Localization and Spreading of Diseases in Complex Networks

João Gama Oliveira
A. V. Goltsev, S. N. Dorogovtsev, J. F. F. Mendes

Universidade do Porto,
Universidade de Aveiro, Ioffe Institute, St. Petersburg

Susceptible-Infected-Susceptible epidemic model

SIS model: a standard paradigm for disease spreading in networked systems

Individuals (vertices) can be in one of two states:

1. Susceptible (or healthy) - S
2. Infected -I

An infected vertex becomes susceptible with unit rate:

$$
I \xrightarrow{1} S
$$

and infects its susceptible neighbor at rate λ :

$$
\begin{aligned}
& S \xrightarrow{\lambda} I . \\
& \Uparrow \\
& I_{n n}
\end{aligned}
$$

Susceptible-Infected-Susceptible epidemic model

SIS model: a standard paradigm for disease spreading in networked systems

Individuals (vertices) can be in one of two states:

1. Susceptible (or healthy) - S
2. Infected -I

An infected vertex becomes susceptible with unit rate:

$$
I \xrightarrow{1} S
$$

and infects its susceptible neighbor at rate λ :

$$
\begin{aligned}
& S \xrightarrow{\lambda} I . \\
& \Uparrow \\
& I_{n n}
\end{aligned}
$$

λ is the infection rate

Susceptible-Infected-Susceptible epidemic model

SIS model: a standard paradigm for disease spreading in networked systems

Individuals (vertices) can be in one of two states:

1. Susceptible (or healthy) - S
2. Infected -I

An infected vertex becomes susceptible with unit rate:

$$
I \xrightarrow{1} S
$$

and infects its susceptible neighbor at rate λ :

$$
\begin{aligned}
& S \xrightarrow{\lambda} I . \\
& \Uparrow \\
& I_{n n}
\end{aligned}
$$

λ is the infection rate (control parameter)

SIS model

Simplest model undergoing an epidemic phase transition between an absorbing, healthy phase, and an active phase with a stationary endemic state.

SIS model

Simplest model undergoing an epidemic phase transition between an absorbing, healthy phase, and an active phase with a stationary endemic state.

A critical value λ_{c} of the infection rate separates the absorbing phase ($\lambda<\lambda_{c}$) from the endemic one $\left(\lambda>\lambda_{c}\right) . \quad \lambda_{c}$ is the epidemic threshold.

SIS model

Simplest model undergoing an epidemic phase transition between an absorbing, healthy phase, and an active phase with a stationary endemic state.

A critical value λ_{c} of the infection rate separates the absorbing phase ($\lambda<\lambda_{c}$) from the endemic one $\left(\lambda>\lambda_{c}\right) . \quad \lambda_{c}$ is the epidemic threshold.

SIS model

Simplest model undergoing an epidemic phase transition between an absorbing, healthy phase, and an active phase with a stationary endemic state.

A critical value λ_{c} of the infection rate separates the absorbing phase ($\lambda<\lambda_{c}$) from the endemic one $\left(\lambda>\lambda_{c}\right) . \quad \lambda_{c}$ is the epidemic threshold.

Traditional mathematical epidemiology studied the behavior of the SIS model on homogeneous networks.

SIS model

Simplest model undergoing an epidemic phase transition between an absorbing, healthy phase, and an active phase with a stationary endemic state.

A critical value λ_{c} of the infection rate separates the absorbing phase ($\lambda<\lambda_{c}$) from the endemic one $\left(\lambda>\lambda_{c}\right) . \quad \lambda_{c}$ is the epidemic threshold.

Traditional mathematical epidemiology studied the behavior of the SIS model on homogeneous networks.

Homogeneous in the sense that all vertices have roughly the same number $\langle q\rangle$ of connections, such as fully connected graphs, Erdos-Rényi graphs or lattices.

SIS model

Simplest model undergoing an epidemic phase transition between an absorbing, healthy phase, and an active phase with a stationary endemic state.

A critical value λ_{c} of the infection rate separates the absorbing phase ($\lambda<\lambda_{c}$) from the endemic one $\left(\lambda>\lambda_{c}\right) . \quad \lambda_{c}$ is the epidemic threshold.

Traditional mathematical epidemiology studied the behavior of the SIS model on homogeneous networks.

Homogeneous in the sense that all vertices have roughly the same number $\langle q\rangle$ of connections, such as fully connected graphs, Erdos-Rényi graphs or lattices.

For this kind of homogeneous networks one can safely say that disease spreading is well understood and $\lambda_{c} \sim 1 /\langle q\rangle$.

Networks or graphs

Example of a graph: vertices (or nodes) are the blue dots and edges or links are the black lines.

Networks or graphs

Example of a graph: vertices (or nodes) are the blue dots and edges or links are the black lines.

Networks or graphs

Networks or graphs

Degree of vertex $i \equiv q_{i}$: number of connections attached to it.
Degree distribution $\equiv P(q)$: probability that a vertex has degree q.
Usually in complex networks. $\quad P(q) \sim q^{-\gamma}$

Networks or graphs

Degree of vertex $i \equiv q_{i}$: number of connections attached to it.
Degree distribution $\equiv P(q)$: probability that a vertex has degree q.
Usually in complex networks.

$$
P(q) \sim q^{-\gamma}
$$

Power-law degree distribution

Networks or graphs

Degree of vertex $i \equiv q_{i}$: number of connections attached to it.
Degree distribution $\equiv P(q)$: probability that a vertex has degree q.
Usually in complex networks. $\quad P(q) \sim q^{-\gamma}$

Power-law degree distribution
Heterogeneous networks!

SIS model on networks - seminal papers

Pastor-Satorras and Vespignani (2001):
In order to treat the heterogeneous case of complex networks these authors made use of the so-called annealed network approximation (ANA):

SIS model on networks - seminal papers

Pastor-Satorras and Vespignani (2001):
In order to treat the heterogeneous case of complex networks these authors made use of the so-called annealed network approximation (ANA):

Replace the actual topological structure of the network (given by $a_{i j}$)
by its weighted counterpart, with elements

SIS model on networks - seminal papers

Pastor-Satorras and Vespignani (2001):
In order to treat the heterogeneous case of complex networks these authors made use of the so-called annealed network approximation (ANA):

Replace the actual topological structure of the network (given by $a_{i j}$)
by its weighted counterpart, with elements

$$
a_{i j}^{\mathrm{ANA}}=\frac{q_{i} q_{j}}{N\langle q\rangle}
$$

SIS model on networks - seminal papers

Pastor-Satorras and Vespignani (2001):
In order to treat the heterogeneous case of complex networks these authors made use of the so-called annealed network approximation (ANA):

Replace the actual topological structure of the network (given by $a_{i j}$) by its weighted counterpart, with elements

$$
a_{i j}^{\mathrm{ANA}}=\frac{q_{i} q_{j}}{N\langle q\rangle}
$$

expressing the probability that two vertices of degrees q_{i} and q_{j} are connected in the original net.

SIS model on networks - seminal papers

Pastor-Satorras and Vespignani (2001):
In order to treat the heterogeneous case of complex networks these authors made use of the so-called annealed network approximation (ANA):

Replace the actual topological structure of the network (given by $a_{i j}$)
by its weighted counterpart, with elements

$$
a_{i j}^{\mathrm{ANA}}=\frac{q_{i} q_{j}}{N\langle q\rangle}
$$

expressing the probability that two vertices of degrees q_{i} and q_{j} are connected in the original net.
Their analysis led to the value of the epidemic threshold $\lambda_{c}=\langle q\rangle /\left\langle q^{2}\right\rangle$.

SIS model on networks - seminal papers

Pastor-Satorras and Vespignani (2001):
In order to treat the heterogeneous case of complex networks these authors made use of the so-called annealed network approximation (ANA):

Replace the actual topological structure of the network (given by $a_{i j}$) by its weighted counterpart, with elements

$$
a_{i j}^{\mathrm{ANA}}=\frac{q_{i} q_{j}}{N\langle q\rangle}
$$

expressing the probability that two vertices of degrees q_{i} and q_{j} are connected in the original net.
Their analysis led to the value of the epidemic threshold $\lambda_{c}=\langle q\rangle /\left\langle q^{2}\right\rangle$.

$$
\text { If } \gamma<3 \text {, then }\left\langle q^{2}\right\rangle \sim \sum_{q} q^{2} q^{-\gamma} \rightarrow \infty \Longrightarrow \lambda_{c}=0
$$

SIS model on networks - seminal papers

Pastor-Satorras and Vespignani (2001):
In order to treat the heterogeneous case of complex networks these authors made use of the so-called annealed network approximation (ANA):

Replace the actual topological structure of the network (given by $a_{i j}$) by its weighted counterpart, with elements

$$
a_{i j}^{\mathrm{ANA}}=\frac{q_{i} q_{j}}{N\langle q\rangle}
$$

expressing the probability that two vertices of degrees q_{i} and q_{j} are connected in the original net.
Their analysis led to the value of the epidemic threshold $\lambda_{c}=\langle q\rangle /\left\langle q^{2}\right\rangle$.

$$
\begin{gathered}
\text { If } \gamma<3 \text {, then }\left\langle q^{2}\right\rangle \sim \sum_{q} q^{2} q^{-\gamma} \rightarrow \infty \Longrightarrow \lambda_{c}=0 . \\
\text { If } \gamma>3, \text { then }\left\langle q^{2}\right\rangle<\infty \Longrightarrow \lambda_{c}>0
\end{gathered}
$$

Pastor-Satorras and Vespignani (2001):
Their approximations
(1) Correlations between infected and susceptibles are neglected.
(2) A random graph is substituted with its annealed counterpart.
(3) $N \rightarrow \infty$.

Pastor-Satorras and Vespignani (2001):
Their approximations
(1) Correlations between infected and susceptibles are neglected.
(2) A random graph is substituted with its annealed counterpart.
(3) $N \rightarrow \infty$.

Without approximation 2, for an individual graph:
Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos (2003):

Pastor-Satorras and Vespignani (2001):
Their approximations
(1) Correlations between infected and susceptibles are neglected.
(2) A random graph is substituted with its annealed counterpart.
(3) $N \rightarrow \infty$.

Without approximation 2, for an individual graph:
Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos (2003):

$$
\lambda_{c}=1 / \Lambda_{1}
$$

Pastor-Satorras and Vespignani (2001):
Their approximations
(1) Correlations between infected and susceptibles are neglected.
(2) A random graph is substituted with its annealed counterpart.
(3) $N \rightarrow \infty$.

Without approximation 2, for an individual graph:
Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos (2003):

$$
\lambda_{c}=1 / \Lambda_{1}
$$

Λ_{1} is the eigenvalue of the principal eigenvector of the adjacency matrix.

Pastor-Satorras and Vespignani (2001):
Their approximations
(1) Correlations between infected and susceptibles are neglected.
(2) A random graph is substituted with its annealed counterpart.
(3) $N \rightarrow \infty$.

Without approximation 2, for an individual graph:
Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos (2003):

$$
\lambda_{c}=1 / \Lambda_{1}
$$

Λ_{1} is the eigenvalue of the principal eigenvector of the adjacency matrix.
$\Lambda_{1} \sim \sqrt{q_{\max }}, q_{\max }(N \rightarrow \infty) \rightarrow \infty$ (even for Erdos-Rényi graphs) and so

Pastor-Satorras and Vespignani (2001):
Their approximations
(1) Correlations between infected and susceptibles are neglected.
(2) A random graph is substituted with its annealed counterpart.
(3) $N \rightarrow \infty$.

Without approximation 2, for an individual graph:
Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos (2003):

$$
\lambda_{c}=1 / \Lambda_{1}
$$

Λ_{1} is the eigenvalue of the principal eigenvector of the adjacency matrix.
$\Lambda_{1} \sim \sqrt{q_{\max }}, q_{\max }(N \rightarrow \infty) \rightarrow \infty$ (even for Erdos-Rényi graphs) and so

$$
\lambda_{c}(N \rightarrow \infty) \rightarrow 0
$$

The SIS model on an individual graph

Probability that vertex i is infected at time $t: \rho_{i}(t)$

The SIS model on an individual graph

Probability that vertex i is infected at time $t: \rho_{i}(t)$

Evolution equation $\quad \frac{d \rho_{i}(t)}{d t}=-\rho_{i}(t)+\lambda\left[1-\rho_{i}(t)\right] \sum_{j=1}^{N} a_{i j} \rho_{j}(t)$

The SIS model on an individual graph

Probability that vertex i is infected at time $t: \rho_{i}(t)$

Evolution equation $\quad \frac{d \rho_{i}(t)}{d t}=-\rho_{i}(t)+\lambda\left[1-\rho_{i}(t)\right] \sum_{j=1}^{N} a_{i j} \rho_{j}(t)$
Steady state : $\quad \rho_{i}(t \rightarrow \infty), d \rho_{i}(t) / d t=0$

The SIS model on an individual graph

Probability that vertex i is infected at time $t: \rho_{i}(t)$
Evolution equation $\quad \frac{d \rho_{i}(t)}{d t}=-\rho_{i}(t)+\lambda\left[1-\rho_{i}(t)\right] \sum_{j=1}^{N} a_{i j} \rho_{j}(t)$
Steady state : $\quad \rho_{i}(t \rightarrow \infty), d \rho_{i}(t) / d t=0$

$$
\Rightarrow \quad \rho_{i}=\frac{\lambda \sum_{j} a_{i j} \rho_{j}}{1+\lambda \sum_{j} a_{i j} \rho_{j}}
$$

The SIS model on an individual graph

Probability that vertex i is infected at time $t: \rho_{i}(t)$

Evolution equation $\quad \frac{d \rho_{i}(t)}{d t}=-\rho_{i}(t)+\lambda\left[1-\rho_{i}(t)\right] \sum_{j=1}^{N} a_{i j} \rho_{j}(t)$
Steady state: $\quad \rho_{i}(t \rightarrow \infty), d \rho_{i}(t) / d t=0$

$$
\Rightarrow \quad \rho_{i}=\frac{\lambda \sum_{j} a_{i j} \rho_{j}}{1+\lambda \sum_{j} a_{i j} \rho_{j}}
$$

which has a nonzero solution $\rho_{i}>0$ if $\lambda>\lambda_{c}$. In this case, the prevalence

The SIS model on an individual graph

Probability that vertex i is infected at time $t: \rho_{i}(t)$

Evolution equation $\quad \frac{d \rho_{i}(t)}{d t}=-\rho_{i}(t)+\lambda\left[1-\rho_{i}(t)\right] \sum_{j=1}^{N} a_{i j} \rho_{j}(t)$
Steady state: $\quad \rho_{i}(t \rightarrow \infty), d \rho_{i}(t) / d t=0$

$$
\Rightarrow \quad \rho_{i}=\frac{\lambda \sum_{j} a_{i j} \rho_{j}}{1+\lambda \sum_{j} a_{i j} \rho_{j}}
$$

which has a nonzero solution $\rho_{i}>0$ if $\lambda>\lambda_{c}$. In this case, the prevalence

$$
\rho \equiv \sum_{i=1}^{N} \rho_{i} / N \quad \text { is nonzero. }
$$

Example of the SIS model on a real network*

*Network of social ties between people belonging to a karate club.
The prevalence ρ is the most upper curve (black line).

Spectral properties of the adjacency matrix A

The eigenvalues Λ and corresponding eigenvectors $\vec{f}(\Lambda)$ with components f_{i} are solutions of the equation $\Lambda \vec{f}=\mathbf{A} \vec{f}$.

Spectral properties of the adjacency matrix A

The eigenvalues Λ and corresponding eigenvectors $\vec{f}(\Lambda)$ with components f_{i} are solutions of the equation $\Lambda \vec{f}=\mathbf{A} \vec{f}$.

Since \mathbf{A} is real and symmetric, its N eigenvectors

$$
\vec{f}(\Lambda) \quad\left(\Lambda_{\max } \equiv \Lambda_{1} \geq \Lambda_{2} \geq \ldots \geq \Lambda_{N}\right)
$$

form a complete orthonormal basis.

Spectral properties of the adjacency matrix A

The eigenvalues Λ and corresponding eigenvectors $\vec{f}(\Lambda)$ with components f_{i} are solutions of the equation $\Lambda \vec{f}=\mathbf{A} \vec{f}$.

Since \mathbf{A} is real and symmetric, its N eigenvectors

$$
\vec{f}(\Lambda) \quad\left(\Lambda_{\max } \equiv \Lambda_{1} \geq \Lambda_{2} \geq \ldots \geq \Lambda_{N}\right)
$$

form a complete orthonormal basis.
Perron-Frobenius theorem : The largest eigenvalue Λ_{1} and the corresponding principal eigenvector $\vec{f}\left(\Lambda_{1}\right)$ of a real non-negative symmetric matrix are nonnegative.

Spectral properties of the adjacency matrix A

The eigenvalues Λ and corresponding eigenvectors $\vec{f}(\Lambda)$ with components f_{i} are solutions of the equation $\Lambda \vec{f}=\mathbf{A} \vec{f}$.

Since \mathbf{A} is real and symmetric, its N eigenvectors

$$
\vec{f}(\Lambda) \quad\left(\Lambda_{\max } \equiv \Lambda_{1} \geq \Lambda_{2} \geq \ldots \geq \Lambda_{N}\right)
$$

form a complete orthonormal basis.
Perron-Frobenius theorem : The largest eigenvalue Λ_{1} and the corresponding principal eigenvector $\vec{f}\left(\Lambda_{1}\right)$ of a real non-negative symmetric matrix are nonnegative.

The probabilities ρ_{i} can be written as a linear superposition

Spectral properties of the adjacency matrix A

The eigenvalues Λ and corresponding eigenvectors $\vec{f}(\Lambda)$ with components f_{i} are solutions of the equation $\Lambda \vec{f}=\mathbf{A} \vec{f}$.

Since \mathbf{A} is real and symmetric, its N eigenvectors

$$
\vec{f}(\Lambda) \quad\left(\Lambda_{\max } \equiv \Lambda_{1} \geq \Lambda_{2} \geq \ldots \geq \Lambda_{N}\right)
$$

form a complete orthonormal basis.
Perron-Frobenius theorem : The largest eigenvalue Λ_{1} and the corresponding principal eigenvector $\vec{f}\left(\Lambda_{1}\right)$ of a real non-negative symmetric matrix are nonnegative.

The probabilities ρ_{i} can be written as a linear superposition

$$
\rho_{i}=\sum_{\Lambda} c(\Lambda) f_{i}(\Lambda)
$$

SIS model - spectral approach

$$
\begin{equation*}
\rho_{i}=\sum_{\Lambda} c(\Lambda) f_{i}(\Lambda) \tag{1}
\end{equation*}
$$

SIS model - spectral approach

$$
\begin{equation*}
\rho_{i}=\sum_{\Lambda} c(\Lambda) f_{i}(\Lambda) \tag{1}
\end{equation*}
$$

The coefficients $c(\Lambda)$ are the projections of the vector $\vec{\rho}$ on $\vec{f}(\Lambda)$.

SIS model - spectral approach

$$
\begin{equation*}
\rho_{i}=\sum_{\Lambda} c(\Lambda) f_{i}(\Lambda) \tag{1}
\end{equation*}
$$

The coefficients $c(\Lambda)$ are the projections of the vector $\vec{\rho}$ on $\vec{f}(\Lambda)$.
Substituting Eq. (1) above in the steady state equation for ρ_{i}, we obtain :

SIS model - spectral approach

$$
\begin{equation*}
\rho_{i}=\sum_{\Lambda} c(\Lambda) f_{i}(\Lambda) \tag{1}
\end{equation*}
$$

The coefficients $c(\Lambda)$ are the projections of the vector $\vec{\rho}$ on $\vec{f}(\Lambda)$.
Substituting Eq. (1) above in the steady state equation for ρ_{i}, we obtain :

$$
\begin{equation*}
c(\Lambda)=\lambda \sum_{\Lambda^{\prime}} \Lambda^{\prime} c\left(\Lambda^{\prime}\right) \sum_{i=1}^{N} \frac{f_{i}(\Lambda) f_{i}\left(\Lambda^{\prime}\right)}{1+\lambda \sum_{\widetilde{\Lambda}} \widetilde{\Lambda} c(\widetilde{\Lambda}) f_{i}(\widetilde{\Lambda})} \tag{2}
\end{equation*}
$$

SIS model - spectral approach

$$
\begin{equation*}
\rho_{i}=\sum_{\Lambda} c(\Lambda) f_{i}(\Lambda) \tag{1}
\end{equation*}
$$

The coefficients $c(\Lambda)$ are the projections of the vector $\vec{\rho}$ on $\vec{f}(\Lambda)$.
Substituting Eq. (1) above in the steady state equation for ρ_{i}, we obtain :

$$
\begin{equation*}
c(\Lambda)=\lambda \sum_{\Lambda^{\prime}} \Lambda^{\prime} c\left(\Lambda^{\prime}\right) \sum_{i=1}^{N} \frac{f_{i}(\Lambda) f_{i}\left(\Lambda^{\prime}\right)}{1+\lambda \sum_{\widetilde{\Lambda}} \widetilde{\Lambda} c(\widetilde{\Lambda}) f_{i}(\widetilde{\Lambda})} \tag{2}
\end{equation*}
$$

For $\lambda \gtrsim \lambda_{c}$ it is enough to take into account only the principal eigenvector $\vec{f}\left(\Lambda_{1}\right)$:

$$
\rho_{i} \approx c\left(\Lambda_{1}\right) f_{i}\left(\Lambda_{1}\right)
$$

SIS model — spectral approach

$$
\begin{equation*}
\rho_{i}=\sum_{\Lambda} c(\Lambda) f_{i}(\Lambda) \tag{1}
\end{equation*}
$$

The coefficients $c(\Lambda)$ are the projections of the vector $\vec{\rho}$ on $\vec{f}(\Lambda)$.
Substituting Eq. (1) above in the steady state equation for ρ_{i}, we obtain :

$$
\begin{equation*}
c(\Lambda)=\lambda \sum_{\Lambda^{\prime}} \Lambda^{\prime} c\left(\Lambda^{\prime}\right) \sum_{i=1}^{N} \frac{f_{i}(\Lambda) f_{i}\left(\Lambda^{\prime}\right)}{1+\lambda \sum_{\widetilde{\Lambda}} \widetilde{\Lambda} c(\widetilde{\Lambda}) f_{i}(\widetilde{\Lambda})} . \tag{2}
\end{equation*}
$$

For $\lambda \gtrsim \lambda_{c}$ it is enough to take into account only the principal eigenvector $\vec{f}\left(\Lambda_{1}\right)$:

$$
\rho_{i} \approx c\left(\Lambda_{1}\right) f_{i}\left(\Lambda_{1}\right)
$$

Solving Eq. (2) with respect to $c\left(\Lambda_{1}\right)$ and setting it to zero gives:

$$
\lambda_{c}=1 / \Lambda_{1}
$$

SIS model - spectral approach

At $\lambda \gtrsim \lambda_{c}$ in first order in $\tau \equiv \lambda \Lambda_{1}-1 \ll 1$ we find the prevalence :

SIS model - spectral approach

At $\lambda \gtrsim \lambda_{c}$ in first order in $\tau \equiv \lambda \Lambda_{1}-1 \ll 1$ we find the prevalence :

$$
\rho \equiv \sum_{i=1}^{N} \rho_{i} / N \approx \alpha_{1} \tau,
$$

SIS model — spectral approach

At $\lambda \gtrsim \lambda_{c}$ in first order in $\tau \equiv \lambda \Lambda_{1}-1 \ll 1$ we find the prevalence :

$$
\rho \equiv \sum_{i=1}^{N} \rho_{i} / N \approx \alpha_{1} \tau,
$$

where the coefficient α_{1} is

$$
\alpha_{1}=\sum_{i=1}^{N} f_{i}\left(\Lambda_{1}\right) /\left[N \sum_{i=1}^{N} f_{i}^{3}\left(\Lambda_{1}\right)\right] .
$$

SIS model — spectral approach

At $\lambda \gtrsim \lambda_{c}$ in first order in $\tau \equiv \lambda \Lambda_{1}-1 \ll 1$ we find the prevalence :

$$
\rho \equiv \sum_{i=1}^{N} \rho_{i} / N \approx \alpha_{1} \tau,
$$

where the coefficient α_{1} is

$$
\alpha_{1}=\sum_{i=1}^{N} f_{i}\left(\Lambda_{1}\right) /\left[N \sum_{i=1}^{N} f_{i}^{3}\left(\Lambda_{1}\right)\right] .
$$

Thus, at $\tau \ll 1, \rho$ is determined by the principal eigenvector.

SIS model - spectral approach

At $\lambda \gtrsim \lambda_{c}$ in first order in $\tau \equiv \lambda \Lambda_{1}-1 \ll 1$ we find the prevalence :

$$
\rho \equiv \sum_{i=1}^{N} \rho_{i} / N \approx \alpha_{1} \tau,
$$

where the coefficient α_{1} is

$$
\alpha_{1}=\sum_{i=1}^{N} f_{i}\left(\Lambda_{1}\right) /\left[N \sum_{i=1}^{N} f_{i}^{3}\left(\Lambda_{1}\right)\right] .
$$

Thus, at $\tau \ll 1, \rho$ is determined by the principal eigenvector.
The contribution of the other eigenvectors is of order τ^{2}.

SIS model — spectral approach

At $\lambda \gtrsim \lambda_{c}$ in first order in $\tau \equiv \lambda \Lambda_{1}-1 \ll 1$ we find the prevalence :

$$
\rho \equiv \sum_{i=1}^{N} \rho_{i} / N \approx \alpha_{1} \tau,
$$

where the coefficient α_{1} is

$$
\alpha_{1}=\sum_{i=1}^{N} f_{i}\left(\Lambda_{1}\right) /\left[N \sum_{i=1}^{N} f_{i}^{3}\left(\Lambda_{1}\right)\right] .
$$

Thus, at $\tau \ll 1, \rho$ is determined by the principal eigenvector.
The contribution of the other eigenvectors is of order τ^{2}.
Considering the two largest eigenvalues Λ_{1} and Λ_{2}, and their eigenvectors, gives

$$
\rho(\lambda) \approx \alpha_{1} \tau+\alpha_{2} \tau^{2}
$$

Localized and delocalized eigenvectors

The usual point of view is that a finite fraction of vertices is infected immediately above λ_{c}. This corresponds to α_{1} of order $\mathcal{O}(1)$ in our analysis.

Localized and delocalized eigenvectors

The usual point of view is that a finite fraction of vertices is infected immediately above λ_{c}. This corresponds to α_{1} of order $\mathcal{O}(1)$ in our analysis.

To learn if another behavior is possible, we study wether Λ_{1} corresponds to a localized or delocalized state.

Localized and delocalized eigenvectors

The usual point of view is that a finite fraction of vertices is infected immediately above λ_{c}. This corresponds to α_{1} of order $\mathcal{O}(1)$ in our analysis.

To learn if another behavior is possible, we study wether Λ_{1} corresponds to a localized or delocalized state.

Example from quantum mechanics: electron wave function amplitude around an impurity in graphene.

Localized and delocalized eigenvectors

The usual point of view is that a finite fraction of vertices is infected immediately above λ_{c}. This corresponds to α_{1} of order $\mathcal{O}(1)$ in our analysis.

To learn if another behavior is possible, we study wether Λ_{1} corresponds to a localized or delocalized state.

Example from quantum mechanics: electron wave function amplitude around an impurity in graphene.

From [Pereira et al., PRB 77, 115109 (2008)]

Localized and delocalized eigenvectors

The usual point of view is that a finite fraction of vertices is infected immediately above λ_{c}. This corresponds to α_{1} of order $\mathcal{O}(1)$ in our analysis.

To learn if another behavior is possible, we study wether Λ_{1} corresponds to a localized or delocalized state.

Example from quantum mechanics: electron wave function amplitude around an impurity in graphene.

The wave function is localized on a finite number of sites around the impurity.

From [Pereira et al., PRB 77, 115109 (2008)]

Localized and delocalized eigenvectors

How to quantify localization?

Localized and delocalized eigenvectors

How to quantify localization?
Inverse Participation Ratio:

$$
\operatorname{IPR}(\Lambda) \equiv \sum_{i=1}^{N} f_{i}^{4}(\Lambda)
$$

Localized and delocalized eigenvectors

How to quantify localization?
Inverse Participation Ratio:

$$
\operatorname{IPR}(\Lambda) \equiv \sum_{i=1}^{N} f_{i}^{4}(\Lambda)
$$

As an illustration, consider two limiting cases:
(i) a vector with identical components $f_{i}=1 / \sqrt{N}$,
(ii) a vector with one component $f_{i}=1$ and the remainders zero.

Localized and delocalized eigenvectors

How to quantify localization?
Inverse Participation Ratio:

$$
\operatorname{IPR}(\Lambda) \equiv \sum_{i=1}^{N} f_{i}^{4}(\Lambda)
$$

As an illustration, consider two limiting cases:
(i) a vector with identical components $f_{i}=1 / \sqrt{N}$,
(ii) a vector with one component $f_{i}=1$ and the remainders zero.

Case (i) gives $\quad \mathrm{IPR}=1 / N$.

Localized and delocalized eigenvectors

How to quantify localization?
Inverse Participation Ratio:

$$
\operatorname{IPR}(\Lambda) \equiv \sum_{i=1}^{N} f_{i}^{4}(\Lambda)
$$

As an illustration, consider two limiting cases:
(i) a vector with identical components $f_{i}=1 / \sqrt{N}$,
(ii) a vector with one component $f_{i}=1$ and the remainders zero.

Case (i) gives $\quad \mathrm{IPR}=1 / N$.
Case (ii) gives $\quad I P R=1$.

Localized and delocalized eigenvectors

How to quantify localization?
Inverse Participation Ratio:

$$
\operatorname{IPR}(\Lambda) \equiv \sum_{i=1}^{N} f_{i}^{4}(\Lambda)
$$

As an illustration, consider two limiting cases:
(i) a vector with identical components $f_{i}=1 / \sqrt{N}$,
(ii) a vector with one component $f_{i}=1$ and the remainders zero.

Case (i) gives $\quad \mathrm{IPR}=1 / N$.
Case (ii) gives $\quad \mathrm{IPR}=1$.
Thus: a delocalized state: $\operatorname{IPR}(\Lambda) \xrightarrow{N \rightarrow \infty} 0$

$$
\text { a localized state: } \quad \operatorname{IPR}(\Lambda) \xrightarrow{N \rightarrow \infty} \text { const. }>0
$$

Localized and delocalized eigenvectors

A delocalized principal eigenvector: $f_{i}(\Lambda)=\mathcal{O}(1 / \sqrt{N})$

Localized and delocalized eigenvectors

A delocalized principal eigenvector: $f_{i}(\Lambda)=\mathcal{O}(1 / \sqrt{N})$ SO:

$$
\alpha_{1}=\mathcal{O}(1)
$$

Localized and delocalized eigenvectors

A delocalized principal eigenvector: $f_{i}(\Lambda)=\mathcal{O}(1 / \sqrt{N})$ so:

$$
\alpha_{1}=\mathcal{O}(1)
$$

A localized principal eigenvector:

$$
\alpha_{1}=\mathcal{O}(1 / N)
$$

Localized and delocalized eigenvectors

A delocalized principal eigenvector: $f_{i}(\Lambda)=\mathcal{O}(1 / \sqrt{N})$
so:

$$
\alpha_{1}=\mathcal{O}(1)
$$

A localized principal eigenvector:

$$
\alpha_{1}=\mathcal{O}(1 / N)
$$

So, if the principal eigenvector $\vec{f}\left(\Lambda_{1}\right)$ is localized, then

$$
\rho \approx \alpha_{1} \tau \sim \mathcal{O}(1 / N)
$$

Localized and delocalized eigenvectors

A delocalized principal eigenvector: $f_{i}(\Lambda)=\mathcal{O}(1 / \sqrt{N})$
so:

$$
\alpha_{1}=\mathcal{O}(1)
$$

A localized principal eigenvector:

$$
\alpha_{1}=\mathcal{O}(1 / N)
$$

So, if the principal eigenvector $\vec{f}\left(\Lambda_{1}\right)$ is localized, then

$$
\rho \approx \alpha_{1} \tau \sim \mathcal{O}(1 / N)
$$

and, right above λ_{c}, the disease is localized on a finite number $N \rho$ of vertices.

Localized and delocalized eigenvectors

A delocalized principal eigenvector: $f_{i}(\Lambda)=\mathcal{O}(1 / \sqrt{N})$
so:

$$
\alpha_{1}=\mathcal{O}(1)
$$

A localized principal eigenvector:

$$
\alpha_{1}=\mathcal{O}(1 / N)
$$

So, if the principal eigenvector $\vec{f}\left(\Lambda_{1}\right)$ is localized, then

$$
\rho \approx \alpha_{1} \tau \sim \mathcal{O}(1 / N)
$$

and, right above λ_{c}, the disease is localized on a finite number $N \rho$ of vertices.
If $\vec{f}\left(\Lambda_{1}\right)$ is delocalized, then ρ is of order $\mathcal{O}(1)$ and the disease infects a finite fraction of vertices right above λ_{c}.

Weighted and unweighted real-world nets

(a) Weighted collaboration networks of scientists posting preprints on the:
(black line) astrophysics archive at arXiv.org, 1995-1999
(red line) condensed matter archive at arXiv.org, 1995-2005

Weighted and unweighted real-world nets

(a) Weighted collaboration networks of scientists posting preprints on the:
(black line) astrophysics archive at arXiv.org, 1995-1999
(red line) condensed matter archive at arXiv.org, 1995-2005
(b) Unweighted karate-club network: the lowest curve only accounts for the eigenstate Λ_{1}. The most upper curve is the exact ρ.

An uncorrelated scale-free network

(a) A scale-free network of 10^{5} vertices generated by the static model with $\gamma=4$ and $\langle q\rangle=10$. (b) Zoom of the prevalence at λ close to $\lambda_{c}=1 / \Lambda_{1}$.

Eigenvectors corresponding to Λ_{1} and Λ_{2} are localized. Λ_{3} is delocalized.

A Bethe lattice (a) with a hub (b) or two hubs (c)

Simple but representative example of networks. Can be treated analytically:

A Bethe lattice (a) with a hub (b) or two hubs (c)

Simple but representative example of networks. Can be treated analytically:
(a) $\Lambda_{1}=k$ and $f_{i}\left(\Lambda_{1}\right)=1 / \sqrt{N} \quad$ (delocalized).

A Bethe lattice (a) with a hub (b) or two hubs (c)

Simple but representative example of networks. Can be treated analytically:
(a) $\Lambda_{1}=k$ and $f_{i}\left(\Lambda_{1}\right)=1 / \sqrt{N} \quad$ (delocalized).
(b) Introduce a hub of degree $q>k$ connected by edges with weight $w \geq 1$.

A Bethe lattice (a) with a hub (b) or two hubs (c)

(b)

(c)

Simple but representative example of networks. Can be treated analytically:
(a) $\Lambda_{1}=k$ and $f_{i}\left(\Lambda_{1}\right)=1 / \sqrt{N} \quad$ (delocalized).
(b) Introduce a hub of degree $q>k$ connected by edges with weight $w \geq 1$.

Look for a solution that exponentially decreases with distance n from the hub:

$$
f_{i}\left(\Lambda_{1}\right)=f_{n}\left(\Lambda_{1}\right) \propto 1 / a^{n}
$$

A Bethe lattice (a) with a hub (b) or two hubs (c)

(b)

(c)

Simple but representative example of networks. Can be treated analytically:
(a) $\Lambda_{1}=k$ and $f_{i}\left(\Lambda_{1}\right)=1 / \sqrt{N} \quad$ (delocalized).
(b) Introduce a hub of degree $q>k$ connected by edges with weight $w \geq 1$.

Look for a solution that exponentially decreases with distance n from the hub:

$$
f_{i}\left(\Lambda_{1}\right)=f_{n}\left(\Lambda_{1}\right) \propto 1 / a^{n}
$$

$$
\begin{aligned}
& \Lambda_{1}=q w^{2} / \sqrt{q w^{2}-B}, \\
& I P R\left(\Lambda_{1}\right)=f_{0}^{4}\left(\Lambda_{1}\right)\left[1+q w^{4} /\left(a^{4}-B\right)\right], \\
& f_{0}\left(\Lambda_{1}\right)=\left[\left(q w^{2} / 2-B\right) /\left(q w^{2}-B\right)\right]^{1 / 2}, \\
& f_{n}\left(\Lambda_{1}\right)=w f_{0}\left(\Lambda_{1}\right) / a^{n} .
\end{aligned}
$$

A Bethe lattice (a) with a hub (b) or two hubs (c)

(b)

(c)

Simple but representative example of networks. Can be treated analytically:
(a) $\Lambda_{1}=k$ and $f_{i}\left(\Lambda_{1}\right)=1 / \sqrt{N} \quad$ (delocalized).
(b) Introduce a hub of degree $q>k$ connected by edges with weight $w \geq 1$.

Look for a solution that exponentially decreases with distance n from the hub:

$$
f_{i}\left(\Lambda_{1}\right)=f_{n}\left(\Lambda_{1}\right) \propto 1 / a^{n}
$$

$$
\begin{aligned}
& \Lambda_{1}=q w^{2} / \sqrt{q w^{2}-B}, \\
& I P R\left(\Lambda_{1}\right)=f_{0}^{4}\left(\Lambda_{1}\right)\left[1+q w^{4} /\left(a^{4}-B\right)\right], \\
& f_{0}\left(\Lambda_{1}\right)=\left[\left(q w^{2} / 2-B\right) /\left(q w^{2}-B\right)\right]^{1 / 2}, \\
& f_{n}\left(\Lambda_{1}\right)=w f_{0}\left(\Lambda_{1}\right) / a^{n} .
\end{aligned}
$$

(c) ...

Conclusion

If the principal eigenvector of the adjacency matrix is localized,
then, immediately above the threshold $1 / \Lambda_{1}$,
the disease is localized on a finite number of vertices.
In this case, a real epidemic affecting a finite fraction of
vertices occurs after a smooth crossover, and
the notion of the epidemic threshold is meaningless.

