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Introduction
Abstract

We delve into the statistical properties of regions within complex networks
that are distant from vertices with high centralities, such as hubs or highly
connected clusters [1]. These remote regions play a pivotal role in shaping
the asymptotic behaviours of various spreading processes and the features of
associated spectra. We investigate the probability distribution P≥m(s) of the
number  s of vertices located at distance  m or beyond from  a randomly
chosen  vertex in an undirected  network.  Earlier, this distribution  and its
large  m asymptotics  1/s2 were  obtained  theoretically  for  undirected
uncorrelated  networks [2]. Employing numerical simulations and analysing
empirical  data,  we explore a wide range of real undirected networks and
their models, including trees and loopy networks, and reveal that the inverse
square law is valid even for networks with strong correlations. We observe
this law in the networks demonstrating the small-world effect and containing
vertices with degree 1. We find the specific classes of networks for which this
law is not valid. Such networks include the finite-dimensional networks and
the networks embedded in finite-dimensional spaces.  We notice  that long
chains of nodes in networks reduce the range of  m for which the inverse
square law can be spotted. Interestingly, we detect such long chains in the
remote regions of the undirected projection of a large Web domain.
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Introduction (cont.)
Highlights

– For a wide array of nets, their remote regions obey a compelling pattern.
– This pattern emerges in the distributions of the number of nodes located
at long distances from a randomly chosen node.
– These distributions follow the inverse square law, s-2, remarkably well.
– Trees and loopy nets, including those marked by strong correlations, are
observed to follow this quasi-universal scaling.

Methods
Some basic definitions

– Intervertex distance, `ij :
Length (in edges) of the shortest path between a pair of vertices

– Nearest neighbors :
A pair of vertices separated by a distance m are mth nearest neighbors

( 1st neighbors are distanced by one edge, 2nd neighbors by two, … )

– mth neighbors’ shell of vertex i :
The set of vertices which are mth neighbors from a vertex i

– Pm(s) : The probability that, by choosing, uniformly, at random, a vertex i
in a graph, then the number of its mth nearest neighbors is s

In particular, if m = 1, then P1(s) is the degree distribution of the graph
(where degree is the number of edges connected to a given vertex).
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The figure illustrates an example of a small, 
simple graph with 1st neighbors (red),
2nd neighbors (blue)
and a 3rd neighbor (green)
from a given vertex (black).

Methods (cont.)
– P≥m(s) : The probability that number of nodes located at distance m or 
beyond from a randomly chosen node is s.
– Cumulative P≥m(s) :  
– Average distance between pairs of vertices in a connected component of 
size n :  

– Diameter, `max : The largest of all distances `ij
– Remote distance d : A distance in the interval  

Notes
–  For  various  networks,  we  measured  the  distribution  P≥m(s)  through
numerical computation of the number s of vertices located at distance m or
beyond from each (and every) vertex in that specific realization of the net.

– For computations, we used C programming language and, when network
size demanded it, MPI routines in the University of Aveiro’s HPC cluster.

– Unless otherwise stated, dashed lines in the figures have slope -1.

Results
Inverse square law in synthetic networks
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Table 1: Basic structural characteristics of the synthetic networks considered.

Results (cont.)
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Fig. 1: Erdős–Rényi random graph, size 106 
vertices, with average vertex degree hqi = 5.

(a) Distribution P≥m(s). Dotted lines show   
    the theoretical asymptotics provided in   
    [2]. Dashed line has slope -2.
(b) Cumulative distribution            .
(c) Pm(s) plot. Dashed line has slope -2.

Fig. 2: Random growing trees.
(a) Scale-free recursive tree with °=2.2
     (linear preferential attachment)
(b) Scale-free BA tree (with °=3)
     (proportional preference)
(c) Random recursive tree (with °=∞)
     (attachment to random vertices)

Results (cont.)
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Fig. 3: Connected uniform 
random tree. Only highest 
30 values of m are plotted.

Fig. 4: Random growing networks. Each new vertex in a recursive network 
attaches, with equal probability, to one or two existing vertices, (a,c,e), or to two 
existing vertices, (b,d,f), selected by the same attachment rules as for the 
recursive trees in Fig. 2(a,b,c), respectively.

Results (cont.)
The statistics of remote regions in real-world networks
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Table 2: Basic structural characteristics of the empirical networks considered.

Fig. 5: Four large collaboration social networks. (a) FP5 net [3,4]. (b) CiteSeer 
net [5]. (c) YouTube friends net [6]. (d) Facebook [7].

Results (cont.)
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Fig. 6: Two internet networks. (a) CAIDA map of routers [8]. (b) CAIDA map of 
Autonomous Systems [9].

Fig. 7: Two networks embedded in geometric space. (a) US power grid net [10]. 
(b) Road network PA [11].

Fig. 8: (a) A network of hyperlinks between pages within Google’s sites [12]. (b) 
Model tree-like network mimicking the Google net: it has the hub with the same 
numbers of the first-, second-, third-, and fourth-nearest neighbours, z1 = 11,401, 
z2 = 4228, z3 = 132, and z4 = 1, as the Google net.

Results (cont.)
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Fig. 9: Stanford Web domain [11]. These empirical cumulative distributions have 
the 1/s asymptotics for m within the range between 10 and 15, but for larger m, 
the cumulative distributions become step-like.

Fig. 10: Visualization, using Pajek [13], of the Stanford Web clusters formed by 
the vertices at a distance m = 25 or beyond from the largest hub in the 
undirected projection of the network, and edges between them. Notably, only 3 of 
these chains have one of their ends free, and the remaining 7 chains are parts of 
long cycles. Loosely speaking, the Web in this remote region is one-dimensional.

Conclusions & Perspectives
– We observed the s−2 scaling of the distribution P≥m(s) of the number s of
vertices located at distance m or beyond from a randomly chosen vertex in a
large set of synthetic and real nets – small worlds – with surprisingly diverse
architectures. Such nets include trees and loopy nets, with strong and weak
correlations, one-partite projections of bipartite nets (FP5 net), undirected
projections of directed nets (Stanford Web), collaboration, social, Internet
and Web nets. This inverse square law is  not observed in nets having no
vertices of degree 1 and in finite-dimensional nets (power grids, roads).
– The structure of connections between vertices within the remote regions of
networks differs dramatically from the main part of the network, Fig. 10.
–  One  should  emphasize  that  the  theoretical  results  of  Ref.  [2]  for
uncorrelated  networks still do  not offer a  compelling  explanation  for the
consistent observation of the inverse square law across such a wide spectrum
of networks. The explanation of this law is a challenge for future work.
– Other challenging directions for future work are the exploration of remote
regions of directed networks and examining the role of the chain structures
observed in this work in network processes.
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