

Universidade de Aveiro

Manual de Utilizador Placa DETIUA-S3

Versão 1.0

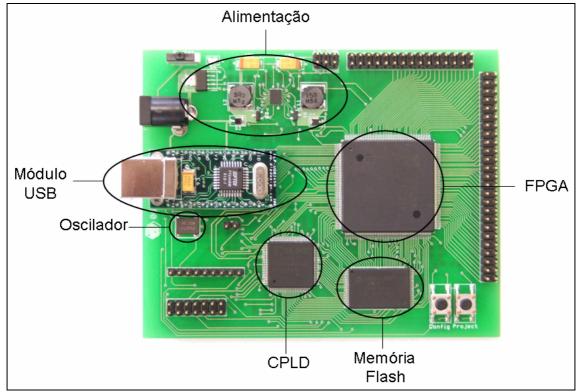
Manuel Almeida

manuel.almeida@ieeta.pt

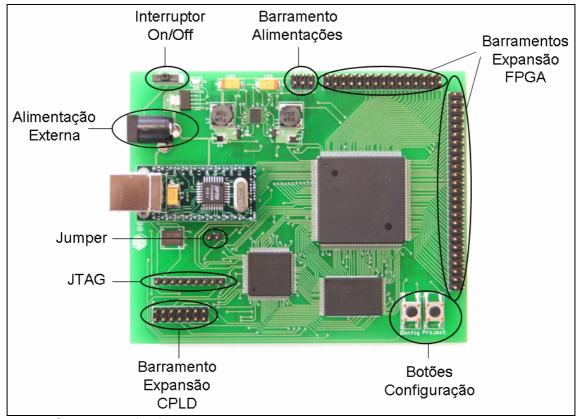
Conteúdos

1. Ir	ntrodução	3
1.1.	Informação acerca do manual	3
1.2.	Referências	5
2. A	rquitectura da Placa	6
2.1.	Alimentação	6
2.2.	FPGA	7
2.3.	CPLD	8
2.4.	Módulo USB	8
2.5.	Memória <i>Flash</i>	10
2.6.	Oscilador	11
2.7.	JTAG	11
2.8.	Barramentos de Expansão	13
3. F	uncionamento da PlacaError! E	Bookmark not defined.

1. Introdução


1.1. Informação acerca do manual

Este manual tem por objectivo descrever os componentes constituintes da placa de prototipagem e respectivas interfaces. É possivel ver como os dispositivos estão interligados na placa e como a FPGA os acede e controla.


Os componentes e interfaces discutidos aqui são:

- Alimentação
- FPGA Spartan-3
- Módulo USB
- CPLD
- Memória Flash
- Botão de pressão
- Relógio
- JTAG
- Barramento de Expansão

O manual permite, ao utilizador da placa, perceber o funcionamento da mesma e fornecer os dados necessários ao utilizador para uma correcta utilização.

Componentes da placa

Conectores da placa

1.2. Referências

As seguintes referências citam documentos ou endereços electrónicos que contêm informações mais detalhadas dos componentes utilizados na placa de prototipagem.

FPGA Spartan-3 Datasheet

http://www.xilinx.com/bvdocs/publications/ds099.pdf

Arquitectura e Configuração

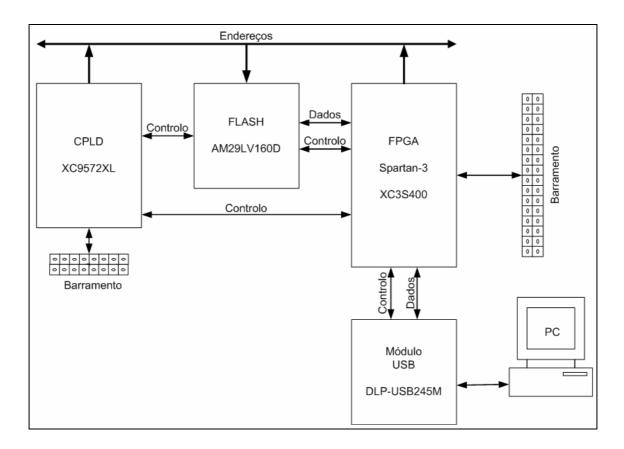
http://direct.xilinx.com/bvdocs/appnotes/xapp452.pdf

CPLD Datasheet

http://www.xilinx.com/bvdocs/publications/ds057.pdf

Alimentação

http://www.ti.com/


Módulo USB: Datasheet e Drivers

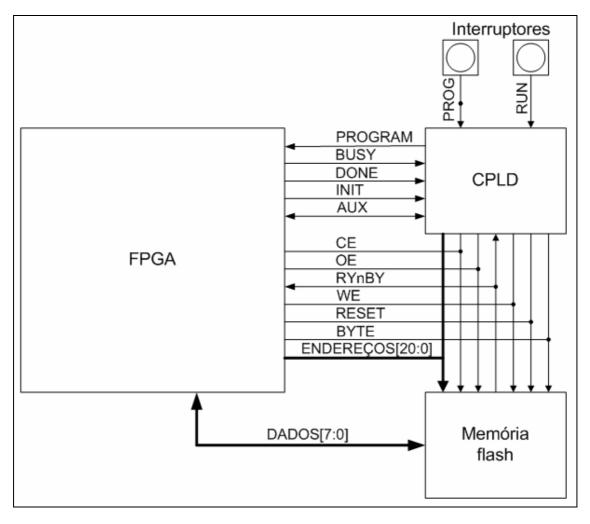
http://www.dlpdesign.com/

Memória Flash

http://www.amd.com/

2. Arquitectura da Placa

2.1. Alimentação


A alimentação da placa é realizada através da porta USB de um computador ou de um transformador de 6V DC utilizando um conector de 2.1mm, onde o contacto interior é o negativo.

A placa utiliza reguladores de tensão para obter as tensões necessárias ao bom funcionamento. As tensões necessárias são 5V, 3.3V, 2.5V e 1.2V.

Quando a placa se encontra ligada à porta USB, esta fornece a alimentação. A partir do momento que se liga a alimentação exterior, o *jack* desliga a alimentação feita pela porta USB e passa a fornecer a alimentação a partir de um transformador.

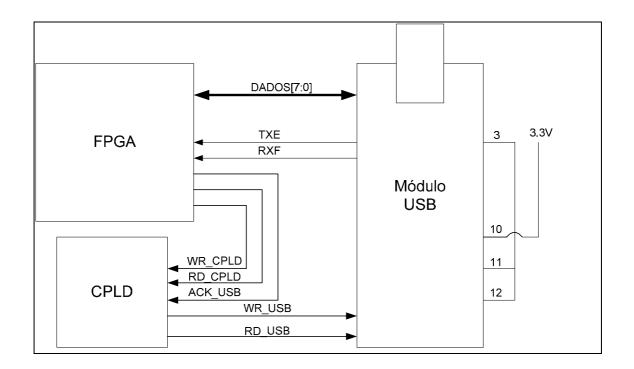
A placa tem um interruptor que permite ligar e desligar, onde é possivel verificar o estado da mesma através de um *led*. Se a placa se encontrar ligada o *led* vermelho acende.

2.2. FPGA

A FPGA Spartan-3 da Xilinx (XC3S400-4-PQ208) utilizada como componente reconfigurável, contém 400 mil portas de sistema, 56Kb de RAM distribuída, 16 multiplicadores, 141 pinos de entrada e saída, etc.

Ela está directamente ligada:

- Controlador USB
- Memória Flash
- CPLD
- Barramento de Expansão


2.3. CPLD

A placa contém uma CPLD XC9572XL da Xilinx, que é utilizada no processo de configuração da FPGA.

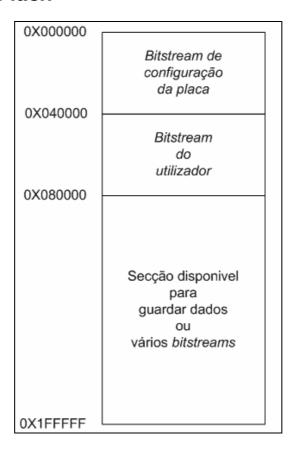
A memória *flash* contém o ficheiro de configuração (*bitstream*) da FPGA, sendo necessário um componente, neste caso uma CPLD, que realize o controlo da memória *flash* de modo a permitir a configuração da FPGA.

Descrição	Pinos CPLD	Pinos FPGA
ENDEREÇOS[20:0]	p35, p29, p28, p13, p50, p49, p42, p41, p40, p39, p37, p36, p25, p20, p18, p17, p16, p15, p14, p9, p12	p52, p64, p65, p95, p42, p43, p44, p45, p46, p48, p50, p51, p71, p76, p77, p78, p85, p93, p94, p102, p97
CE	p26	p65
OE	p28	p64
RYnBY	p15	p40
WE	p11	p37
RESET	p12	p39
ВҮТЕ	p47	p62

2.4. Módulo USB

Manuel Almeida 8 01-08-2006

O módulo USB utilizado foi o DLP-USB245M, que é um interface USB-FIFO paralelo. Este módulo da empresa DLP Design, tem como componente central o FT245BM da FTDI.


O módulo foi configurado por forma a funcionar a uma tensão de 3.3V, apesar de ser alimentado a 5V. Os dados são controlados através dos pinos TXE, RXF, WR e RD.

Este módulo USB contém uma EEPROM que possibilita armazenar a descrição do produto ou o número de série. Esta potencialidade, foi aproveitada para a introdução dessas informações, possibilitando que, ao ser ligadas várias placas a um computador, este consiga determinar quantas e quais as placas que estão num dado momento ligadas.

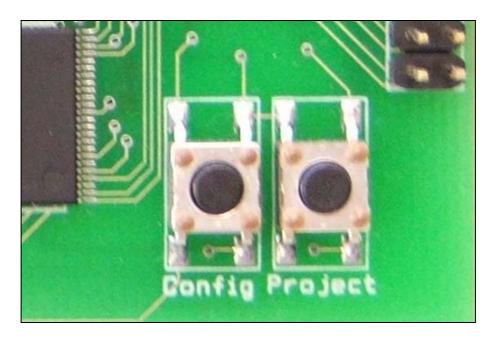
Descrição	Pinos da FPGA
DADOS[7:0]	p4,p5,p7, 9,p10,p11,p12,p13
TXE	р3
RXF	p2
WR	p39
RD	p40

- TXE Com o nível lógico '1' significa que o buffer de transmissão* está cheio ou então está ocupado a escrever o último byte. Neste caso, estar a '1', não se deve escrever para o buffer de transmissão. Só com o nível lógico a '0' é que se pode escrever para o buffer de transmissão.
- RXF Com o nível lógico '0', o buffer de recepção** contém pelo menos um byte e está pronto a ler através do RD. O RXF passa ao nível '1' quando o buffer de recepção está vazio.
- WR Na transição de '1' para '0' o módulo lê os 8 bits de dados e escreve o byte no buffer de transmissão.
- RD Quando colocado no nível lógico '0' o módulo lê do buffer de recepção um byte. Colocado no nível lógico '1' os pinos de dados ficam no estado de alta impedância.
- * Buffer de transmissão é um buffer intermédio que recebe dados vindo da FPGA e que serão posteriormente enviados para a porta USB.
- ** Buffer de recepção é um buffer intermédio que recebe dados vindos da porta USB e que será posteriormente lidos pela FPGA.

2.5. Memória Flash

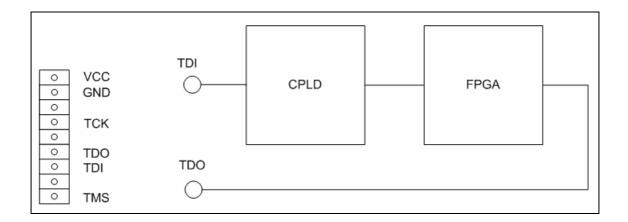
A placa utiliza uma memória *flash* de 16 Mbit com a referência AM29LV160. Esta memória é constituída por 31 sectores de 64Kbytes, 1 de 32Kbytes, 1 de 16Kbytes e 2 de 8Kbytes.

Descrição	Pinos FPGA
DADOS[7:0]	p67, p68, p72, p74, p86, p87, p90, p92


Se por algum motivo a primeiro sector da memória *flash* for alterado a placa não funcionará correctamente, ou ficará inutilizada.

2.6. Oscilador

A placa utiliza um oscilador de 80 MHz. Este sinal de relógio é utilizado pela FPGA e pela CPLD, num dos pinos de *global clock*.


Descrição	Pino da FPGA
CLOCK	p79

2.7. Botões de Pressão

Existe dois botões de pressão na placa, onde um tem o nome de *Config* e o outro *Project*. O botão *Config* permite ao utilizador configurar a placa com o ficheiro de configuração por defeito. O botão *Project* permite ao utilizador configurar a placa com um ficheiro de configuração pretendido.

2.8. JTAG

A placa está dotada de um conector que disponibiliza pinos dedicados, que são usados para configurar a FPGA e a CPLD. Este modo de configuração Boundary Scan, mais conhecido como JTAG, permite uma configuração directa sendo apenas necessário o cabo multilinx e a ferramenta IMPACT da Xilinx.

Ao utilizar o JTAG, vai aparecer uma corrente de configuração onde aparece primeiro a CPLD e posteriormente a FPGA. Nesta forma, o primeiro dispositivo a ser possível configurar é a CPLD. Para configurar a FPGA não é necessário ter que configurar a CPLD, devido existir uma opção na ferramenta IMPACT que possibilita saltar para o próximo dispositivo.

2.9. Barramentos de Expansão

Pinos conector 1	Pinos FPGA	Pinos conector 1	Pinos FPGA
1	p106	26	p139
2	p107	27	p140
3	p108	28	p141
4	p109	29	p143
5	p111	30	p144
6	p113	31	p146
7	p114	32	p147
8	p115	33	p148
9	p 116	34	p149
10	p117	35	p150
11	p119	36	p152
12	p120	37	p154
13	p122	38	p155
14	p123	39	p156
15	p124	40	p161
16	p125	41	p162
17	p126	42	p165
18	p128	43	p166
19	p130	44	p167
20	p131	45	p168
21	p132	46	p169
22	p133	47	p171
23	p135	48	p172
24	p137	49	p175
25	p138	50	p176

Pinos conector 2	Pinos FPGA	Pinos conector 2	Pinos FPGA
1	p178	16	p199
2	p180	17	p200
3	p181	18	p203
4	p182	19	p204
5	p183	20	p205
6	p184	21	p15
7	p185	22	p16
8	p187	23	p18
9	p189	24	p19
10	p190	25	p20
11	p191	26	p21
12	p194	27	p22
13	p196	28	p24
14	p197	29	p26
15	p198	30	p27

Pinos conector CPLD	Pinos CPLD	Pinos conector CPLD	Pinos CPLD
1	p56	8	p23
2	p58	9	p27
3	p59	10	р3
4	p60	11	p4
5	p61	12	p99
6	p63	13	2.5V
7	p64	14	GND

2006

Universidade de Aveiro

DETI

Departamento de Electrónica, Telecomunicações e Informática

IEETA

Instituto de Engenharia Electrónica e Telemática de Aveiro

Laboratório de Sistemas Computacionais

Campus Universitário de Santiago 3810-193 Aveiro Portugal