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XSS
Cross Site Scripting
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Prevalence and Detectability

➢Second most prevalent issue in the OWASP Top 10
▪Found in around two thirds of all applications.

➢Automated tools can find some XSS problems automatically
▪particularly in mature technologies: PHP, J2EE / JSP, and ASP.NET.
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Impact

➢Moderate for reflected and DOM XSS

➢Severe for stored XSS
▪with remote code execution on the victim’s browser

▪stealing credentials, sessions

▪delivering malware to the victim
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Seems to be OK
Input is escaped
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Page should be light, not dark!
We are not allowed to have 
themes 
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Reflected XSS

➢ The application or API includes unvalidated and unescaped user input as part of 
HTML output
▪That is: the HTML displays a string sent by the user

➢ The attacker will send a malicious link to the victim, pointing to an attacker-
controlled page
▪Through email, posted on a chat, etc..

➢ A successful attack can allow the attacker to execute arbitrary HTML and 
JavaScript in the victim’s browser
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Reflected XSS

1 - Malicious URL

Attacker

Legit but
vulnerable

External

2 – access webpage
(triggers exploit)

3 – Gets answer with exploit

4 – exploit runs. Attacks server or exfiltrates info
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Stored XSS

➢ The application or API stores unsanitized user input
▪ Injected by an attacker

➢ Input is viewed later by another user or an administrator and payload is 
executed 

➢ Stored XSS is considered a high risk as actions may be executed with 
administrator permissions
▪When the site admin access the webpage
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Stored XSS

2 – access webpage
(triggers exploit)

3 – Gets answer with exploit

4 – exploit runs. Attacks server or exfiltrates info
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DOM XSS

➢Vulnerable apps: JS frameworks, single-page applications, and APIs 
that dynamically include external JS
▪Ideally, applications would not send attacker-controllable data to unsafe 

JavaScript APIs.

➢Attacker controls remote resource (or injects resource)
▪All aspects of the client facing app may be diverted
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DOM XSS

4 – exploit runs. Attacks servers, steals data
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Cross Site Request Forgery

➢Attacker subverts client DOM
▪Using a crafted web page

▪Using a vulnerable web page that was subverted

▪Using a XSS attack

➢Client browser issues requests to external server
▪Browser will send cookies authenticating requests
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Cross Site Request Forgery

2 – access webpage
(triggers exploit)

3 – Gets answer with exploit

4 – exploit runs. 
Attacks other server or exfiltrates info
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Avoiding XSS: Synchronizer Tokens

➢ Add hidden tokens to forms so that every post requires the correct token.
▪Token is random and unique for each form
▪ Server-side code verifies if the correct token is provided

➢ Why: If a script makes a direct POST it will not have access to the latest token 

<form>

<input type=“text” name=“login”></input>

<input type=“password” name=“password”></input>

<input type="hidden" name="csrf_token" value="KbyUmhTLMpYj7CD2di7JKP1P3qmLlkPt"/>

</form>
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Avoiding XSS: Cookie-to-header

➢ Upon the establishment of a session, a cookie with a random value is provided to the client

➢ The JS in the Client gets the cookie and resends the cookie in the header

➢ Why: Assumes that only JS provided on a specific HTTPS connection may access the cookie.
▪ Assumes correct browser behavior
▪ The browser will not let a script called from an external source have access to external cookies
▪ SameSite=Lax will only allow using cookies from same requests (GET, not POST), in a top-level operation 
▪ Top level operation: A click or something that changes the location

Server will set:

Set-Cookie: csrf_token=i8XNjC4b8KVok4uw; Expires=some_date; Max-Age=some_age; Path=/; Domain=.site.org; 
SameSite=Lax; Secure

JS will call:

GET /index?csrf_token=i8XNjC4b8KVok4uw
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Avoiding XSS: SameSite cookie attribute

➢ Setting the SameSite to Strict instructs browser to only provide the cookie to 
requests from that site
▪ Similar to Lax, but without exceptions to safe requests

➢ Why: If the SameSite is set, an external script will not have access to the token

Server sets:

Set-Cookie: csrf_token=i8XNjC4b8KVok4uw; Expires=some_date; Max-Age=some_time; 
Path=/; Domain=.wikipedia.org; SameSite=Strict; Secure

Legit JS will have access to the cookie, External JS won’t
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Avoiding XSS: Double cookie submission

➢Two cookies are used
▪Session Cookie: identifies the user, stable across the session duration

▪CSRF cookie: dynamically changing for each request

➢Why: External requests will not have information about the last 
CSRF cookie
▪May allow sites to force a specific interaction sequence as CSRF cookies 

may identify the previous location
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Same Origin Policy

➢ Sites may require external resources (Cross Origin Resources)
▪Javascripts, Images, Styles

▪However this should be controlled

➢ Current site perspective: where my resources are being loaded from?
▪ Images may be remote, JS should be local, as well as styles…

➢Other sites: who is accessing my resources?
▪ I do not want to be spreading malware (act as a storage for Stored XSS)
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Same Origin Policy

➢Web servers may state a header that sets the Same Origin Policy

➢What is Same Origin Policy?
▪SOP restricts how a document or script loaded from one origin can interact with 

a resource from another origin

➢ define: origin. In relation to http://store.comp.com/dir/page.html
▪http://store.comp.com/dir2/other.html, Success
▪http://store. comp.com/dir/inner/another.html Success
▪https://store. comp.com/secure.html, Failure - Different protocol 
▪http://store. comp.com:81/dir/etc.html, Failure - Different port
▪http://news. comp.com/dir/other.html, Failure Different host

http://store.comp.com/dir2/other.html
http://store.company.com/dir/inner/another.html
http://store.comp.com/dir2/other.html
http://store.company.com/dir/inner/another.html
https://store.company.com/secure.html
http://store.comp.com/dir2/other.html
https://store.company.com/secure.html
http://store.company.com:81/dir/etc.html
http://store.comp.com/dir2/other.html
http://store.company.com:81/dir/etc.html
http://news.company.com/dir/other.html
http://store.comp.com/dir2/other.html
http://news.company.com/dir/other.html
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Same Origin Policy

➢Origin is permitted to send data to another origin but not read

➢ Interactions between origins are placed in three categories:
▪ Cross origin writes (redirects, links, form action etc.)

▪Cross origin embedding (html tag with src/hrefs)

▪Cross origin reads (not allowed without CORS etc.)
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Same Origin Policy

Cross Origin Embedding

➢ JavaScript <script src="..."></script>.

➢ CSS with <link rel="stylesheet" href="...">. 

➢ Images with <img>.

➢ Media files with <video> and <audio> tags. 

➢ Plug-ins with <object>, <embed> and <applet>.

➢ Fonts with @font-face.

➢ Anything with <frame> and <iframe>.
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Cross Origin Request Sharing

Why is CORS needed?

➢ For legitimate and trusted requests to gain access to authorized data from 
other domains
▪Think cross application data sharing models

➢ Allows data to be exchanged with trusted sites while using a relaxed Same 
Origin policy mode. 

➢ Application APIs exposed via web services and trusted domains require 
CORS to be accessible over the SOP
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CORS Requests

➢Preflight is not needed if
▪Request is a HEAD/GET/POST via XHR

▪No Custom headers

▪Body is text/plain

➢Server responds with a CORS header
▪ Browser determines access

▪Neither the request, nor response contain cookies
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CORS Headers

➢Simple Request 
▪Origin: Header set by the client for every CORS request

▪Value is the current domain that made the request

➢ Access-Control-Allow-Origin
▪Set by the server and used by the browser to determine if the response is 

to be allowed or not.

▪ Can be set to * to make resources public (bad practice!)
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CORS Insecurity

➢Several security issues arise from the improper implementation of 
CORS, most commonly using a universal allow notation (*) in the 
server headers

➢Clients should not trust the received content completely and eval 
or render content without sanitization which could result in 
misplaced trust 

➢The application that allows CORS may become vulnerable to CSRF 
attacks
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CORS Insecurity

➢Prolonged caching of Preflight responses could lead to attacks 
arising out of abuse of the Preflight Client Cache

➢Access control decisions based on the Origin header could result in 
vulnerabilities as this can be spoofed by an attacker
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CORS Insecurity: Misplaced Trust

➢Data exchange between two domains is based on trust
▪If one of the servers involved in the exchange of data is compromised, then 

the model of CORS is put at risk

➢ Scenarios? 
▪An attacker can compromise site A and host malicious content, knowing 

site B trusts the data that site A sends to site B.
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CORS Insecurity: Access Control based on Origin

➢ The Origin header indicates that the request is from a particular domain, but 
does not guarantee it
▪Header can be controlled by the attacker

➢ Spoofing the Origin header allows access to the page if access is based on this 
header 

➢ Scenarios?
▪An attacker sets the Origin header to view sensitive information that is restricted
▪Using cURL to set a custom origin header: curl --header 'origin:http://someserver.com'
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CORS Insecurity: Caching of Preflight responses

➢ The Access-Control-Max-Age header is set to a high value, allowing browsers to 
cache Preflight responses
▪ It’s very important for performance reasons
▪But caching the preflight response for longer duration can pose a security risk. 

➢ If the access-control policy is changed on the server the browser would still 
follow the old policy available in the Preflight Result Cache

➢ Scenario:
▪During updates to sites, the access policy will be out of sync until the cache expires
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CORS Insecurity: Universal Allow 

➢Setting the 'Access-Control-Allow-Origin' header to *
▪ Effectively turns the content into a public resource, allowing access from 

any domain

▪Very common during development, and somewhat during production

➢Scenarios?
▪An attacker can steal data from an intranet site that has set this header to 

* by enticing a user to visit an attacker controlled site on the Internet.

▪ An attacker can perform attacks on other remote apps via a victim’s 
browser when the victim navigates to an attacker controlled site.


