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SIS model: a standard paradigm for disease spreading in networked systems

Individuals (vertices) can be in one of two states:

1. Susceptible (or healthy) - 

2. Infected - 

An infected vertex becomes susceptible with unit rate:

and infects its susceptible neighbor at rate   :

2

Susceptible-Infected-Susceptible epidemic model

All structural properties can be extracted from the adjacency matrix.
Degree of vertex i ≡ qi : number of connections attached to it.
In the example above case qi = 2.
Degree distribution ≡ P (q) : probability that a vertex has degree q.
Usually in complex networks, the degree is broadly distributed.
(Many vertices with low degree and a few with very high degree)
P (q) ∼ q−γ
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    is the infection rate
(control parameter)
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healthy phase, and an active phase with a stationary endemic state.
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        Homogeneous in the sense that all vertices have roughly the same number      of 

connections, such as fully connected graphs, Erdos-Rényi graphs or lattices.
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Königsberg bridge problem: “Is there any single

path that crosses all seven bridges exactly once each?”.

Euler proved (1736) the impossibility of such path,

using of a graph representation of the problem.

Example of a graph: vertices (or nodes) are the

blue dots and edges or links are the black lines.

Structure of a graph ≡ its adjacency matrix

aij =











1 , if vertex i is linked to vertex j ,

0 , otherwise .

1
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1.2. STRUCTURAL PROPERTIES OF NETWORKS 7

1.2.1 Adjacency matrix and basic notions

The structure of a graph is completely characterized by a matrix called adjacency matrix:

A =

















a11 a12 . . . a1N

a21 a22 . . . a2N

...
...

. . .
...

aN1 aN2 . . . aNN

















(1.2)

where N is the number of vertices in the graph and each element aij is either 1 if i is linked

to j, or 0 otherwise. Every property of the graph can be extracted from its adjacency

matrix, since it is fully described by it. For example, the most elementary property of

node i, the degree ki, is given by

ki =
N

∑

j=1

aij (1.3)

providing the number of links it has (also called its connectivity).

Accordingly the average degree, is given by 〈k〉 =
∑

i,j aij/N = 2L/N (Eq. 1.1), where

L is the number of edges in the graph and 〈· · · 〉 means average over a particular graph. Yet,

the average degree does not probe the degree variations present in the network, which are

better characterized by the degree probability distribution, Pk, providing the probability

that a node has exactly k links. For most networks (called scale-free networks), Pk is a

heterogeneous, slowly decaying function, many times well approximated by a power law

Pk ∼ k−γ , where γ is the degree exponent, with a cutoff at kcut ≡ kmax ∼ N1/(γ−1) [48, 60].

In scale-free networks the majority of nodes has low degree (of order 1) but a few, called

hubs, have very high degree (of order of kcut). In most real world networks N % 1,

so that also kcut % 1, and k can be taken as a real variable, and Pk as a probability

density function2: P (k). Networks can be directed, with links having a specific direction,

or undirected. The number of in-links of a node in a directed network is its in-degree, and

the number of links going out is its out-degree. Also, a network can be weighted [61, 62]

(with its edges having a specific weight, representing the strength or importance of the

2However, note that many times P (k) will be called a probability distribution, as is common in physics.
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2

• World-Wide Web

• E-mail, ()

• Power-grids

Biological networks

• Protein interaction networks

• Metabolic networks

• Food webs, networks of ecosystems

All structural properties can be extracted from the adjacency matrix.
Degree of vertex i ≡ qi : number of connections attached to it.
In the example above case qi = 2.
Degree distribution ≡ P (q) : probability that a vertex has degree q.
Usually in complex networks, the degree is broadly distributed.
(Many vertices with low degree and a few with very high degree)
Geodesic ≡ !ij : shortest path length between vertices i and j.
!ij = 4
Small-world property: !̄ ∼ logN
Average geodesic :
k-dependent geodesic :
Clustering coefficient ≡ Ci :
k-dependent clustering coefficient :

Ci = 0 Ci = 1/6 Ci = 1

Breadth first search algorithm to compute !ij

1. Assign vertex j distance zero, to indicate that it is zero steps away from itself, and set
d ← 0.

2. For each vertex k whose assigned distance is d, follow each attached edge to the vertex
l at its other end and, if l has not already been assigned a distance, assign it distance
d+ 1. Declare k to be a predecessor of l.

3. Set d ← d+ 1.

4. Repeat from step 2 until there are no unassigned vertices left.

5. Now the shortest path (if there is one!) from i to j is the path we get by stepping from i
to its predecessor, and then to the predecessor of each successive vertex until j is reached.

6. If a vertex has two or more predecessors, then there are two or more shortest paths, each
of which must be followed separately if we wish to know all shortest paths from i to j.

3

Scale-free deterministic graphs
Deterministic graph with exponential degree distribution
All graphs had the generic property
The dependences were also numerically verified for random degree-correlated networks.

For uncorrelated networks
Subgraphs: cycles, trees

• cycles

• trees

Centrality measures

• Betweenness centrality

Example of subgraphs and cycles in networks
(b) has t = 3 edges among the neighbors of the
central vertex forming a cycle of length h = 5

For networks with well defined P (q) ∼ q−γ and C(k) ∼ k−α :
Density of subgraphs
Density of cycles
Density of (n = 5, t) subgraphs
as a function of t
Density of centrally connected cycles as a function of graph size

Network of collaborations arising from the Fifth Framework Programme

Degree distribution

γ = 2.1

γU = 1.76

γC = 2.76

Geodesic
"̄U = 3.34

"̄C = 5.67
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1.2. STRUCTURAL PROPERTIES OF NETWORKS 7

1.2.1 Adjacency matrix and basic notions

The structure of a graph is completely characterized by a matrix called adjacency matrix:

A =

















a11 a12 . . . a1N

a21 a22 . . . a2N

...
...

. . .
...

aN1 aN2 . . . aNN

















(1.2)

where N is the number of vertices in the graph and each element aij is either 1 if i is linked

to j, or 0 otherwise. Every property of the graph can be extracted from its adjacency

matrix, since it is fully described by it. For example, the most elementary property of

node i, the degree ki, is given by

ki =
N

∑

j=1

aij (1.3)

providing the number of links it has (also called its connectivity).

Accordingly the average degree, is given by 〈k〉 =
∑

i,j aij/N = 2L/N (Eq. 1.1), where

L is the number of edges in the graph and 〈· · · 〉 means average over a particular graph. Yet,

the average degree does not probe the degree variations present in the network, which are

better characterized by the degree probability distribution, Pk, providing the probability

that a node has exactly k links. For most networks (called scale-free networks), Pk is a

heterogeneous, slowly decaying function, many times well approximated by a power law

Pk ∼ k−γ , where γ is the degree exponent, with a cutoff at kcut ≡ kmax ∼ N1/(γ−1) [48, 60].

In scale-free networks the majority of nodes has low degree (of order 1) but a few, called

hubs, have very high degree (of order of kcut). In most real world networks N % 1,

so that also kcut % 1, and k can be taken as a real variable, and Pk as a probability

density function2: P (k). Networks can be directed, with links having a specific direction,

or undirected. The number of in-links of a node in a directed network is its in-degree, and

the number of links going out is its out-degree. Also, a network can be weighted [61, 62]

(with its edges having a specific weight, representing the strength or importance of the

2However, note that many times P (k) will be called a probability distribution, as is common in physics.
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Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos (2003):
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             which has a nonzero solution                  if                 . In this case, the prevalence
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All structural properties can be extracted from the adjacency matrix.
Degree of vertex i ≡ qi : number of connections attached to it.
In the example above case qi = 2.
Degree distribution ≡ P (q) : probability that a vertex has degree q.
Usually in complex networks, the degree is broadly distributed.
(Many vertices with low degree and a few with very high degree)
P (q) ∼ q−γ

λc

λ < λc
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1 + λ
∑

j aijρj

ρi(t → ∞) , dρi(t)/dt = 0

qi A qj

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi(t → ∞) , dρi(t)/dt = 0

qi A qj

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi(t → ∞) , dρi(t)/dt = 0

qi A qj

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

qi A qj

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi(t → ∞) , dρi(t)/dt = 0

qi A qj

             which has a nonzero solution                  if                 . In this case, the prevalence

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

qi A qj

All structural properties can be extracted from the adjacency matrix.
Degree of vertex i ≡ qi : number of connections attached to it.
In the example above case qi = 2.
Degree distribution ≡ P (q) : probability that a vertex has degree q.
Usually in complex networks, the degree is broadly distributed.
(Many vertices with low degree and a few with very high degree)
P (q) ∼ q−γ

λc

λ < λc

λ > λc

aij

aij =
qiqj

N〈q〉

qi qj

λc =
〈q〉

〈q2〉

If γ < 3, then 〈q2〉 ∼
∑

q

q2q−γ → ∞ =⇒ λc = 0 .

If γ > 3, then 〈q2〉 < ∞ =⇒ λc > 0 .

qi A qj

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

qi A qj

is  nonzero .
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Example of the SIS model on a real network*
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*Network of social ties between people belonging to a karate club.

The prevalence       is the most upper curve (black line). 
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λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

τ ≡ λΛ1 − 1 % 1

ρ ≡
N∑

i=1

ρi/N ≈ α1τ ,

α1 =
N∑

i=1

fi(Λ1)/

[

N
N∑

i=1

f3
i (Λ1)

]

τ % 1

τ2

Λ1 Λ2 ρ(λ) ≈ α1τ + α2τ
2

O(1)

IPR(Λ) ≡
N∑

i=1

f4
i (Λ)

fi = 1/
√
N IPR = 1/N .

fi = 1 IPR = 1 .

IPR(Λ)
N→∞−→ 0

IPR(Λ)
N→∞−→ const. > 0

fi(Λ) = O(1/
√
N)

α1 = O(1)

α1 = O(1/N)

ρ ≈ α1τ ∼ O(1/N)

Nρ

qi A qj

λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

τ ≡ λΛ1 − 1 % 1

ρ ≡
N∑

i=1

ρi/N ≈ α1τ ,

α1 =
N∑

i=1

fi(Λ1)/

[

N
N∑

i=1

f3
i (Λ1)

]

τ % 1

τ2

Λ1 Λ2 ρ(λ) ≈ α1τ + α2τ
2

O(1)

IPR(Λ) ≡
N∑

i=1

f4
i (Λ)

fi = 1/
√
N IPR = 1/N .

fi = 1 IPR = 1 .

IPR(Λ)
N→∞−→ 0

IPR(Λ)
N→∞−→ const. > 0

fi(Λ) = O(1/
√
N)

α1 = O(1)

α1 = O(1/N)

ρ ≈ α1τ ∼ O(1/N)

Nρ

qi A qj
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Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

qi A qj

The eigenvalues        and corresponding eigenvectors               with components

are solutions of the equation                         .

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

Λ f

Λ #f(Λ)

Λf = Af

Λ#f = A#f

#f(Λ) (Λmax ≡ Λ1 ≥ Λ2 ≥ . . . ≥ ΛN)

Λ1
#f(Λ1)

qi A qj

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

Λ f

Λ #f(Λ)

Λf = Af

Λ#f = A#f

#f(Λ) (Λmax ≡ Λ1 ≥ Λ2 ≥ . . . ≥ ΛN)

Λ1
#f(Λ1)

qi A qj

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

Λ f

Λ #f(Λ)

Λf = Af

Λ#f = A#f

#f(Λ) (Λmax ≡ Λ1 ≥ Λ2 ≥ . . . ≥ ΛN)

Λ1
#f(Λ1)

qi A qj

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

Λ f fi

Λ #f(Λ)

Λf = Af

Λ#f = A#f

#f(Λ) (Λmax ≡ Λ1 ≥ Λ2 ≥ . . . ≥ ΛN)

Λ1
#f(Λ1)

qi A qj
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Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

qi A qj

The eigenvalues        and corresponding eigenvectors               with components

are solutions of the equation                         .

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

Λ f

Λ #f(Λ)

Λf = Af

Λ#f = A#f

#f(Λ) (Λmax ≡ Λ1 ≥ Λ2 ≥ . . . ≥ ΛN)

Λ1
#f(Λ1)

qi A qj

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

Λ f

Λ #f(Λ)

Λf = Af

Λ#f = A#f

#f(Λ) (Λmax ≡ Λ1 ≥ Λ2 ≥ . . . ≥ ΛN)

Λ1
#f(Λ1)

qi A qj

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

Λ f

Λ #f(Λ)

Λf = Af

Λ#f = A#f

#f(Λ) (Λmax ≡ Λ1 ≥ Λ2 ≥ . . . ≥ ΛN)

Λ1
#f(Λ1)

qi A qj

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

Λ f fi

Λ #f(Λ)

Λf = Af

Λ#f = A#f

#f(Λ) (Λmax ≡ Λ1 ≥ Λ2 ≥ . . . ≥ ΛN)

Λ1
#f(Λ1)

qi A qj

Since       is real and symmetric, its       eigenvectors

form a complete orthonormal basis.

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

Λ f

Λ #f(Λ)

Λf = Af

Λ#f = A#f

#f(Λ) (Λmax ≡ Λ1 ≥ Λ2 ≥ . . . ≥ ΛN)

Λ1
#f(Λ1)

qi A qj

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

qi A qj

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

Λ f fi

Λ #f(Λ)

Λf = Af

Λ#f = A#f

N

#f(Λ) (Λmax ≡ Λ1 ≥ Λ2 ≥ . . . ≥ ΛN)

Λ1
#f(Λ1)

qi A qj
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Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

qi A qj

Perron-Frobenius theorem : The largest eigenvalue         and the corresponding 

principal eigenvector           of a real non-negative symmetric matrix are non-

negative.

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

Λ f

Λ #f(Λ)

Λf = Af

Λ#f = A#f

#f(Λ) (Λmax ≡ Λ1 ≥ Λ2 ≥ . . . ≥ ΛN)

Λ1
#f(Λ1)

qi A qj

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

Λ f

Λ #f(Λ)

Λf = Af

Λ#f = A#f

#f(Λ) (Λmax ≡ Λ1 ≥ Λ2 ≥ . . . ≥ ΛN)

Λ1
#f(Λ1)

qi A qj

The eigenvalues        and corresponding eigenvectors               with components

are solutions of the equation                         .

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

Λ f

Λ #f(Λ)

Λf = Af

Λ#f = A#f

#f(Λ) (Λmax ≡ Λ1 ≥ Λ2 ≥ . . . ≥ ΛN)

Λ1
#f(Λ1)

qi A qj

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

Λ f

Λ #f(Λ)

Λf = Af

Λ#f = A#f

#f(Λ) (Λmax ≡ Λ1 ≥ Λ2 ≥ . . . ≥ ΛN)

Λ1
#f(Λ1)

qi A qj

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

Λ f

Λ #f(Λ)

Λf = Af

Λ#f = A#f

#f(Λ) (Λmax ≡ Λ1 ≥ Λ2 ≥ . . . ≥ ΛN)

Λ1
#f(Λ1)

qi A qj

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

Λ f fi

Λ #f(Λ)

Λf = Af

Λ#f = A#f

#f(Λ) (Λmax ≡ Λ1 ≥ Λ2 ≥ . . . ≥ ΛN)

Λ1
#f(Λ1)

qi A qj

Since       is real and symmetric, its       eigenvectors

form a complete orthonormal basis.

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

Λ f

Λ #f(Λ)

Λf = Af

Λ#f = A#f

#f(Λ) (Λmax ≡ Λ1 ≥ Λ2 ≥ . . . ≥ ΛN)

Λ1
#f(Λ1)

qi A qj

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

qi A qj

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

Λ f fi

Λ #f(Λ)

Λf = Af

Λ#f = A#f

N

#f(Λ) (Λmax ≡ Λ1 ≥ Λ2 ≥ . . . ≥ ΛN)

Λ1
#f(Λ1)

qi A qj



[ arXiv:1202.4411 ; PRL 109, 128702 (2012) ]

Spectral properties of the adjacency matrix

9

Λ1 ∼
√
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All structural properties can be extracted from the adjacency matrix.
Degree of vertex i ≡ qi : number of connections attached to it.
In the example above case qi = 2.
Degree distribution ≡ P (q) : probability that a vertex has degree q.
Usually in complex networks, the degree is broadly distributed.
(Many vertices with low degree and a few with very high degree)
P (q) ∼ q−γ

I
1−→ S ,

S
λ−→ I .

⇑
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〈q〉

λc ∼ 1/〈q〉
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λc = 〈q〉/〈q2〉

If γ < 3, then 〈q2〉 ∼
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Λ1

(1)

                                                                         (2)



[ arXiv:1202.4411 ; PRL 109, 128702 (2012) ]

SIS model –– spectral approach

11

At               in first order in                                 we find the prevalence :

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

Λ f fi

Λ #f(Λ)

Λf = Af

Λ#f = A#f

N

#f(Λ) (Λmax ≡ Λ1 ≥ Λ2 ≥ . . . ≥ ΛN)

Λ1
#f(Λ1)

ρi =
∑

Λ

c(Λ)fi(Λ) .

#ρ

c(Λ) = λ
∑

Λ′

Λ′c(Λ′)
N∑

i=1

fi(Λ)fi(Λ′)

1 + λ
∑

Λ̃
Λ̃c(Λ̃)fi(Λ̃)

.

λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

qi A qj

λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

τ ≡ λΛ1 − 1 % 1

ρ ≡
N∑

i=1

ρi/N ≈ α1τ

α1 =
N∑

i=1

fi(Λ1)/

[

N
N∑

i=1

f3
i (Λ1)

]

qi A qj



[ arXiv:1202.4411 ; PRL 109, 128702 (2012) ]

SIS model –– spectral approach

11

At               in first order in                                 we find the prevalence :

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

Λ f fi

Λ #f(Λ)

Λf = Af

Λ#f = A#f

N

#f(Λ) (Λmax ≡ Λ1 ≥ Λ2 ≥ . . . ≥ ΛN)

Λ1
#f(Λ1)

ρi =
∑

Λ

c(Λ)fi(Λ) .

#ρ

c(Λ) = λ
∑

Λ′

Λ′c(Λ′)
N∑

i=1

fi(Λ)fi(Λ′)

1 + λ
∑

Λ̃
Λ̃c(Λ̃)fi(Λ̃)

.

λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

qi A qj

λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

τ ≡ λΛ1 − 1 % 1

ρ ≡
N∑

i=1

ρi/N ≈ α1τ

α1 =
N∑

i=1

fi(Λ1)/

[

N
N∑

i=1

f3
i (Λ1)

]

qi A qj

λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

τ ≡ λΛ1 − 1 % 1

ρ ≡
N∑

i=1

ρi/N ≈ α1τ ,

α1 =
N∑

i=1

fi(Λ1)/

[

N
N∑

i=1

f3
i (Λ1)

]

qi A qj



[ arXiv:1202.4411 ; PRL 109, 128702 (2012) ]

SIS model –– spectral approach

11

At               in first order in                                 we find the prevalence :

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

Λ f fi

Λ #f(Λ)

Λf = Af

Λ#f = A#f

N

#f(Λ) (Λmax ≡ Λ1 ≥ Λ2 ≥ . . . ≥ ΛN)

Λ1
#f(Λ1)

ρi =
∑

Λ

c(Λ)fi(Λ) .

#ρ

c(Λ) = λ
∑

Λ′

Λ′c(Λ′)
N∑

i=1

fi(Λ)fi(Λ′)

1 + λ
∑

Λ̃
Λ̃c(Λ̃)fi(Λ̃)

.

λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

qi A qj

λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

τ ≡ λΛ1 − 1

ρ ≡
N∑

i=1

ρi/N ≈ α1τ

α1 =
N∑

i=1

fi(Λ1)/

[

N
N∑

i=1

f3
i (Λ1)

]

qi A qj

λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

τ ≡ λΛ1 − 1 % 1

ρ ≡
N∑

i=1

ρi/N ≈ α1τ

α1 =
N∑

i=1

fi(Λ1)/

[

N
N∑

i=1

f3
i (Λ1)

]

qi A qj

λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

τ ≡ λΛ1 − 1 % 1

ρ ≡
N∑

i=1

ρi/N ≈ α1τ ,

α1 =
N∑

i=1

fi(Λ1)/

[

N
N∑

i=1

f3
i (Λ1)

]

qi A qj

where the coefficient         is

                                                                                              .

λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

τ ≡ λΛ1 − 1 % 1

ρ ≡
N∑

i=1

ρi/N ≈ α1τ ,

α1 =
N∑

i=1

fi(Λ1)/

[

N
N∑

i=1

f3
i (Λ1)

]

qi A qj



[ arXiv:1202.4411 ; PRL 109, 128702 (2012) ]

                                                      Thus, at             ,      is determined by the principal eigenvector.

λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

τ ≡ λΛ1 − 1 % 1

ρ ≡
N∑

i=1

ρi/N ≈ α1τ ,

α1 =
N∑

i=1

fi(Λ1)/

[

N
N∑

i=1

f3
i (Λ1)

]

τ % 1

qi A qj

λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

τ ≡ λΛ1 − 1 % 1

ρ ≡
N∑

i=1

ρi/N ≈ α1τ ,

α1 =
N∑

i=1

fi(Λ1)/

[

N
N∑

i=1

f3
i (Λ1)

]

τ % 1

qi A qj

SIS model –– spectral approach

11

At               in first order in                                 we find the prevalence :

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

Λ f fi

Λ #f(Λ)

Λf = Af

Λ#f = A#f

N

#f(Λ) (Λmax ≡ Λ1 ≥ Λ2 ≥ . . . ≥ ΛN)

Λ1
#f(Λ1)

ρi =
∑

Λ

c(Λ)fi(Λ) .

#ρ

c(Λ) = λ
∑

Λ′

Λ′c(Λ′)
N∑

i=1

fi(Λ)fi(Λ′)

1 + λ
∑

Λ̃
Λ̃c(Λ̃)fi(Λ̃)

.

λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

qi A qj

λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

τ ≡ λΛ1 − 1

ρ ≡
N∑

i=1

ρi/N ≈ α1τ

α1 =
N∑

i=1

fi(Λ1)/

[

N
N∑

i=1

f3
i (Λ1)

]

qi A qj

λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

τ ≡ λΛ1 − 1 % 1

ρ ≡
N∑

i=1

ρi/N ≈ α1τ

α1 =
N∑

i=1

fi(Λ1)/

[

N
N∑

i=1

f3
i (Λ1)

]

qi A qj

λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

τ ≡ λΛ1 − 1 % 1

ρ ≡
N∑

i=1

ρi/N ≈ α1τ ,

α1 =
N∑

i=1

fi(Λ1)/

[

N
N∑

i=1

f3
i (Λ1)

]

qi A qj

where the coefficient         is

                                                                                              .

λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

τ ≡ λΛ1 − 1 % 1

ρ ≡
N∑

i=1

ρi/N ≈ α1τ ,

α1 =
N∑

i=1

fi(Λ1)/

[

N
N∑

i=1

f3
i (Λ1)

]

qi A qj



[ arXiv:1202.4411 ; PRL 109, 128702 (2012) ]

                                                      Thus, at             ,      is determined by the principal eigenvector.

λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

τ ≡ λΛ1 − 1 % 1

ρ ≡
N∑

i=1

ρi/N ≈ α1τ ,

α1 =
N∑

i=1

fi(Λ1)/

[

N
N∑

i=1

f3
i (Λ1)

]

τ % 1

qi A qj

λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

τ ≡ λΛ1 − 1 % 1

ρ ≡
N∑

i=1

ρi/N ≈ α1τ ,

α1 =
N∑

i=1

fi(Λ1)/

[

N
N∑

i=1

f3
i (Λ1)

]

τ % 1

qi A qj

SIS model –– spectral approach

11

At               in first order in                                 we find the prevalence :

Λ1 ∼
√
qmax , qmax(N → ∞) → ∞

λc(N → ∞) → 0

i t

ρi(t)

dρi(t)

dt
= −ρi(t) + λ[1 − ρi(t)]

N∑

j=1

aijρj(t)

⇒

ρi(t → ∞) , dρi(t)/dt = 0

ρi =
λ
∑

j aijρj

1 + λ
∑

j aijρj

ρi > 0 ρ ≡
N∑

i=1

ρi/N

Λ f fi

Λ #f(Λ)

Λf = Af

Λ#f = A#f

N

#f(Λ) (Λmax ≡ Λ1 ≥ Λ2 ≥ . . . ≥ ΛN)

Λ1
#f(Λ1)

ρi =
∑

Λ

c(Λ)fi(Λ) .

#ρ

c(Λ) = λ
∑

Λ′

Λ′c(Λ′)
N∑

i=1

fi(Λ)fi(Λ′)

1 + λ
∑

Λ̃
Λ̃c(Λ̃)fi(Λ̃)

.

λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

qi A qj

λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

τ ≡ λΛ1 − 1

ρ ≡
N∑

i=1

ρi/N ≈ α1τ

α1 =
N∑

i=1

fi(Λ1)/

[

N
N∑

i=1

f3
i (Λ1)

]

qi A qj

λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

τ ≡ λΛ1 − 1 % 1

ρ ≡
N∑

i=1

ρi/N ≈ α1τ

α1 =
N∑

i=1

fi(Λ1)/

[

N
N∑

i=1

f3
i (Λ1)

]

qi A qj

λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

τ ≡ λΛ1 − 1 % 1

ρ ≡
N∑

i=1

ρi/N ≈ α1τ ,

α1 =
N∑

i=1

fi(Λ1)/

[

N
N∑

i=1

f3
i (Λ1)

]

qi A qj

where the coefficient         is

                                                                                              .

λ >∼ λc

ρi ≈ c(Λ1)fi(Λ1)

τ ≡ λΛ1 − 1 % 1

ρ ≡
N∑

i=1

ρi/N ≈ α1τ ,

α1 =
N∑

i=1

fi(Λ1)/

[

N
N∑

i=1

f3
i (Λ1)

]

qi A qj

The contribution of the other eigenvectors is of order      .
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To learn if another behavior is possible, we study wether     corresponds to a 

localized or delocalized state.

All structural properties can be extracted from the adjacency matrix.
Degree of vertex i ≡ qi : number of connections attached to it.
In the example above case qi = 2.
Degree distribution ≡ P (q) : probability that a vertex has degree q.
Usually in complex networks, the degree is broadly distributed.
(Many vertices with low degree and a few with very high degree)
P (q) ∼ q−γ

I
1−→ S ,

S
λ−→ I .

⇑
Inn

λc

λ < λc

λ > λc

〈q〉

λc ∼ 1/〈q〉

aij

aANA
ij =

qiqj
N〈q〉

qi qj

λc =
〈q〉
〈q2〉

λc = 〈q〉/〈q2〉

If γ < 3, then 〈q2〉 ∼
∑

q

q2q−γ → ∞ =⇒ λc = 0 .

If γ > 3, then 〈q2〉 < ∞ =⇒ λc > 0 .

N → ∞

λc = 1/Λ1

Λ1
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Example from quantum mechanics: electron 
wave function amplitude around an impurity in 
graphene.

The wave function is localized on a finite number 
of sites around the impurity.
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All structural properties can be extracted from the adjacency matrix.
Degree of vertex i ≡ qi : number of connections attached to it.
In the example above case qi = 2.
Degree distribution ≡ P (q) : probability that a vertex has degree q.
Usually in complex networks, the degree is broadly distributed.
(Many vertices with low degree and a few with very high degree)
P (q) ∼ q−γ

I
1−→ S ,

S
λ−→ I .

⇑
Inn

λc

λ < λc

λ > λc

〈q〉

λc ∼ 1/〈q〉

aij

aANA
ij =

qiqj
N〈q〉

qi qj

λc =
〈q〉
〈q2〉

λc = 〈q〉/〈q2〉

If γ < 3, then 〈q2〉 ∼
∑

q

q2q−γ → ∞ =⇒ λc = 0 .

If γ > 3, then 〈q2〉 < ∞ =⇒ λc > 0 .

N → ∞

λc = 1/Λ1

Λ1
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Simple but representative example of networks. Can be treated analytically:

(a)                and                                 (delocalized) .

ρ ≈ α1τ ∼ O(1/N)
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γ = 4 〈q〉 = 10
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Λ1 = k fi(Λ1) = 1/
√
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qw2 −B,
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n.

qi A qj
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Look for a solution that exponentially 

decreases with distance         from the hub:
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Conclusion

If the principal eigenvector of the adjacency matrix is localized,

then, immediately above the threshold          ,

the disease is localized on a finite number of vertices.

In this case, a real epidemic affecting a finite fraction of

vertices occurs after a smooth crossover, and

the notion of the epidemic threshold is meaningless.

All structural properties can be extracted from the adjacency matrix.
Degree of vertex i ≡ qi : number of connections attached to it.
In the example above case qi = 2.
Degree distribution ≡ P (q) : probability that a vertex has degree q.
Usually in complex networks, the degree is broadly distributed.
(Many vertices with low degree and a few with very high degree)
P (q) ∼ q−γ

I
1−→ S ,

S
λ−→ I .

⇑
Inn

λc

λ < λc

λ > λc

〈q〉

λc ∼ 1/〈q〉

aij

aANA
ij =

qiqj
N〈q〉

qi qj

λc =
〈q〉
〈q2〉

λc = 〈q〉/〈q2〉

If γ < 3, then 〈q2〉 ∼
∑

q

q2q−γ → ∞ =⇒ λc = 0 .

If γ > 3, then 〈q2〉 < ∞ =⇒ λc > 0 .

N → ∞

λc = 1/Λ1

Λ1


