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Susceptible-Infected-Susceptible epidemic model

SIS model; a standard paradigm for disease spreading in networked systems

Individuals (vertices) can be in one of two states:
1. Susceptible (or healthy) - S
2. Infected -1

An infected vertex becomes susceptible with unit rate:
1
I — 5,

and infects its susceptible neighbor at rate A:

S 2T
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SIS model; a standard paradigm for disease spreading in networked systems

Individuals (vertices) can be in one of two states:
1. Susceptible (or healthy) - S
2. Infected -1

An infected vertex becomes susceptible with unit rate:
1
I — 5,

and infects its susceptible neighbor at rate A:

A
5 L. A is the infection rate
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SIS model

Simplest model undergoing an epidemic phase transition between an absorbing,
healthy phase, and an active phase with a stationary endemic state.
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Simplest model undergoing an epidemic phase transition between an absorbing,
healthy phase, and an active phase with a stationary endemic state.

A critical value A, of the infection rate separates the absorbing phase ( A < A, )
from the endemic one (A > A.). A, is the epidemic threshold.

Traditional mathematical epidemiology studied the behavior of the SIS model on
homogeneous networks.

Homogeneous in the sense that all vertices have roughly the same number <q> of
connections, such as fully connected graphs, Erdos-Rényi graphs or lattices.

[arXiv:1202.4411; PRL 109, 128702 (2012) |



SIS model

Simplest model undergoing an epidemic phase transition between an absorbing,
healthy phase, and an active phase with a stationary endemic state.

A critical value A, of the infection rate separates the absorbing phase ( A < A, )
from the endemic one (A > A.). A, is the epidemic threshold.

Traditional mathematical epidemiology studied the behavior of the SIS model on
homogeneous networks.

Homogeneous in the sense that all vertices have roughly the same number <q> of
connections, such as fully connected graphs, Erdos-Rényi graphs or lattices.

For this kind of homogeneous networks one can safely say that disease spreading
is well understood and A. ~ 1/(q) .
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Networks or graphs

Example of a graph: vertices (or nodes) are the

blue dots and edges or links are the black lines.
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Networks or graphs

Example of a graph: vertices (or nodes) are the

blue dots and edges or links are the black lines.

((an an ... av | Structure of a graph < its adjacency matrix
A= a.ﬂ a.22 a2.N 1 if vertex ¢ is linked to vertex 7 ,
. . . . a/zj p—
K 0 otherwise .
aNi aN2 ... GNN /
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Networks or graphs

( ailr a2
a1 as2
A =
K ani1 anN2 ...

ay )

asnN

aNnN /

Degree of vertex 1 = q;

Example of a graph: vertices (or nodes) are the

blue dots and edges or links are the black lines.

Structure of a graph < its adjacency matrix

{ 1 if vertex ¢ is linked to vertex 7 ,
CLZ'j =

0 otherwise .

- number of connections attached to it.

Degree distribution = P(q) : probability that a vertex has degree q.

Usually in complex networks — P(q) ~ q~?
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Example of a graph: vertices (or nodes) are the

blue dots and edges or links are the black lines.

Structure of a graph < its adjacency matrix

1 if vertex ¢ is linked to vertex 7 ,
CLZ'j =
0 otherwise .

- number of connections attached to it.

Degree distribution = P(q) : probability that a vertex has degree q.

Usually in complex networks — P(q) ~ q~?
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Heterogeneous networks!



SIS model on networks — seminal papers

Pastor-Satorras and Vespignani (2001):

In order to treat the heterogeneous case of complex networks these authors made
use of the so-called annealed network approximation (ANA):
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SIS model on networks — seminal papers

Pastor-Satorras and Vespignani (2001):

In order to treat the heterogeneous case of complex networks these authors made
use of the so-called annealed network approximation (ANA):

Replace the actual topological structure of the network ( given by @;; )
by its weighted counterpart, with elements

ANA _ diq;

Y N{q)
expressing the probability that two vertices of degrees (J; and C]j are
connected in the original net.

Their analysis led to the value of the epidemic threshold A, = <q> / (q2>.

If v < 3, then (¢*) NZQZQ_'V%oo:)\C:O.
q

If v > 3, then (¢*) < co = A\, > 0.
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Pastor-Satorras and Vespignani (2001):
Their approximations

(1) Correlations between infected and susceptibles are neglected.
(2) A random graph is substituted with its annealed counterpart.

3 N — 0.
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(1) Correlations between infected and susceptibles are neglected.
(2) A random graph is substituted with its annealed counterpart.

3 N — 0.

Without approximation 2, for an individual graph:

Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos (2003):
Ae = 1/A4

A1 IS the eigenvalue of the principal eigenvector of the adjacency matrix.

A~ \/Gmaz 5 Gmaz(IN — 00) — 00(even for Erdos-Rényi graphs) and so
Ae(N — 00) = 0
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The SIS model on an individual graph

Probability that vertex 4 is infected at time ¢ :  p; ()
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The SIS model on an individual graph

Probability that vertex 4 is infected at time ¢ :  p; ()

il put) + ML= i)Y a0

g=1

Evolution equation

Steady state :  p;(t — 00), dp;(t)/dt =0

AD L Gijpj
L+ A) 5 aijp;

= Pi=

which has a nonzero solution p; > 0 if A > A\, . In this case, the prevalence

N
0= Z pi /N s nonzero .
i=1
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Example of the SIS model on a real network”®

0.8

0.6 -

*Network of social ties between people belonging to a karate club.

The prevalence p is the most upper curve (black line).
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Spectral properties of the adjacency matrix A

—

The eigenvalues A and corresponding eigenvectors f(A) with components fz

are solutions of the equation Af = A f .
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Spectral properties of the adjacency matrix A

—

The eigenvalues A and corresponding eigenvectors f(A) with components fz

are solutions of the equation Af = A f .

Since A is real and symmetric, its [NV eigenvectors

FA) (Amax =A1 > Ao > ... > An)

form a complete orthonormal basis.

Perron-Frobenius theorem : The largest eigenvalue A1 and the corresponding

—

principal eigenvector f (Al) of a real non-negative symmetric matrix are non-
negative.

The probabilities  p; can be written as a linear superposition

pi =Y _c(A)fi(A).

A
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SIS model — spectral approach

pi=Y c(N)fi(A) (1)

A
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The coefficients ¢(/A) are the projections of the vector p  on
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SIS model — spectral approach

pi=Y c(N)fi(A) (1)

A

The coefficients ¢(A) are the projections of the vector 7 on  f(A) .

Substituting Eqg. (1) above in the steady state equation for p; , we obtain :
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SIS model — spectral approach

pi=Y c(N)fi(A) (1)

A

The coefficients ¢(A) are the projections of the vector 7 on  f(A) .

Substituting Eqg. (1) above in the steady state equation for p; , we obtain :

N

fi(A) fi(A')
; L+ A5 Ac(A) fi(A)

c(A) =AY AN
X

[arXiv:1202.4411; PRL 109, 128702 (2012) |

(2)

10



SIS model — spectral approach

pi=Y c(N)fi(A) (1)

A

The coefficients ¢(A) are the projections of the vector 7 on  f(A) .

Substituting Eqg. (1) above in the steady state equation for p; , we obtain :

N

fi(A) fi(A)
; L+ AS 5 Ac(A) fi(A) 2)

c(A) =AY AN
X

For A Z A it is enough to take into account only the principal eigenvector f (Al) ;

pi = c(Aq) fi(Ar)
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SIS model — spectral approach

pi=Y c(N)fi(A) (1)

A

The coefficients ¢(A) are the projections of the vector 7 on  f(A) .

Substituting Eqg. (1) above in the steady state equation for p; , we obtain :

E : / / 2 : f’i(A)J’i(A/)
( ) A/ ( ) i=1 1 4 AZNAAC(A)fi(A) °)

For A Z A it is enough to take into account only the principal eigenvector f (Al) ;
pi = c(Aq) fi(Ar)
Solving Eq. (2) with respect to ¢(A1) and setting it to zero gives:

A = 1/A4
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SIS model — spectral approach

At X\ 2 ). infirstorderin 7 = A\ — 1 < 1 we find the prevalence :
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SIS model — spectral approach

At X\ 2 ). infirstorderin 7 = A\ — 1 < 1 we find the prevalence :
N
P = Zpi/N N aqT,
i=1
where the coefficient « is

aq = Zfi(A1>/ NZfiB(Al)

Thus,at 7 < 1, p Is determined by the principal eigenvector.

The contribution of the other eigenvectors is of order 72 .

Considering the two largest eigenvalues A1 and As, and their eigenvectors, gives

p(A) = a7 + Qo T?
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Localized and delocalized eigenvectors

The usual point of view is that a finite fraction of vertices is infected immediately

above .. This corresponds to 1 of order (1) in our analysis.
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Localized and delocalized eigenvectors

The usual point of view is that a finite fraction of vertices is infected immediately

above .. This corresponds to 1 of order (1) in our analysis.

To learn if another behavior is possible, we study wether A1 corresponds to a
localized or delocalized state.

Example from quantum mechanics: electron

wave function amplitude around an impurity in 0000009900
graphene. IREPSNC ~ IBEES
| 5 . ..?.. .« o

The wave function is localized on a finite number .~ . ."." "L L.
of sites around the impuirity. LA AAAAA A

From [ Pereira et al., PRB 77, 115109 (2008) |
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Localized and delocalized eigenvectors

How to quantify localization?

[arXiv:1202.4411; PRL 109, 128702 (2012) |

13



Localized and delocalized eigenvectors

How to quantify localization?
N

Inverse Participation Ratio: IPR(A) = Z fHA)
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N

Inverse Participation Ratio: IPR(A) = Z fHA)

1
1=1

As an illustration, consider two limiting cases:

(i) a vector with identical components  f; =1/ VN,

(i) a vector with one component f; = 1 and the remainders zero.
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Localized and delocalized eigenvectors

How to quantify localization?
N

Inverse Participation Ratio: IPR(A) = Z fHA)

1
i=1
As an illustration, consider two limiting cases:

(i) a vector with identical components  f; =1/ VN,

(i) a vector with one component f; = 1 and the remainders zero.

Case (i) gves IPR=1/N.
Case (ii) gives IPR =1.

Thus : a delocalized state:  IPR(A) iy
a localized state: I[PR(A) 280 const. > 0
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Localized and delocalized eigenvectors

A delocalized principal sigenvector: f;(A) = O(1/vVN)
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Localized and delocalized eigenvectors

A delocalized principal sigenvector: f;(A) = O(1/vVN)
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A localized principal eigenvector:

1 = O(l/N)

[arXiv:1202.4411; PRL 109, 128702 (2012) |

14



Localized and delocalized eigenvectors

A delocalized principal sigenvector: f;(A) = O(1/vVN)

SO: a; = O(1)

A localized principal eigenvector:
X1 — O(l/N)

—

So, if the principal eigenvector f (A1) is localized, then

p~aT~QO(/N)
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SO: a; = O(1)

A localized principal eigenvector:

1 = O(l/N)

—

So, if the principal eigenvector f (A1) is localized, then
p~aT~QO(/N)

and, right above A , the disease is localized on a finite number /N p of vertices.
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Localized and delocalized eigenvectors

A delocalized principal sigenvector: f;(A) = O(1/vVN)

SO: ] = (’)(1)

A localized principal eigenvector:

1 = O(l/N)

—

So, if the principal eigenvector f (A1) is localized, then
p~aT~QO(/N)
and, right above A , the disease is localized on a finite number /N p of vertices.

—

If f(A1) is delocalized, then p isoforder (O(1) and the disease infects a

finite fraction of vertices right above A.. .
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Weighted and unweighted real-world nets

[ T T T T 08 T T T
a b
0.0015 ( ) — i ( )
106
0.001 —
Q 0.4+
0.0005 —
0.2+
0 | —
I 1 I 1 I 1 I 0 1 1 1 1 1
1 1.2 1.4 1.6 0 0.2 0.4 0.6 0.8 1
AA, A

(a) Weighted collaboration networks of scientists posting preprints on the:

(black line) astrophysics archive at arXiv.org, 1995-1999

(red line) condensed matter archive at arXiv.org, 1995-2005
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Weighted and unweighted real-world nets

[ T T T T 08 T T T
a b
0.0015 ( ) — i ( )
106
0.001 —
Q 0.4+
0.0005 —
0.2+
0 | —
I 1 I 1 I 1 I 0 1 1 1 1 1
1 1.2 1.4 1.6 0 0.2 0.4 0.6 0.8 1
AA, A

(a) Weighted collaboration networks of scientists posting preprints on the:

(black line) astrophysics archive at arXiv.org, 1995-1999

(red line) condensed matter archive at arXiv.org, 1995-2005

(b) Unweighted karate-club network: the lowest curve only accounts for the

eigenstate A 1. The most upper curve is the exact p .
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An uncorrelated scale-free network

0.8 T | T | T | T O .02 | T | T | T |
— exact solution (b)

—— 1 eigenvector
2 eigenvectors
— 0015 |— 3eigenvectors —
4 eigenvectors
5 eigenvectors
— 6 eigenvectors
—— 7 eigenvectors

— exact solution (a)
L | — 1 eigenvector

2 eigenvectors
— 3 eigenvectors
0.6~ 4 eigenvectors

Q04 001~ 8 eigenvectors
oL+ . —— O 1 | . 1 7
0 0.1 0.2 0.3 04 0.055 0.06 0.065 0.07
A A

(a) A scale-free network of 10° vertices generated by the static model with v = 4
and (q) = 10 . (b) Zoom of the prevalence at A closeto A = 1/A1.

Eigenvectors corresponding to A1 and As are localized. A3 is delocalized.
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A Bethe lattice (a) with a hub (b) or two hubs (c)

Simple but representative example of networks. Can be treated analytically:
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Simple but representative example of networks. Can be treated analytically:

@A =k and f;(A1) =1/vVN (delocalized) .
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A Bethe lattice (a) with a hub (b) or two hubs (c)

Simple but representative example of networks. Can be treated analytically:

@A =k and f;(A1) =1/vVN (delocalized) .

(b) Introduce a hub of degree ¢ > k connected by edges with weight w > 1.
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A Bethe lattice (a) with a hub (b) or two hubs (c)

Simple but representative example of networks. Can be treated analytically:

@A =k and f;(A1) =1/vVN (delocalized) .
(b) Introduce a hub of degree ¢ > k connected by edges with weight w > 1.

Look for a solution that exponentially

decreases with distance 711 from the hub:
filA1) = fa(A1) < 1/a”
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A Bethe lattice (a) with a hub (b) or two hubs (c)

Simple but representative example of networks. Can be treated analytically:

@A =k and f;(A1) =1/vVN (delocalized) .

(b) Introduce a hub of degree ¢ > k connected by edges with weight w > 1.

A1 = qu?/\/qu? - B,

IPR(A1) = fg(A1)[1 + qu?/(a* = B)],
fo(A1) = [(quw?®/2 = B)/(quw® — B)]'/?,
fn(A1) = wfo(Ar)/a™.

Look for a solution that exponentially

decreases with distance 7@ from the hub:

filAr) = fn(A1) oc1/a”
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A Bethe lattice (a) with a hub (b) or two hubs (c)

Simple but representative example of networks. Can be treated analytically:

@A =k and f;(A1) =1/vVN (delocalized) .

(b) Introduce a hub of degree ¢ > k connected by edges with weight w > 1.

= qu’/\/qu? —
IPR( 1) =1 (Al)[ + qw“/(a4 — B)],
fo(A1) = [(qu?/2 — B)/(qu* — B)]"/?,
fn(A1) = wfo(Ar)/a™.

Look for a solution that exponentially

decreases with distance 7@ from the hub:

filAr) = fn(A1) oc1/a”

(c) ...
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Conclusion

If the principal eigenvector of the adjacency matrix is localized,
then, immediately above the threshold 1/Aq,
the disease is localized on a finite number of vertices.
In this case, a real epidemic affecting a finite fraction of
vertices occurs after a smooth crossover, and

the notion of the epidemic threshold is meaningless.
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