
João Paulo Barraca Assessment and Exploration of Vulnerabilities 1

XSS
Cross Site Scripting
JOÃO PAULO BARRACA

João Paulo Barraca Assessment and Exploration of Vulnerabilities 2

Prevalence and Detectability

➢Second most prevalent issue in the OWASP Top 10
▪Found in around two thirds of all applications.

➢Automated tools can find some XSS problems automatically
▪particularly in mature technologies: PHP, J2EE / JSP, and ASP.NET.

João Paulo Barraca Assessment and Exploration of Vulnerabilities 3

Impact

➢Moderate for reflected and DOM XSS

➢Severe for stored XSS
▪with remote code execution on the victim’s browser

▪stealing credentials, sessions

▪delivering malware to the victim

João Paulo Barraca Assessment and Exploration of Vulnerabilities 4

João Paulo Barraca Assessment and Exploration of Vulnerabilities 5

Seems to be OK
Input is escaped

João Paulo Barraca Assessment and Exploration of Vulnerabilities 6

Page should be light, not dark!
We are not allowed to have
themes

João Paulo Barraca Assessment and Exploration of Vulnerabilities 7

João Paulo Barraca Assessment and Exploration of Vulnerabilities 8

Reflected XSS

➢ The application or API includes unvalidated and unescaped user input as part of
HTML output
▪That is: the HTML displays a string sent by the user

➢ The attacker will send a malicious link to the victim, pointing to an attacker-
controlled page
▪Through email, posted on a chat, etc..

➢ A successful attack can allow the attacker to execute arbitrary HTML and
JavaScript in the victim’s browser

João Paulo Barraca Assessment and Exploration of Vulnerabilities 9

Reflected XSS

1 - Malicious URL

Attacker

Legit but
vulnerable

External

2 – access webpage
(triggers exploit)

3 – Gets answer with exploit

4 – exploit runs. Attacks server or exfiltrates info

João Paulo Barraca Assessment and Exploration of Vulnerabilities 10

Stored XSS

➢ The application or API stores unsanitized user input
▪ Injected by an attacker

➢ Input is viewed later by another user or an administrator and payload is
executed

➢ Stored XSS is considered a high risk as actions may be executed with
administrator permissions
▪When the site admin access the webpage

João Paulo Barraca Assessment and Exploration of Vulnerabilities 11

Stored XSS

2 – access webpage
(triggers exploit)

3 – Gets answer with exploit

4 – exploit runs. Attacks server or exfiltrates info

João Paulo Barraca Assessment and Exploration of Vulnerabilities 12

DOM XSS

➢Vulnerable apps: JS frameworks, single-page applications, and APIs
that dynamically include external JS
▪Ideally, applications would not send attacker-controllable data to unsafe

JavaScript APIs.

➢Attacker controls remote resource (or injects resource)
▪All aspects of the client facing app may be diverted

João Paulo Barraca Assessment and Exploration of Vulnerabilities 13

DOM XSS

4 – exploit runs. Attacks servers, steals data

João Paulo Barraca Assessment and Exploration of Vulnerabilities 14

Cross Site Request Forgery

➢Attacker subverts client DOM
▪Using a crafted web page

▪Using a vulnerable web page that was subverted

▪Using a XSS attack

➢Client browser issues requests to external server
▪Browser will send cookies authenticating requests

João Paulo Barraca Assessment and Exploration of Vulnerabilities 15

Cross Site Request Forgery

2 – access webpage
(triggers exploit)

3 – Gets answer with exploit

4 – exploit runs.
Attacks other server or exfiltrates info

João Paulo Barraca Assessment and Exploration of Vulnerabilities 16

Avoiding XSS: Synchronizer Tokens

➢ Add hidden tokens to forms so that every post requires the correct token.
▪Token is random and unique for each form
▪ Server-side code verifies if the correct token is provided

➢ Why: If a script makes a direct POST it will not have access to the latest token

<form>

<input type=“text” name=“login”></input>

<input type=“password” name=“password”></input>

<input type="hidden" name="csrf_token" value="KbyUmhTLMpYj7CD2di7JKP1P3qmLlkPt"/>

</form>

João Paulo Barraca Assessment and Exploration of Vulnerabilities 17

Avoiding XSS: Cookie-to-header

➢ Upon the establishment of a session, a cookie with a random value is provided to the client

➢ The JS in the Client gets the cookie and resends the cookie in the header

➢ Why: Assumes that only JS provided on a specific HTTPS connection may access the cookie.
▪ Assumes correct browser behavior
▪ The browser will not let a script called from an external source have access to external cookies
▪ SameSite=Lax will only allow using cookies from same requests (GET, not POST), in a top-level operation
▪ Top level operation: A click or something that changes the location

Server will set:

Set-Cookie: csrf_token=i8XNjC4b8KVok4uw; Expires=some_date; Max-Age=some_age; Path=/; Domain=.site.org;
SameSite=Lax; Secure

JS will call:

GET /index?csrf_token=i8XNjC4b8KVok4uw

João Paulo Barraca Assessment and Exploration of Vulnerabilities 18

Avoiding XSS: SameSite cookie attribute

➢ Setting the SameSite to Strict instructs browser to only provide the cookie to
requests from that site
▪ Similar to Lax, but without exceptions to safe requests

➢ Why: If the SameSite is set, an external script will not have access to the token

Server sets:

Set-Cookie: csrf_token=i8XNjC4b8KVok4uw; Expires=some_date; Max-Age=some_time;
Path=/; Domain=.wikipedia.org; SameSite=Strict; Secure

Legit JS will have access to the cookie, External JS won’t

João Paulo Barraca Assessment and Exploration of Vulnerabilities 19

Avoiding XSS: Double cookie submission

➢Two cookies are used
▪Session Cookie: identifies the user, stable across the session duration

▪CSRF cookie: dynamically changing for each request

➢Why: External requests will not have information about the last
CSRF cookie
▪May allow sites to force a specific interaction sequence as CSRF cookies

may identify the previous location

João Paulo Barraca Assessment and Exploration of Vulnerabilities 20

Same Origin Policy

➢ Sites may require external resources (Cross Origin Resources)
▪Javascripts, Images, Styles

▪However this should be controlled

➢ Current site perspective: where my resources are being loaded from?
▪ Images may be remote, JS should be local, as well as styles…

➢Other sites: who is accessing my resources?
▪ I do not want to be spreading malware (act as a storage for Stored XSS)

João Paulo Barraca Assessment and Exploration of Vulnerabilities 21

Same Origin Policy

➢Web servers may state a header that sets the Same Origin Policy

➢What is Same Origin Policy?
▪SOP restricts how a document or script loaded from one origin can interact with

a resource from another origin

➢ define: origin. In relation to http://store.comp.com/dir/page.html
▪http://store.comp.com/dir2/other.html, Success
▪http://store. comp.com/dir/inner/another.html Success
▪https://store. comp.com/secure.html, Failure - Different protocol
▪http://store. comp.com:81/dir/etc.html, Failure - Different port
▪http://news. comp.com/dir/other.html, Failure Different host

http://store.comp.com/dir2/other.html
http://store.company.com/dir/inner/another.html
http://store.comp.com/dir2/other.html
http://store.company.com/dir/inner/another.html
https://store.company.com/secure.html
http://store.comp.com/dir2/other.html
https://store.company.com/secure.html
http://store.company.com:81/dir/etc.html
http://store.comp.com/dir2/other.html
http://store.company.com:81/dir/etc.html
http://news.company.com/dir/other.html
http://store.comp.com/dir2/other.html
http://news.company.com/dir/other.html

João Paulo Barraca Assessment and Exploration of Vulnerabilities 22

Same Origin Policy

➢Origin is permitted to send data to another origin but not read

➢ Interactions between origins are placed in three categories:
▪ Cross origin writes (redirects, links, form action etc.)

▪Cross origin embedding (html tag with src/hrefs)

▪Cross origin reads (not allowed without CORS etc.)

João Paulo Barraca Assessment and Exploration of Vulnerabilities 23

Same Origin Policy

Cross Origin Embedding

➢ JavaScript <script src="..."></script>.

➢ CSS with <link rel="stylesheet" href="...">.

➢ Images with .

➢ Media files with <video> and <audio> tags.

➢ Plug-ins with <object>, <embed> and <applet>.

➢ Fonts with @font-face.

➢ Anything with <frame> and <iframe>.

João Paulo Barraca Assessment and Exploration of Vulnerabilities 24

Cross Origin Request Sharing

Why is CORS needed?

➢ For legitimate and trusted requests to gain access to authorized data from
other domains
▪Think cross application data sharing models

➢ Allows data to be exchanged with trusted sites while using a relaxed Same
Origin policy mode.

➢ Application APIs exposed via web services and trusted domains require
CORS to be accessible over the SOP

João Paulo Barraca Assessment and Exploration of Vulnerabilities 25

João Paulo Barraca Assessment and Exploration of Vulnerabilities 26

João Paulo Barraca Assessment and Exploration of Vulnerabilities 27

CORS Requests

➢Preflight is not needed if
▪Request is a HEAD/GET/POST via XHR

▪No Custom headers

▪Body is text/plain

➢Server responds with a CORS header
▪ Browser determines access

▪Neither the request, nor response contain cookies

João Paulo Barraca Assessment and Exploration of Vulnerabilities 28

CORS Headers

➢Simple Request
▪Origin: Header set by the client for every CORS request

▪Value is the current domain that made the request

➢ Access-Control-Allow-Origin
▪Set by the server and used by the browser to determine if the response is

to be allowed or not.

▪ Can be set to * to make resources public (bad practice!)

João Paulo Barraca Assessment and Exploration of Vulnerabilities 29

CORS Insecurity

➢Several security issues arise from the improper implementation of
CORS, most commonly using a universal allow notation (*) in the
server headers

➢Clients should not trust the received content completely and eval
or render content without sanitization which could result in
misplaced trust

➢The application that allows CORS may become vulnerable to CSRF
attacks

João Paulo Barraca Assessment and Exploration of Vulnerabilities 30

CORS Insecurity

➢Prolonged caching of Preflight responses could lead to attacks
arising out of abuse of the Preflight Client Cache

➢Access control decisions based on the Origin header could result in
vulnerabilities as this can be spoofed by an attacker

João Paulo Barraca Assessment and Exploration of Vulnerabilities 31

CORS Insecurity: Misplaced Trust

➢Data exchange between two domains is based on trust
▪If one of the servers involved in the exchange of data is compromised, then

the model of CORS is put at risk

➢ Scenarios?
▪An attacker can compromise site A and host malicious content, knowing

site B trusts the data that site A sends to site B.

João Paulo Barraca Assessment and Exploration of Vulnerabilities 32

CORS Insecurity: Access Control based on Origin

➢ The Origin header indicates that the request is from a particular domain, but
does not guarantee it
▪Header can be controlled by the attacker

➢ Spoofing the Origin header allows access to the page if access is based on this
header

➢ Scenarios?
▪An attacker sets the Origin header to view sensitive information that is restricted
▪Using cURL to set a custom origin header: curl --header 'origin:http://someserver.com'

João Paulo Barraca Assessment and Exploration of Vulnerabilities 33

CORS Insecurity: Caching of Preflight responses

➢ The Access-Control-Max-Age header is set to a high value, allowing browsers to
cache Preflight responses
▪ It’s very important for performance reasons
▪But caching the preflight response for longer duration can pose a security risk.

➢ If the access-control policy is changed on the server the browser would still
follow the old policy available in the Preflight Result Cache

➢ Scenario:
▪During updates to sites, the access policy will be out of sync until the cache expires

João Paulo Barraca Assessment and Exploration of Vulnerabilities 34

CORS Insecurity: Universal Allow

➢Setting the 'Access-Control-Allow-Origin' header to *
▪ Effectively turns the content into a public resource, allowing access from

any domain

▪Very common during development, and somewhat during production

➢Scenarios?
▪An attacker can steal data from an intranet site that has set this header to

* by enticing a user to visit an attacker controlled site on the Internet.

▪ An attacker can perform attacks on other remote apps via a victim’s
browser when the victim navigates to an attacker controlled site.

