
Introduction to MicroBlaze

Creation of the Hardware Platform

Examples of IP Cores

Software Development

IOULI IA SKLIAROVA

UNIVERSITY OF AVEIRO (PORTUGAL)

1

MicroBlaze Processor
Soft processor
◦ ~1 900-7 000 logic cells (~1 200-4 500 LUTs) - estimates
◦ 63 400 LUTs available in Artix-7 XC7A100T

RISC architecture
◦ utilizes a small, highly-optimized set of instructions, rather than a more

specialized set of instructions often found in other types of architectures

32/64-bit architecture
◦ Thirty-two 32-bit or 64-bit general purpose registers

In production since 2002

Supported in
◦ 7-series/UltraScale/UltraScale+ devices

Three preset configurations:
◦ a simple microcontroller running bare-metal applications (~200 MHz in Artix-7);
◦ a real-time processor running FreeRTOS (~170 MHz);
◦ an application processor with a memory management unit running Linux (~140

MHz)

2

MicroBlaze Overview
MicroBlaze Processor Reference Guide - UG984

3

MicroBlaze Features
The fixed feature set of the processor includes:
◦ Thirty-two 32-bit or 64-bit general purpose registers
◦ 32-bit instruction word with three operands and two addressing modes
◦ Default 32-bit address bus, extensible to 64 bits
◦ Single issue pipeline

Configurable features
◦ Processor pipeline depth
◦ Floating-point unit (FPU)
◦ Hardware divider
◦ Area or speed optimized
◦ 64-bit mode
◦ …

4

MicroBlaze Data Types
The MicroBlaze processor uses Big-Endian or Little-Endian (default)
format to represent data, depending on the selected endianness.

The hardware supported data types for 32-bit MicroBlaze are word, half
word, and byte. With 64-bit MicroBlaze the data types long and double
are also available in hardware.

5

MicroBlaze Instruction Summary
All MicroBlaze instructions are 32 bits and are defined as either Type A
or Type B.

Type A instructions have up to two source register operands and one
destination register operand.

Type B instructions have one source register and a 16-bit immediate
operand. Type B instructions have a single destination register operand.

6

MicroBlaze Pipeline
MicroBlaze instruction execution is pipelined.

For most instructions, each stage takes one clock cycle to complete.

Consequently, the number of clock cycles necessary for a specific
instruction to complete is equal to the number of pipeline stages, and
one instruction is completed on every cycle in the absence of data,
control or structural hazards.
◦ A data hazard occurs when the result of an instruction is needed by a

subsequent instruction. This can result in stalling the pipeline, unless the
result can be forwarded to the subsequent instruction. The MicroBlaze GNU
Compiler attempts to avoid data hazards by reordering instructions during
optimization.

◦ A control hazard occurs when a branch is taken, and the next instruction is
not immediately available. This results in stalling the pipeline. MicroBlaze
provides delay slot branches and the optional branch target cache to reduce
the number of stall cycles.

◦ A structural hazard occurs for a few instructions that require multiple clock
cycles in the execute stage or a later stage to complete. This is achieved by
stalling the pipeline.

7

Three Stage Pipeline
With the MicroBlaze is optimized for area, the pipeline is divided into
three stages to minimize hardware cost: Fetch, Decode, and Execute.

The three stage pipeline does not have any data hazards.

Pipeline stalls are caused by control hazards, structural hazards due to
multi-cycle instructions, memory accesses using slower memory,
instruction fetch from slower memory, or stream accesses.

8

Five Stage Pipeline
With the MicroBlaze is optimized for performance, the pipeline is
divided into five stages to maximize performance: Fetch (IF), Decode
(OF), Execute (EX), Access Memory (MEM), and Writeback (WB).

Pipeline stalls are caused by data hazards, control hazards, structural
hazards due to multicycle instructions, memory accesses using slower
memory, instruction fetch from slower memory, or stream accesses.

9

Eight Stage Pipeline
With the MicroBlaze is optimized for frequency, the pipeline is divided
into eight stages to maximize possible frequency: Fetch (IF), Decode
(OF), Execute (EX), Access Memory 0 (M0), Access Memory 1 (M1),
Access Memory 2 (M2), Access Memory 3 (M3) and Writeback (WB).

Pipeline stalls are caused by data hazards, control hazards, structural
hazards, memory accesses using slower memory, instruction fetch from
slower memory, or stream accesses.

10

Memory Architecture
MicroBlaze is implemented with a Harvard memory architecture;
instruction and data accesses are done in separate address spaces.
◦ The instruction address space has a 32-bit virtual address range with 32-bit

MicroBlaze (that is, handles up to 4GB of instructions), and can be extended up to
a 64-bit physical address range.

◦ The data address space has a default 32-bit range, and can be extended up to a
64-bit range (that is, handles from 4GB to 16EB of data).

The instruction and data memory ranges can be made to overlap by
mapping them both to the same physical memory. The latter is necessary
for software debugging.

Both instruction and data interfaces of MicroBlaze are default 32 bits wide
and use big endian or little endian, bit-reversed format, depending on the
selected endianness. MicroBlaze supports word, halfword, and byte
accesses to data memory.

Data accesses must be aligned (word accesses must be on word boundaries,
halfword on halfword boundaries), unless the processor is configured to
support unaligned exceptions. All instruction accesses must be word
aligned.

11

MicroBlaze Interfaces
MicroBlaze does not separate data accesses to I/O and memory (it uses
memory-mapped I/O).

The processor has up to three interfaces for memory accesses:
◦ Local Memory Bus (LMB) providing single-cycle access to on-chip dual-port

block RAM.
◦ Advanced eXtensible Interface (AXI4) for connection to both on-chip and off-

chip peripherals and memory.
◦ Advanced eXtensible Interface (AXI4) or AXI Coherency Extension (ACE) for

cache coherent connections to memory.

MicroBlaze also supports up to 16 AXI4-Stream interface ports, each with
one master and one slave interface.

The interfaces on MicroBlaze are 32 bits wide.

12

AXI
Advanced eXtensible Interface is a point to point interconnect that is designed for high
performance, high speed microcontroller systems.

The AXI protocol is based on a point to point interconnect to avoid bus sharing and
therefore allow higher bandwidth and lower latency.

There are three types of AXI4 interfaces:
◦ AXI4-Lite—for simple, low-throughput memory-mapped communication, providing a register-like

structure with reduced features and complexity (1 transfer per transaction)
◦ AXI4—for high-performance memory-mapped requirements (up to 256 data transfers)
◦ AXI4-Stream—for high-speed streaming data (unlimited amount of data)

The AXI specifications describe an interface between a single AXI master and a single AXI
slave.

AXI interconnect allow multiple masters and/or multiple slaves to interface with each
other.

In reality, interconnects contain slave interfaces that connect to AXI masters and master
interfaces that connect to AXI slaves. What goes on in an interconnect—i.e., how different
masters communicate to different slaves—depends on the implementation. Interconnects
can allow a shared address bus, shared data bus, both shared, or neither shared.

13

AXI4 and AXI4-Lite Channels
There are five independent channels
between an AXI master and slave.

The address channels are used to send
address and control information while
performing a basic handshake between
master and slave.

A master reads data from and writes
data to a slave. Read response
information is placed on the read data
channel, while write response
information has a dedicated channel.
This way the master can verify a write
transaction has been completed.

Every exchange of data is called a
transaction. A transaction includes the
address and control information, the
data sent, as well as any response
information. The actual data is sent in
bursts which contain multiple transfers.

14

Debug Overview
MicroBlaze features a debug interface to support JTAG based software
debugging tools.

The debug interface is designed to be connected to the Xilinx
Microprocessor Debug Module (MDM) core, which interfaces with the
JTAG port of Xilinx FPGAs.

To be able to download programs, set software breakpoints and
disassemble code, the instruction and data memory ranges must
overlap, and use the same physical memory.

15

MicroBlaze-based Project Example
MicroBlaze processor

Local instruction and data memory

Clock and reset units

General purpose I/O ports (connected to Nexys-4 LEDs, switches, buttons
and 7-segment displays)

RS232 UART

AXI interconnect (crossbar for microprocessor and peripherals
interconnect)

16

Board File Installation
Configure the board:
◦ Do not use Install/Update feature when creating a new project
◦ Download the board files from

https://sweet.ua.pt/iouliia/Courses/MB_TUT/nexys4_ddr.rar
◦ Copy nexys4_ddr folder to Vivado installation folder

(C:\Xilinx\Vivado\2022.2\data\boards\board_files)
◦ By default this folder contains XML files for different FPGA boards manufactured by Xilinx
◦ XML files define various interfaces on the board, such as slide switches, push buttons, LEDs,

USB-UART, memory, Ethernet etc.

◦ Restart Vivado
◦ You are now ready to start a new IP Integrator based Vivado project for the

Nexys-4DDR board

17

IP Integrator
As FPGAs become larger and more complex, and as design schedules
become shorter, use of third-party IP and design reuse is becoming
mandatory.

IP Integator aims to aid designers with IP design and reuse issues.

The Vivado IP integrator lets you create complex system designs by
instantiating and interconnecting IP from the Vivado IP catalog on a
design canvas.

18

Block Automation
Add MicroBlaze IP

Block Automation assists you in putting together a basic MicroBlaze
system consisting of the following:
◦ A MicroBlaze debug module
◦ A hierarchical block called the microblaze_0_local_memory
◦ A clocking wizard
◦ A reset module

19

Connection Automation
Connection Automation assists you in making internal connections
between different blocks and connections to external interfaces.

Several adjustments have to be done to guide and accomplish the
connection process.

20

External Interface
GPIO interface can be tied to one of the several interfaces present on
the target board.

GPIO core provides a general purpose input/output interface to the AXI
interface. This 32-bit soft IP core supports:
◦ the AXI4-Lite interface specification
◦ configurable single or dual GPIO channel(s)
◦ configurable channel width for GPIO pins from 1 to 32 bits
◦ dynamic programming of each GPIO bit as input or output
◦ individual configuration of each channel
◦ independent reset values for each bit of all registers
◦ optional interrupt request generation

21

AXI GPIO
The GPIO core consists of registers and multiplexers for reading and
writing the AXI GPIO channel registers. It also includes the necessary
logic to identify an interrupt event when the channel input changes.

22

GPIO Registers
The AXI GPIO data register is used to read the general purpose input
ports and write to the general purpose output ports. When a port is
configured as input, writing to the AXI GPIO data register has no effect.

The AXI GPIO 3-state control register is used to configure the ports
dynamically as input or output. When a bit within this register is set, the
corresponding I/O port is configured as an input port. When a bit is
cleared, the corresponding I/O port is configured as an output port.

23

GPIO Configuration
For input ports when the Interrupt is not enabled, use the following
steps:
◦ Configure the port as input by writing the corresponding bit in GPIOx_TRI

register with the value of 1.
◦ Read the corresponding bit in GPIOx_DATA register.

For output ports, use the following steps:
◦ Configure the port as output by writing the corresponding bit in GPIOx_TRI

register with a value of 0.
◦ Write the corresponding bit in GPIOx_DATA register.

24

Address Editor
The address editor is a tree-table view that lists all address paths.

25

Block Design (BD)

26

Implementing Hardware
Validate design
◦ you can run a comprehensive design check on the design.

Generate output products (Global)
◦ After the BD is complete and the design is validated, you must generate

output products for synthesis and simulation, to integrate the BD into a top-
level RTL design. The source files and the appropriate constraints for all the
IP are generated and made available in the Vivado® Design Suite (IDE)
Sources window.

◦ Generating the output products generates the top-level netlist of the BD.
The netlist is generated in the HDL language specified by the
Se ngs → General → Target Language for the project.

Create HDL Wrapper
◦ This command generates a top-level HDL file with an instantiation template

for the IP integrator BD.

Synthesize design

27

Problems and Results
Open the synthesized design and execute the following TCL commands:
◦ set_property CONFIG_VOLTAGE 3.3 [get_designs
synth_1]

◦ set_property CFGBVS VCCO [get_designs synth_1]

Then close the synthesized design and save an XDC file with any name

Generate bitstream

28

Development Tools

29

Software Development
Export hardware

Launch Vitis
◦ Create a Vitis workspace

Create new application project
◦ Create a new platform from hardware (XSA)
◦ Create a “helloworld” project

Program device

Launch Vitis serial terminal (or any other similar application)

Build the project

Execute the software application

30

Final Remarks
At the end of this lecture and lab you should be able to:
◦ create a hardware platform with the MicroBlaze and GPIOs
◦ create and execute a simple Vitis project

 To do:
◦ Construct the considered hardware platform
◦ Test the given applications in Vitis

31

