪ printf also shows a read beyond boundaries

//classic/prog_1.c
//gcc –O0 –fno-stack-protector –o prog_1 prog_1.c

#include <stdio.h>

int main() {
char username[32];
puts("username:");
gets(username);
printf("Welcome %s!\n", username);
return 0;

}

João Paulo Barraca Assessment and Exploration of Vulnerabilities 33

Classic Overflow – prog 1

➢ Reading more than 31 chars will result in
overwriting the memory after the username

▪ There are no other variables, so this will be stack
structures (addressed later)

➢ printf will print chars up to 0x00,
potentially printing program memory

▪ Function is insecure as there are no explicit
boundaries except the actual string content

//classic/prog_1.c
//gcc –O0 –fno-stack-protector –o prog_1 prog_1.c

#include <stdio.h>

int main() {
char username[32];
puts("username:");
gets(username);
printf("Welcome %s!\n", username);
return 0;

}

João Paulo Barraca Assessment and Exploration of Vulnerabilities 34

Exercise: classic/prog 1

➢ Install gef: pip3 install --user gdb-gef

➢ Compile the binary: gcc -g -O0 -fno-stack-protector -o prog_1 prog_1.c

➢ Analyze the execution with different payloads
▪ Print register: p $rsp or variable address p &username

▪ Check stack information: info frame

➢ Determine
▪ What is the stack base address?

▪ Where is the return information?

▪ How many bytes can be entered without overflow?

▪ How many bytes can be written without damage?

▪ What happens when an overflow is achieved?

João Paulo Barraca Assessment and Exploration of Vulnerabilities 35

João Paulo Barraca Assessment and Exploration of Vulnerabilities 36

➢ What is the stack base address?
▪ info frame: 0x7ffffffedf50
▪ p $rbp: 0x7ffffffedf40

➢ Where is the return information?
▪ Just before $rbp

➢ How many bytes can be entered without overflow?
▪ sizeof(username) - 1

➢ How many bytes can be written without damage?
▪ 32
▪ It could have been different due to empty space

➢ What happens when an overflow is achieved?
▪ Saved $BP is overwritten and then Saved $PC is overwritten
▪ In this case, 31 ‘a’ were provided and an additional \0 was added at .. edf38

Saved $BP
Saved $PC

João Paulo Barraca Assessment and Exploration of Vulnerabilities 37

Classic Overflow – classic/prog_2

➢ Flow:
▪ Asks for username and password

▪ Validates credentials

▪ Asks for message

▪ If user authenticated, access is granted

➢ Issues:
▪ Several uncontrolled reads

▪ All variables may overwrite other

➢ Demonstrates overwrite of local variables
▪ Each vulnerable variable may overwrite others

above

int main() {
char allowed = 0;
char password[8];
char username[8];
char message[32];

puts("username:");
gets(username);
puts("password:");
gets(password);
allowed = strcmp("admin", username) + \

strcmp("topsecrt", password);

puts("message:");
gets(message);

printf("user=%s pass=%s result=%d\n", username, \
password, allowed);

if(allowed == 0)
printf("Access granted. Message sent!\n");

else
printf("Access denied\n");

return 0;
}

João Paulo Barraca Assessment and Exploration of Vulnerabilities 38

Classic Overflow – classic/prog_2

➢ Variable order will determine how it can
be exploited

▪ Implementation dependent

➢ message is the prime suspect as it is
written after the evaluation is done

➢ Can also change an internal decision (flow
inside the function) by writing over the
allowed variable

int main() {
char allowed = 0;
char password[8];
char username[8];
char message[32];

puts("username:");
gets(username);
puts("password:");
gets(password);
allowed = strcmp("admin", username) + \

strcmp("topsecrt", password);

puts("message:");
gets(message);

printf("user=%s pass=%s result=%d\n", username, \
password, allowed);

if(allowed == 0)
printf("Access granted. Message sent!\n");

else
printf("Access denied\n");

return 0;
}

João Paulo Barraca Assessment and Exploration of Vulnerabilities 39

Memory grows from top to bottom

message can be used to overwrite everything!!!

Classic Overflow – classic/prog_2
p &allowed

0x7ffffffedf2f

p &username

0x7ffffffedf1f

p &password

0x7ffffffedf27

p &message

0x7ffffffedef0

message username password

allowed

João Paulo Barraca Assessment and Exploration of Vulnerabilities 40

Exercise: classic/prog 2

➢ Compile the binary: gcc -g -O0 -fno-stack-protector –o prog_2 prog_2.c

➢ Analyze the execution with different payloads
▪ Print register: p $rsp or variable address p &username

▪ Check stack information: info frame

➢ Determine
▪ What is the stack base address?

▪ Where is the return information?

▪ How many bytes can be entered to the message without overflow?

▪ How many bytes can be written without damage?

▪ What happens when an overflow is achieved?

▪ How can the decision be subverted?

João Paulo Barraca Assessment and Exploration of Vulnerabilities 41

CWE-126: Buffer Over-read

➢ The software reads from a buffer and reference memory locations after the
targeted buffer.
▪ using buffer access mechanisms such as indexes or pointers

➢ Impact: Allows access to otherwise private data

➢ Most common with:
▪ Casts between structures with different sizes
▪ Copy of data without considering the actual size, assuming a general size
▪ Copy of data based on corrupted metadata
▪ Erasure of \0 in null terminated strings

João Paulo Barraca Assessment and Exploration of Vulnerabilities 42

Buffer Over-read – overread1.c

➢ Program flow:
▪ Program reads a string without boundary checks

▪ Memory is manipulated

▪ A message is printed

➢ Demonstrates a read beyond bounds with
printf

➢ Impact: private data (message) is
disclosed to users

int main(int argc, char* argv[]){
char message[32];
char buffer[8];

printf("Password: ");
gets(buffer);

sprintf(message, "Secret message");

if(strcmp(buffer, "password") == 0) {
printf("%s\n", message);

}else{
printf("Password %s is incorrect\n", buffer);

}
}

João Paulo Barraca Assessment and Exploration of Vulnerabilities 43

Buffer Over-read – overread1

➢Vulnerability:
▪ In some situations, the password may

overflow the buffer, and further
memory operations erase the \0
character

▪Further printf of a message will
include additional memory

int main(int argc, char* argv[]){
char message[32];
char buffer[8];

printf("Password: ");
gets(buffer);

sprintf(message, "Secret message");

if(strcmp(buffer, "password") == 0) {
printf("%s\n", message);

}else{
printf("Password %s is incorrect\n", buffer);

}
}

João Paulo Barraca Assessment and Exploration of Vulnerabilities 44

Buffer Over-read – overread1

➢Exercise: Determine what conditions trigger the vulnerability, and
what is the impact.

➢Write overflow

➢Memory manipulation erase end of string (\0)

➢Read overflow

password

password message

Message printed

João Paulo Barraca Assessment and Exploration of Vulnerabilities 45

➢ Program Flow
▪ Receives a message to a buffer

▪ Prints the buffer

▪ Returns the buffer through the socket

➢ Vulnerability:
▪ Send doesn’t respect buffer sizes and will use a buffer larger than expected

▪ printf has no notion of string size and will print everything up to \0

➢ Impact: existing memory contents will be sent to clients

Buffer Over-read – server.c

while(1){
n = recvfrom(sockfd, buffer, 32, NULL, &cliaddr, &len);
printf("%s\n", buffer);
sendto(sockfd, buffer, MESSAGE_SIZE, NULL, &cliaddr, len);

}

João Paulo Barraca Assessment and Exploration of Vulnerabilities 46

Buffer Over-read – server.c

➢Exercise: Determine what conditions trigger the vulnerability, and
what is the impact.

➢Variable structure:

Buffer Received

Buffer Sent

Buffer printer

João Paulo Barraca Assessment and Exploration of Vulnerabilities 47

Stack Overflow

João Paulo Barraca Assessment and Exploration of Vulnerabilities 48

Stack Based Vulnerabilities

➢Stack can be subverted to conduct attacks
▪ it contains local variables (which store user injected data)

▪the program execution flow is kept in the stack

➢Mostly:
▪Denial of Service: program crashes

▪Memory disclosure: attacker gains access to previous frames

▪Change program flow

▪ Injection of malicious code

RIP

RBP

RIP

RBP

João Paulo Barraca Assessment and Exploration of Vulnerabilities 49

Stack Based Vulnerabilities

➢Recap…

➢Local variables will overwrite others
▪Can change data stored

▪Can lead to local memory disclosure

▪Can change local decisions if they depend of stored data

RIP

RBP

RIP

RBP

João Paulo Barraca Assessment and Exploration of Vulnerabilities 50

Stack Based Vulnerabilities

➢Recap…

➢Local variables will overwrite others
▪Can change data stored

▪Can lead to local memory disclosure

▪Can change local decisions if they depend of stored data

➢Further writing will overwrite flow information
▪ If done blindly, program will crash (why?)

➢ It affects frames from previous functions

RIP

RBP

RIP

RBP

João Paulo Barraca Assessment and Exploration of Vulnerabilities 51

Stack Smashing

➢ What about writing the correct values to the stack?
▪ Some value to RBP
▪ An address belonging to the process in RIP

➢ Well… when the message ends the flow will be restored
▪ That is… stored RBP and stored RIP are loaded into the registers
▪ The stack frame will start at RBP
▪ Program jump to the address in RIP

➢ If the addresses aren’t in a mapped area, program will receive
a SIGSEV

RIP

RBP

João Paulo Barraca Assessment and Exploration of Vulnerabilities 52

Stack: program_flow.c

➢ Program flow:
▪Reads data from file

▪Calls foo function with size and buffer

▪foo has an overflowing memcpy

▪secret function is never called

➢ Attack: Overflow the buffer
▪ writing over stored $RBP

▪ writing over stored $RIP, placing &secret there

➢ Consider ASLR to be disabled

void secret(){
printf("Secret message\n");
exit(0);

}
char foo(int size, char* arg){

char buffer[8];
memcpy(buffer, arg, size);
return buffer[0];

}
int main(int argc, char* argv[]){

char buffer[64];
printf("%p\n", &secret);

FILE *fp = fopen(argv[1], "r");
int size = fread(buffer, 1, 64, fp);
fclose(fp);

foo(size, buffer);
return 0;

}

João Paulo Barraca Assessment and Exploration of Vulnerabilities 53

Stack: program_flow.c

➢Main stack

➢Foo stack
▪ Stored program flow

▪buffer[8]

➢ Secret has no stack!

RIP

RBP

void secret(){
printf("Secret message\n");
exit(0);

}
char foo(int size, char* arg){

char buffer[8];
memcpy(buffer, arg, size);
return buffer[0];

}
int main(int argc, char* argv[]){

char buffer[64];
printf("%p\n", &secret);

FILE *fp = fopen(argv[1], "r");
int size = fread(buffer, 1, 64, fp);
fclose(fp);

foo(size, buffer);
return 0;

}

João Paulo Barraca Assessment and Exploration of Vulnerabilities 54

Stack: program_flow.c

➢Attack strategy
▪Overwrite buffer over RBP/RIP

➢ How to find the addresses?
▪ If we have the source code:
printf(“%p\n”, secret);

▪ If we don’t: gdb or bruteforce

RIP

RBP

void secret(){
printf("Secret message\n");
exit(0);

}
char foo(int size, char* arg){

char buffer[8];
memcpy(buffer, arg, size);
return buffer[0];

}
int main(int argc, char* argv[]){

char buffer[64];
printf("%p\n", &secret);

FILE *fp = fopen(argv[1], "r");
int size = fread(buffer, 1, 64, fp);
fclose(fp);

foo(size, buffer);
return 0;

}

João Paulo Barraca Assessment and Exploration of Vulnerabilities 55

Stack: program_flow.c

$./program_flow payload

0x8001209

$ gdb program_flow payload

gdb$ br main

gdb$ run

gdb$ print &secret

gdb$ 5 = (void (*)()) 0x8001209
<secret>

Value to inject
program vs gdb

may yield different
values!

void secret(){
printf("Secret message\n");
exit(0);

}
char foo(int size, char* arg){

char buffer[8];
memcpy(buffer, arg, size);
return buffer[0];

}
int main(int argc, char* argv[]){

char buffer[64];
printf("%p\n", &secret);

FILE *fp = fopen(argv[1], "r");
int size = fread(buffer, 1, 64, fp);
fclose(fp);

foo(size, buffer);
return 0;

}

João Paulo Barraca Assessment and Exploration of Vulnerabilities 56

Stack Smashing – program_flow.c
void secret(){

printf("Secret message\n");
exit(0);

}
char foo(int size, char* arg){

char buffer[8];
memcpy(buffer, arg, size);
return buffer[0];

}
int main(int argc, char* argv[]){

char buffer[64];
printf("%p\n", &secret);

FILE *fp = fopen(argv[1], "r");
int size = fread(buffer, 1, 64, fp);
fclose(fp);

foo(size, buffer);
return 0;

}

➢Typical flow

Local variables RBP RIP

João Paulo Barraca Assessment and Exploration of Vulnerabilities 57

void secret(){
printf("Secret message\n");
exit(0);

}
char foo(int size, char* arg){

char buffer[8];
memcpy(buffer, arg, size);
return buffer[0];

}
int main(int argc, char* argv[]){

char buffer[64];
printf("%p\n", &secret);

FILE *fp = fopen(argv[1], "r");
int size = fread(buffer, 1, 64, fp);
fclose(fp);

foo(size, buffer);
return 0;

}

Stack: program_flow.c

➢Flow subverted to secret()

RBP RIPLocal variables

João Paulo Barraca Assessment and Exploration of Vulnerabilities 58

Stack: program_flow.c

$ program_flow payload

0x8001209

Secret message

With the correct
payload, secret() is

called

void secret(){
printf("Secret message\n");
exit(0);

}
char foo(int size, char* arg){

char buffer[8];
memcpy(buffer, arg, size);
return buffer[0];

}
int main(int argc, char* argv[]){

char buffer[64];
printf("%p\n", &secret);

FILE *fp = fopen(argv[1], "r");
int size = fread(buffer, 1, 64, fp);
fclose(fp);

foo(size, buffer);
return 0;

}

Q: What payload?

João Paulo Barraca Assessment and Exploration of Vulnerabilities 59

Stack: return_to_libc.c Stack

Libraries

Heap

BSS

Data

Code

➢ Instead of returning to a program function it is
possible to jump to other locations
▪ In theory, any segment allocated to the program
▪ In practice, permission mechanisms limit the available

segments

➢Segments for libraries have several generic libraries
▪ In particular: system()
▪ Is mostly executable

➢Stack can be executable
▪but it isn’t on recent systems

João Paulo Barraca Assessment and Exploration of Vulnerabilities 60

Stack: return_to_libc.c

➢Typical Flow

➢Return to libc
▪Build “fake” Stack frame and call system() with one argument
▪ Argument is the command to execute (e.g. a reverse shell)

▪Must take in consideration calling convention
▪ Which is architecture dependent

Local variables RBP RIP main Function args Local variables RBP RIP libc

João Paulo Barraca Assessment and Exploration of Vulnerabilities 61

Local variables

Stack: return_to_libc.c (32bits)

➢Arguments are passed in the stack
▪Approach: store values to the stack so that system is called with a payload
▪ Then call system

buffer RBP
RIP

system
Payload: /bin/sh\0 RBP RIP libc

Return from
System

System() in Libraries

pointer to
payload

João Paulo Barraca Assessment and Exploration of Vulnerabilities 62

Countermeasures: Data Executable Prevention

➢Non Executable Stack (NX) (Data Executable Prevention)
▪Most binaries do not allow running code from Stack

▪Stack segments are marked as Non Executable (NX bit)
▪ code cannot jump to it

▪ Return to lib-c attack not possible

➢ Introduced in recent OS, but can be disabled
▪Not ubiquitous on embedded devices

▪Binaries must opt-in!

João Paulo Barraca Assessment and Exploration of Vulnerabilities 63

Countermeasures: Canaries

➢Uses references values after local variables to detect overflow
▪Value is placed when the function starts

▪Value is compared before function exits

▪Program is interrupted if values do not match

➢Stack canaries:

Local variables RBP RIP main Function argsCanaries

João Paulo Barraca Assessment and Exploration of Vulnerabilities 64

Countermeasures: Canaries
Without Canaries

push rbp
mov rbp, rsp
sub rsp, 16
lea rax, -10[rbp]
mov rsi, rax
lea rdi, .LC0[rip]
mov eax, 0
call __isoc99_scanf@PLT
lea rax, -10[rbp]
mov rdi, rax
call puts@PLT
nop
leave
ret

With Canaries

push rbp
mov rbp, rsp
sub rsp, 32
mov rax, QWORD PTR fs:40
mov QWORD PTR -8[rbp], rax
xor eax, eax
lea rax, -18[rbp]
mov rsi, rax
lea rdi, .LC0[rip]
mov eax, 0
call __isoc99_scanf@PLT
lea rax, -18[rbp]
mov rdi, rax
call puts@PLT
nop
mov rax, QWORD PTR -8[rbp]
xor rax, QWORD PTR fs:40
je .L2
call __stack_chk_fail@PLT

L2:
leave
ret

Gets value from fs:40
Stores value at rbp-8 (inside

stack frame)

Fetches value
Xor with reference at fs:40

Exit or crash

João Paulo Barraca Assessment and Exploration of Vulnerabilities 65

Countermeasures: Canaries

➢ -fno-stack-protector: disables stack protection. (What we have been using)

➢ -fstack-protector: enables stack protection for vulnerable functions that contain:
▪ A character array larger than 8 bytes.
▪ An 8-bit integer array larger than 8 bytes.
▪ A call to alloca() with either a variable size or a constant size bigger than 8 bytes.

➢ -fstack-protector-strong: enables stack protection for vulnerable functions that
contain:

▪ An array of any size and type.
▪ A call to alloca().
▪ A local variable that has its address taken.

➢ -fstack-protector-all: adds stack protection to all functions regardless of their
vulnerability.

João Paulo Barraca Assessment and Exploration of Vulnerabilities 66

Stack: return_to_libc.c (x86_64)

➢x64: first arguments are passed in register: RDI, RSI, RDX, RCX
▪Approach: load RDI with address of string, jump to system address

▪Problems: cannot jump to stack (due to NX)

➢ Improved:
▪Search any code that loads RDI from stack
▪ we can control what is in the stack but we cannot execute code from it

▪ jump to code that loads RDI from stack

▪Jump to system

João Paulo Barraca Assessment and Exploration of Vulnerabilities 67

ROP

➢ Return Oriented Programming: Execute code already present in the program.
▪ Each snippet is composed by some instructions + RET

▪ RET pops RIP from the stack

➢ Program flow is controlled by values in the stack
▪ Attacker puts values in stack pointing to gadgets

▪ When a gadget ends, the code jumps to the next gadget

➢ Any program can be constructed as long as there are gadgets available
▪ When Good Instructions Go Bad: Generalizing Return-Oriented Programming to RISC [1] - Buchanan, E.;

Roemer, R.; Shacham, H.; Savage, S.

▪ Return-Oriented Programming: Exploits Without Code Injection [2] - Shacham, Hovav; Buchanan, Erik;
Roemer, Ryan; Savage, Stefan.

João Paulo Barraca Assessment and Exploration of Vulnerabilities 68

ROP

➢ROP Attacks: Chain gadgets to execute malicious code.

➢A gadget is a suite of instructions which end by the branch
instruction ret (Intel) or the equivalent on ARM.

Intel examples:
pop eax ; ret
xor ebx, ebx ; ret

➢Objective: Use gadgets instead of classical shellcode

ARM examples:
pop {r4, pc}
str r1, [r0] ; bx lr

João Paulo Barraca Assessment and Exploration of Vulnerabilities 69

ROP

➢Because x86 instructions aren't aligned, a gadget can contain
another gadget.

➢Doesn't work on RISC architectures like ARM, MIPS, SPARC...

f7c7070000000f9545c3 → test edi, 0x7 ; setnz byte ptr [rbp-0x3d] ;
c7070000000f9545c3 → mov dword ptr [rdi], 0xf000000 ; xchg ebp, eax ; ret

João Paulo Barraca Assessment and Exploration of Vulnerabilities 70

João Paulo Barraca Assessment and Exploration of Vulnerabilities 71

ROP

➢ Using ROP, stack is subverted to create a
jump sequence. It contains:
▪ Values to be loaded

▪ Addresses to other gadgets

▪ May also contain arguments to functions called

➢ Gadgets are present in program code and
loaded libraries
▪ Each function available provides one gadget

▪ Plus misaligned access

➢ Why?
▪ It can bypass several security mechanisms

João Paulo Barraca Assessment and Exploration of Vulnerabilities 72

João Paulo Barraca Assessment and Exploration of Vulnerabilities 73

Stack: return_to_libc.c (x86_64)

➢ Payload strategy:
▪All addresses are 8 bytes
▪Buffer: padding with 16 bytes (buffer + RBP)
▪Gadget address: ?? -> rop --search “pop rdi; ret”
▪ pop RDI: load command address into RDI

▪ ret: load system address into RIP

▪Command address: ?? -> grep /bin/sh
▪ Approaches: Find a string already in RAM (better); add the payload after the system address (if required)

▪ System address: ?? -> print system

buffer RBP
Gadget
address

Local variables RBP RIP libc
Command

address
System
address

Command to be
executed (optional)

João Paulo Barraca Assessment and Exploration of Vulnerabilities 74

João Paulo Barraca Assessment and Exploration of Vulnerabilities 75

Stack: return_to_libc.c (x86_64)

➢ Payload strategy:
▪All addresses are 8 bytes
▪Buffer: padding with 16 bytes (buffer + RBP)
▪Gadget address: 0x00401383
▪ pop RDI: load command address into RDI

▪ ret: load system address into RIP

▪Command address: 0x7fffff7575aa
▪ Approaches: Find a string already in RAM (better); add the payload after the system address (if required)

▪ System address: 0x7fffff5f5410

buffer RBP
Gadget
address

Local variables RBP RIP libc
Command

address
System
address

Command to be
executed (optional)

João Paulo Barraca Assessment and Exploration of Vulnerabilities 76

Stack: return_to_libc.c (x86_64)

➢ In some systems, stack must be aligned to 16 bytes and our ROP
chain isn’t…
▪Result is a crash in instruction movaps

➢Solution: add another gadget with only a ret (will pop a value)
▪Gadget 1: 0x00401384 ; ret

▪Gadget 2: 0x00401383 ; pop rdi;ret

buffer RBP
Gadget2
address

RBP RIP libc
Command

address
System
address

Command to be
executed (optional)

Gadget1
address

João Paulo Barraca Assessment and Exploration of Vulnerabilities 77

Stack: return_to_libc.c (x86_64)

➢Exercise: build a ROP chain and get a shell in the program
▪ It may be useful to disable ASLR for now
▪ In gef: aslr off

▪ System wide (as root): echo 0 > /proc/sys/kernel/randomize_va_space

▪Document the payload

➢Exercise: build a ROP chain to start a remote shell
▪Document the payload and the differences from the previous

João Paulo Barraca Assessment and Exploration of Vulnerabilities 78

ROP Variants

➢ JOP: Jump Oriented Programming
▪https://www.comp.nus.edu.sg/~liangzk/papers/asiaccs11.pdf

➢SOP: Jump Oriented Programming
▪https://www.lst.inf.ethz.ch/research/publications/PPREW_2013/PPREW_2013.p

df

➢BROP: Blind Return Oriented Programming
▪http://www.scs.stanford.edu/brop/bittau-brop.pdf

João Paulo Barraca Assessment and Exploration of Vulnerabilities 79

Jump Oriented Programming

➢ Explores small gadgets that end with an indirect JMP with a dispatcher
▪ Indirect jmp: jmp [register]

▪ Is assumed to be more complex to detect and avoid as interaction is restricted to code and registers

▪ Although number of JMP gadgets is smaller, unaligned execution create jumps not previously present in
the code

▪ The program counter is any register

Tyler Bletsch, Xuxian Jiang, Vince W. Freeh , Zhenkai Liang “Jump-Oriented Programming: A New Class of Code-Reuse Attack”, 2011

João Paulo Barraca Assessment and Exploration of Vulnerabilities 80

Jump Oriented Programming

Tyler Bletsch, Xuxian Jiang, Vince W. Freeh , Zhenkai Liang “Jump-Oriented Programming: A New Class of Code-Reuse Attack”, 2011

João Paulo Barraca Assessment and Exploration of Vulnerabilities 81

String Oriented Programming

➢ Makes use of a String format bug
▪ Present in the printf family of functions (printf, vprintf, fprintf)
▪ Correct: printf(“%s”, str);
▪ Vulnerable: printf(str);

➢ Format string attacks read/write arbitrary values to arbitrary memory locations
▪ Explore %p, %n, %s,
▪ Can be used to trigger ROP, JOP attacks by writing values memory
▪ Instead of writing sequential chunks, SOP can issue arbitrary writes.

➢ Two approaches
▪ Direct control flow redirect: Erase return value on stack, jumping to gadget on function end
▪ Indirect control flow redirect: Erase a Global Offset Table entry
▪ GOT keeps addresses to external symbols as resolved by the linker

Mathias Payer, Thomas R. Gross, String oriented programming: when ASLR is not enough”, Proceedings of the 2nd ACM SIGPLAN Program Protection and Reverse Engineering, 2013

João Paulo Barraca Assessment and Exploration of Vulnerabilities 82

Blind Return Oriented Programming

➢Makes it possible to write exploits without possessing the target's
binary.
▪ It requires a stack overflow and a service that restarts after a crash.
▪Based on whether a service crashes
▪ Is able to construct a full remote exploit that leads to a shell.

➢ The attack remotely leaks gadgets to perform the write system call,
after which the binary is transferred from memory to the attacker's
socket.
▪ Following that, a standard ROP attack can be carried out.
▪Apart from attacking proprietary services, BROP is very useful in targeting open-source

software for which the particular binary used is not public

A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, D. Boneh: Hacking Blind. In Oakland 2014.

João Paulo Barraca Assessment and Exploration of Vulnerabilities 83

Blind Return Oriented Programming

➢Makes it possible to write exploits without possessing the target's
binary.
▪ It requires a stack overflow and a service that restarts after a crash.
▪Based on whether a service crashes
▪ Is able to construct a full remote exploit that leads to a shell.

➢ The attack remotely leaks gadgets to perform the write system call,
after which the binary is transferred from memory to the attacker's
socket.
▪ Following that, a standard ROP attack can be carried out.
▪Apart from attacking proprietary services, BROP is very useful in targeting open-source

software for which the particular binary used is not public

A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, D. Boneh: Hacking Blind. In Oakland 2014.

João Paulo Barraca Assessment and Exploration of Vulnerabilities 84

Blind Return Oriented Programming

➢ Looks for specific ROP Gadgets until a specific combination is found

João Paulo Barraca Assessment and Exploration of Vulnerabilities 85

Blind Return Oriented Programming

➢ The BROP attack has the following phases:

1. Stack reading: read the stack to leak canaries and a return address to defeat
ASLR.
Method: overflows varying the last byte. Byte found if app doesn’t crash
512-640 requests required

2. Blind ROP: find enough gadgets to invoke write and control its arguments.
Method: find a Gadget1 that stops the service. Then brute force other gadgets together with
this.
Implement a clever method to identify different gadgets

3. Build the exploit: dump enough of the binary to find enough gadgets to
build a shellcode, and launch the final exploit.
Obtain access to the write call so that the binary can be dumped

João Paulo Barraca Assessment and Exploration of Vulnerabilities 86

Heap Overflow

João Paulo Barraca Assessment and Exploration of Vulnerabilities 87

Heap Overflow

➢ Heap is used to store dynamically allocated variables
▪ Allocation: malloc, calloc and new (C++), release: free or delete (C++)

➢ Call reserves a chunk and returns a pointer to the buffer
▪ buffer: (8 + (n / 8)*8 bytes)
▪ If chunk is free data will have

▪ Forward Pointer (4 bytes), pointer to next free chunk

▪ Backwards Pointer (4 bytes), pointer to previous free chunk

▪ Headers used for housekeeping
▪ Previous Chunk Size (previous chunk is free), 4 bytes

▪ Chunk Size + flags, 4 bytes

▪ Flags
▪ 0x01 PREV_INUSE – set when previous chunk is in use

▪ 0x02 IS_MMAPPED – set if chunk was obtained with mmap()

▪ 0x04 NON_MAIN_ARENA – set if chunk belongs to a thread arena

prev size

size

buffer

prev size

size

buffer

prev size

size

buffer

João Paulo Barraca Assessment and Exploration of Vulnerabilities 88

Heap Overflow: overflow.c

➢ Overflow/underflow will write/read over control structures and
then data
▪ Control structures are implementation specific

▪ As well as reuse and actual buffer location

int main(int argc, char **argv) {
char *buf1 = (char *) malloc(BUFSIZE);
char *buf2 = (char *) malloc(BUFSIZE);
memset(buf1, 0, BUFSIZE); //Clear data
memset(buf2, 0, BUFSIZE);

printf("Buf2: %s\n", buf2); //Should print “Buf2: “
strcpy(buf1, argv[1]);
printf("Buf2: %s\n", buf2); //Should print “Buf2: “

}

prev size

size

buffer

prev size

size

buffer

prev size

size

buffer

João Paulo Barraca Assessment and Exploration of Vulnerabilities 89

Heap Overflow: dangling.c

➢ Dangling references can give access to memory
▪ Both for read and write purposes

➢ Access to buf1 should be denied: it isn’t

➢ Access to buf1 should not give access to other ranges: it gives to buf2

char *buf1 = (char *) malloc(BUFSIZE*100); //Allocate buffer
memset(buf1, 'U', BUFSIZE); //Fill it with 0x55
free(buf1); //Free the memory

char *buf2 = (char *) malloc(BUFSIZE); //Allocate new buffer
memset(buf2, 'A', BUFSIZE); //Fill it with 0x41

printf("%s\n", buf1); //buf1 was freed

prev size

size

buffer

prev size

size

buffer

prev size

size

buffer

João Paulo Barraca Assessment and Exploration of Vulnerabilities 90

Heap Overflow: fastbin.c

➢Glibc has lists of recently freed blocks
▪Each list (bin) stores chunks with a specific size

▪Blocks are reused in future allocations if size is compatible
▪ Great for performance as the memory is already reserved

▪ Horrible for security as dangling pointers will give a view to memory areas

➢Bins are also used to detect double free
▪We cannot free a chunk that rests at the top of the bin

▪Which is great for security as a double free could corrupt the linked list

João Paulo Barraca Assessment and Exploration of Vulnerabilities 91

Heap Overflow: fastbin.c

➢ Fast Bin attack explores Bins to get a pointer to an already allocated area
▪ Result is program will have two pointers to the same memory
▪ Especially useful if memory stores dynamic objects with function, as function pointers can be overwritten

▪ The first pointer is legitimate
▪ The second is a shadow pointer

➢ Attack strategy
▪ Allocate at least three buffers (a, b, c) with the same size
▪ To use same bin

▪ free(a), then free(b), then free(a) again
▪ Double freeing a will ensure that the fast bin will have duplicated entries (a)
▪ Bin will have three pointers ready to use: a b a

▪ Allocate three buffers again with the same size.
▪ Result is a legitimate pointer, another legitimate pointer, and a shadow pointer

João Paulo Barraca Assessment and Exploration of Vulnerabilities 92

Heap Overflow: fastbin.c

➢ Impact: attacker can gain access to
memory region
▪ If victim has chunk a with data and leaks

▪Attacker can fill free list and allocate again

// Allocating 3 buffers
int *a = calloc(1, 8);
int *b = calloc(1, 8);
int *c = calloc(1, 8);

free(a);
free(b);
free(a); //AGAIN!

//Free list now has: a b a

int *d = calloc(1, 8);
int *e = calloc(1, 8);
int *f = calloc(1, 8);

// d will be equal to f

João Paulo Barraca Assessment and Exploration of Vulnerabilities 93

Heap Overflow: overflow.c

➢ Exercise: Observe and document the behavior in both programs
▪dangling.c and overflow.c

▪Use GDB to analyse the addresses

▪What is the impact of writing to a freed pointer?

João Paulo Barraca Assessment and Exploration of Vulnerabilities 94

Countermeasures: ASLR

➢Address Space Layout Randomization (ASLR)
▪Address are dynamic across process execution
▪ Different architectures and configurations apply randomization to different segments

▪ Only Stack is randomized, all segments are randomized

▪Not trivial to predict the address to issue a jump or change memory

➢echo $n > /proc/sys/kernel/randomize_va_space
▪0 = No randomization

▪1 = Conservative Randomization: Stack, Heap, Shared Libs

▪2 = Full Randomization: 1 + memory managed via brk())

João Paulo Barraca Assessment and Exploration of Vulnerabilities 95

Effects of ASLR (WSL1 on Windows 10)

➢ randomize_va_space =2

main: 0x7f80def82189, argc: 0x7fffbfce569c, local: 0x7fffbfce56ac, heap: 0x7fffb8c4b2a0, libc: 0x7f80ded85410
main: 0x7fb811d47189, argc: 0x7fffdbd2928c, local: 0x7fffdbd2929c, heap: 0x7fffd47952a0, libc: 0x7fb811b55410
main: 0x7f95178f0189, argc: 0x7fffee962b7c, local: 0x7fffee962b8c, heap: 0x7fffe67082a0, libc: 0x7f95176f5410

➢ randomize_va_space =1

main: 0x7f1672f77189, argc: 0x7fffe5835f0c, local: 0x7fffe5835f1c, heap: 0x7f1672f7b2a0, libc: 0x7f1672d85410
main: 0x7f6f0aed0189, argc: 0x7fffd8eb4e9c, local: 0x7fffd8eb4eac, heap: 0x7f6f0aed42a0, libc: 0x7f6f0acd5410
main: 0x7f8106545189, argc: 0x7ffff8601bdc, local: 0x7ffff8601bec, heap: 0x7f81065492a0, libc: 0x7f8106355410

➢ randomize_va_space=0

main: 0x8001189, argc: 0x7ffffffee0ec, local: 0x7ffffffee0fc, heap: 0x80052a0, libc: 0x7fffff5f5410
main: 0x8001189, argc: 0x7ffffffee0ec, local: 0x7ffffffee0fc, heap: 0x80052a0, libc: 0x7fffff5f5410
main: 0x8001189, argc: 0x7ffffffee0ec, local: 0x7ffffffee0fc, heap: 0x80052a0, libc: 0x7fffff5f5410

João Paulo Barraca Assessment and Exploration of Vulnerabilities 96

Coutermeasures: PIE

➢ Position Independent Executables
▪Executables compiled such that their base address does not matter, ‘position

independent code’

➢ PIE fully enables ASLR as code can be placed dynamically
▪Must be enabled at compile time!!
▪ gcc –pie –fPIE

➢Breaking ASLR and PIE: Find a reference to some known function
▪Because while addresses change, the change keeps relative distance
▪e.g.: if we know printf is at 0xbf00332, we will know where is system.

João Paulo Barraca Assessment and Exploration of Vulnerabilities 97

ASLR and relative offsets

main: 0x7f80def82189, argc: 0x7fffbfce569c
main: 0x7fb811d47189, argc: 0x7fffdbd2928c
main: 0x7f95178f0189, argc: 0x7fffee962b7c

local: 0x7fffbfce56ac, heap: 0x7fffb8c4b2a0
local: 0x7fffdbd2929c, heap: 0x7fffd47952a0
local: 0x7fffee962b8c, heap: 0x7fffe67082a0

libc: 0x7f80ded85410
libc: 0x7fb811b55410
libc: 0x7f95176f5410

