GENERAL INFORMATION

Scientific Programme: The scientific programme consists of 6 invited talks, 1
Special Lecture and 56 contributed talks (33 in plenary sessions and 23 in parallel
sessions). There will be parallel sessions on Tuesday and Thursday afternoons.
Invited talks: 50mn + 10mn for discussion.
Contributed talks: 25mn + 5mn for discussion.
All lecture rooms are equipped with a white or black board, a data-show and an
overhead projector. Plenary talks will be in the Education Department in Room
5.2.22, and parallel sessions will be in the Mathematics Department in Rooms 11.1.3
and 11.1.10.

Social Events: The social programme includes a welcome reception at the terrace
of the restaurant Old Ria ((www.ola-ria.com) on Sunday, an excursion to the Serra
da Freita (Freita mountains) on Wednesday afternoon and a dinner on Thursday in
the restaurant Old Ria. Detailed information will be given during the conference.

Coffee Breaks: Coffee breaks are to be held at Bar da Matemdtica located in the
ground flour of the Department of Mathematics.

Lunches: Lunch will be served for all conference participants in the University Can-
teen (with either a fish/meat/vegetarian option).

Internet Facilities: Wifi “eduroam” is available in all Campus. If your institution
does not provide “eduroam”, you can use:

login: category.theory@visit.uaveiro.eu password: CT2015Aveiro
The following setting should work:

Wi-Fi security: WPA & WPA2 Enterprise

Authentification: PEAP No CA-certificate is required

PEAP version: Automatic

Inner authentification: MSCHAPv2

Bank: There is a branch of a Bank and several cash machines on campus: Caiza
Geral de Depdsitos is open from 8h30 until 15h00, Monday to Friday.

Post Office: There is a Post Office on campus (open 10h00-12h30 and 14h00-17h30,
from Monday to Friday).

Health Care: There is a Pharmacy on campus (open 10h00-14h00 and 14h30-17h00,
from Monday to Friday).

Tourism Post: Rua Jodo Mendonga, 8, 3800-200 Aveiro
Tel: +351 234 420 760 Fax: +351 234 428 326
geral@turismodocentro.pt www.turismodocentro.pt

Taxis (telephone numbers): +351 234 422 943, 4351 234 385 799, +351 234 316 148.






PROGRAMME






Schedule

|Sunday |Monday [Tuesday |Wednesday |[Thursday |Friday
08:30 — 09:00 Registration
09:00 — 09:30
09:30 — 10:00
10:00 — 10:30
10:30 — 11:00
11:00 — 11:30
11:30 — 12:00
12:00 — 12:30
12:30 — 13:00 Lunch
13:00 — 14:00 Lunch Lunch
14:00 — 14:30 Excursion
14:30 — 15:00 Leung Dostal (from 14:00) |Martins-Ferreira |Obradovic
15:00 — 15:30 Low Even Slevin Emir
15:30 — 16:00 Pareja-Tobes |Moss Solovjovs Prasma
16:00 — 16:30 Coffee Break Coffee Break
16:30 — 17:00 Pinto van Opdenbosch Guallart Abud Alcala
17:00 —17:30 Lima Montafez Puentes Maruyama Chikhladze
17:30 — 18:00 Lucatelli Koudenburg Sattler
18:00 — 18:30 |Reception
18:30 — 19:00 [(with Registration)
19:00 — 19:30
19:30 — 20:00 Conference Dinner
20:00 — (from 19:30)




SUNDAY 14

18:00 - 20:00

Welcome Reception / Registration

MONDAY 15

08:30 - 09:00
09:00 - 09:30
09:30 - 10:30

10:30 - 11:00
11:00 - 11:30
11:30 - 12:00
12:00 - 12:30
12:30 - 13:00
13:00 - 14:30

14:30 - 15:00
15:00 - 15:30
15:30 - 16:00
16:00 - 16:30
16:30 - 17:00

17:00 - 17:30
17:30 - 18:00
18:00 - 18:30

Registration
Opening
R. Garner: The Campbell-Baker-Hausdorff adjunction

R. Paré: Skolem relations and profunctors

Coffee Break

A. Joyal: Witt vectors and the James construction

J. Rosicky: Classification theory for accessible categories
M. Fiore: Theory of para-toposes

Lunch

T. Leinster: The reflexive completion

M. Johnson: Symmetrizing categories of lenses

J. Adamek: Reflective subcategories of locally presentable categories
Coffee Break

Lucyshyn-Wright: A general theory of measure and distribution monads
founded on the notion of commutant of a subtheory

G. Metere: Aspects of strong protomodularity, actions and quotients
A. Montoli: On the “Smith is Hug" condition in S-protomodular categories

M. Duckerts-Antoine: A classification theorem for normal extensions



TUESDAY

16

09:00 - 10:00

10:00 - 10:30
10:30 - 11:00
11:00 - 11:30
11:30 - 12:30

12:30 - 13:00
13:00 - 14:30

14:30 - 15:00

15:00 - 15:30

15:30 - 16:00

16:00 - 16:30
16:30 - 17:00

17:00 - 17:30

17:30 - 18:00

G. Bohm: Hopf monoids in duoidal categories

R. Wood: Waves and total distributivity
P. Johnstone: Functoriality of modified realizability
Coffee Break

B. Lawvere: Alexander Grothendieck and the modern conception of Space

M. Menni: An ‘algebraic' model of a bidirectional Euler continuum

Lunch

P. Leung: The free tangent M. Dostal: Two-dimensional Birkhoff's
structure theorem

Z. Low: Generalising the functor V. Even: Central extensions and closure

of points approach operators in the category of quandles
E. Pareja-Tobes: Dagger S. Moss: Another approach to the Kan-Quillen
category theory model structure

Coffee Break

D. Pinto: An abstract approach K. van Opdenbosch: Regularity for relational
to Glivenko's theorem algebras and the case of approach spaces

G. Lima: Site characterisations ~ J.R. Montafiez Puentes: Some topoi generated
for local geometric morphisms by topological spaces

F. Lucatelli: Kan extensions and
descent theory



Wednesday 17

09:00 - 10:00 D. Rodelo: A tour through n-permutability

10:00 - 11:00 H. Krause: Stratication of triangulated categories

11:00 - 11:30 Coffee Break
11:30 - 12:00 G. Janelidze: Exponentiable homomorphisms of algebras

12:00 - 12:30 R. Brown: A philosophy of modelling and computing homotopy types
12:30 - 14:00 Lunch

14:00 Excursion



Thursday 18

09:00 - 10:00 C. Berger: Algebraic and homotopical nilpotency

10:00 - 10:30 S. Lack: Multiplier bimonoids, multiplier bicomonads, and comonads in a
simplicial set

10:30 - 11:00 D. Bourn: Partial Mal'tsevness and category of quandles

11:00 - 11:30 Coffee Break

11:30 - 12:00 G. Rosolini: Exact completions as homotopical quotients

12:00 - 12:30 L. Sousa: Categories of “lax fractions”

12:30 - 13:00 M. Zawadowski: Fibrations of polynomial and analytic functors and monads

13:00 - 14:30 Lunch

14:30 - 15:00 N. Martins-Ferreira: Categories with J. Obradovic: On the various definitions of
2-cell structures and their internal  cyclic operads
pseudocategories

15:00 - 15:30 P. Slevin: Cyclic homology arising K. Emir: Pointed homotopy of 2-crossed

from adjunctions module maps and groupoid structure
15:30 - 16:00 S. Solovjovs: On monoidal M. Prasma: The Grothendieck construction
(co)nuclei and their applications for model categories

16:00 - 16:30 Coffee Break
16:30 - 17:00 N. Guallart: A comparison between R. Abud Alcala: Comodules for coalgebroids

ITT and CoC

17:00 - 17:30 Y. Maruyama: Higher-order D. Chikhladze: Another perspective on skew
categorical substructural logics monoidal structures

17:30 - 18:00 S. Koudenburg: Yoneda C. Sattler: Initial algebras for dependent

embeddings in double categories  from plain polynomial functors in
quasicategories

19:30 Conference Dinner



Friday 19

09:00 - 10:00

10:00 - 10:30
10:30 - 11:00
11:00 - 11:30
11:30 - 12:00
12:00 - 12:30
12:30 - 13:00
13:00 - 14:30

14:30 - 15:00
15:00 - 15:30
15:30 - 16:00
16:00 - 16:30
16:30 - 17:00
17:00 - 17:30
17:30 - 18:00
18:00 - 18:30

J. Bergner: Models for homotopical higher categories

R. Cockett: Itegories
Z. Janelidze: On a symmetric proof of the non-abelian snake lemma
Coffee Break

E. Riehl: Virtual equipments for co-categories
D. Verity: The calculus of modules for co-categories
l. Lopez-Franco: Aspects of lax orthogonal factorisation systems

Lunch

G. Cruttwell: The Jacobi identity for tangent categories
J. Bourke: Skew structures in 2-category theory and homotopy theory
R. Gonzalez Rodriguez: Equivalences and iterations for weak crossed products

Coffee Break

N. Gurski: Distributive laws for quasicategories
P. North: Weak factorization systems for intensional type theory
T. Avery: Codensity and the Giry monad

M. Weber: Internal algebra classifiers as codescent objects of crossed internal
categories



ABSTRACTS






Ramén Abud Alcala

Macquarie University

Comodules for coalgebroids

Quantum categories have been studied intensively by several authors in the past
few years because of their relation to bialgebroids, skew monoidales, and small cate-
gories. In a monoidal bicategory, a quantum category (or rather its dual) is defined
as an opmonoidal monad on a monoidale generated by a biduality R 4 R°. If we drop
the monad requirement — and work with several bidualities at a time — we get what
in the bicategory Mod Szlachényi calls an S|R-coalgebroid. Comodules for these
S| R-coalgebroids are defined using only the underlying R-coring structure, but there
is a theorem by Phung which highlights the role of S by providing a forgetful functor
from the category of comodules for an S|R-coalgebroid to the category of two-sided
S-R-modules.

Now, given an opmonoidal arrow C' : S°®S5—R°® R in a monoidal bicategory, we
can express what a C-coaction for an arrow .S— R should be, and for the underlying
“coring” C' : R—=R there is also a way to say what a C’-coalgebra should be. In this
talk, we will examine the equivalence of this two notions under suitable assumptions
on the bicategory. Finally, adding the monad axiom, we are able to provide the
category of comodules for a quantum category with a monoidal structure such that
the forgetful functor is monoidal.



Jiri Adamek*

Institut fiir Theoretische Informatik, Technische Universitdt Braunschweig

Reflective subcategories of locally presentable categories

For full subcategories K of a locally presentable category the Reflection Theorem
of [1] states that I is reflective iff it is closed under limits and A-filtered colimits for
some A. The proof is based on the fact that such a subcategory is closed under A-
pure subobjects (i.e. A-filtered colimits of split monomorphisms). A beautiful result
of Makkai and Pitts works with iso-full subcategories, which means that X contains
every isomorphism of the larger category whose domain and codomain lie in . If
such a subcategory is closed under limits and filtered colimits (here A = w), then it
is reflective, see [2]. The proof is based on the fact that such subcategories are closed
under elementary embeddings. Can one generalize this result from w to A? Alas!,
we do not know. But we prove that every iso-full subcategory closed under limits,
A-filtered colimits and A-elementary embeddings is reflective.

References:

[1] J. Addmek and J. Rosicky, Locally presentable and accessible categories, Cam-
bridge University Press, 1994.

[2] M. Makkai and A. M. Pitts, Some results on locally finitely presentable categories,
Trans. Amer. Math. Soc. 299 (1987) 473-496.

*Joint work with Jif{ Rosicky.



Tom Avery
University of Edinburgh

Codensity and the Giry monad

The Giry monad on the category of measurable spaces sends a space to the set of
probability measures on it, equipped with a suitable measurable space structure. It
provides a categorical context for probability theory, and is a member of a loose family
of monads that we may think of as “measure monads”. Perhaps the most primitive
monad in this family is the ultrafilter monad on the category of sets; an ultrafilter is
a finitely additive probability measure taking only the values 0 and 1. A theorem of
Gildenhuys and Kennison describes the ultrafilter monad as the codensity monad of
the inclusion of finite sets into sets. 1 will give a similar characterisation of the Giry
monad and related measure monads (and hence also of the corresponding notions of
measure and integration) in terms of codensity monads involving categories of convex
sets.

References:
[1] T. Avery, Codensity and the Giry monad. arXiv:1410.4432 (2014).

[2] M. Giry, A Categorical Approach to Probability Theory. In Categorical aspects
of topology and analysis, volume 915 of Lecture Notes in Mathematics. Springer,
(1982) 68-85.

[3] D. Gildenhuys and J. F. Kennison, Equational completion, model induced triples
and pro-objects. Journal of Pure and Applied Algebra 1(4) (1971) 317-346.



Clemens Berger*
Université de Nice-Sophia Antipolis

Algebraic and homotopical nilpotency

We present a general concept of nilpotency for exact Mal’cev and semi-abelian
categories, based on the notion of central extension. The reflection into the subcat-
egory of n-nilpotent objects has several most specific properties. We discuss under
which conditions this reflection may be characterized as the universal endofunctor
with vanishing cross-effects of order n+ 1, where we use an algebraic version of Good-
willie’s cubical cross-effects. Finally, several notions of homotopical nilpotency for the
simplicial objects of a pointed Mal’cev variety are compared. In the case of simplicial
groups, we recover as special instances the Berstein-Ganea nilpotency for loop spaces
and the Biedermann-Dwyer nilpotency for homotopy nilpotent groups.

References:

[1] C. Berger and D. Bourn, Central reflections and nilpotency in exact Mal’cev
categories, preprint 2015, 50 pages.

[2] T. Goodwillie, Calculus III. Taylor Series, Geom. Topol. 7 (2003), 645-711.

[3] I. Berstein and T. Ganea, Homotopical nilpotency, Illinois J. Math. 5 (1961),
99-130.

[4] G. Biedermann and W. Dwyer, Homotopy nilpotent groups, Alg. & Geom. Topol-
ogy 10 (2010), 33-61.

*Joint work with Dominique Bourn.



Julie Bergner
University of California, Riverside

Models for homotopical higher categories

An (oco,n)-category should have morphisms at all levels, but those morphisms
should be weakly invertible above level n. While the case of n = 1 is fairly well-
understood, with several different models known to be equivalent, but there are many
different ways to generalize each of them for higher n. Making these different models
precise and giving explicit comparisons is currently being done by several different
authors. In this talk we’ll look at several of the approaches to (0o, n)-categories and
known comparisons between them.



Gabriella Bohm*
Wigner RCP, Budapest

Hopf monoids in duoidal categories

There are similar principles distinguishing groups among monoids, groupoids among
small categories, (weak) Hopf algebras among (weak) bialgebras, Hopf algebroids
among bialgebroids, Hopf monads among opmonoidal monads (also known as bimon-
ads) and so on. In each case, there are several equivalent characterizations which
have, however, conceptually different meanings. The simplest one is the existence of
a certain kind of ‘antipode’ generalizing the inverse operation in groups or groupoids.

All the above listed structures — monoids, small categories, (weak) bialgebras,
bialgebroids and suitable opmonoidal monads — can be treated in the unifying frame-
work of bimonoids in so-called duoidal categories [1]; that is, in categories carrying
two different, compatible monoidal structures.

The talk will be devoted to the understanding of what equivalent properties distin-
guish Hopf monoids among bimonoids in duoidal categories. In particular, in duoidal
categories stemming from naturally Frobenius map monoidales in monoidal bicate-
gories as in [4] (covering all of the listed examples), a criterion in terms of an appro-
priately defined antipode is given.

References:

[1] Marcelo Aguiar and Swapneel Mahajan, Monoidal Functors, Species and Hopf
Algebras. CRM Monograph Series 29, American Math. Soc. Providence, 2010.

[2] Gabriella Bohm, Yuanyuan Chen and Liangyun Zhang, On Hopf monoids in
duoidal categories, J. Algebra 394 (2013), 139-172.

[3] Gabriella Bohm and Stephen Lack, Hopf comonads on naturally Frobenius map-
monoidales, preprint available at http://arxiv.org/abs/1411.5788.

[4] Ross Street, Monoidal categories in, and linking, geometry and algebra, Bull.
Belg. Math. Soc. Simon Stevin 19 (2012), 769-933.

*Based on joint works with Yuanyuan Chen and Liangyun Zhang [2]; and with Steve Lack [3].



John Bourke
Masaryk University, Brno

Skew structures in 2-category theory and homotopy theory

The notion of skew monoidal category was introduced by Szlachdnyi in the study
of bialgebroids over rings. Street introduced skew closed categories and described,
in contrast to the classical setting, a perfect correspondence between skew monoidal
and skew closed structure. In this talk I will explain how skew monoidal and closed
structures naturally appear in 2-category theory and how they illuminate classical
constructions in the area. We will also take a look at skew structures arising in other
homotopical contexts.

References:

[1] Szlachéanyi, K., Skew-monoidal categories and bialgebroids, Advances in Mathe-
matics 231 (2012) 1694-1730.

[2] Street, Ross, Skew-closed categories, Journal of Pure and Applied Algebra 217
(2013) 973-988.



Dominique Bourn
Université du Littoral, Calais

Partial Mal’tsevness and category of quandles

A Mal’tsev category is a category in which any reflexive relation is an equivalence
relation, see [3]. The categories Gp of groups and K-Lie of Lie algebras are major ex-
amples of Maltsev categories. A soon as a Maltsev category is regular, any pair (R, S)
of equivalence relations on an object X does permute (i.e. RoS =5 o R). Besides,
it is a context which allows to deal intrinsically with the notion of centralization of
equivalence relations. In [1], Mal’tsev categories were characterized by a property of
the class of split epimorphisms.

The category of quandles, an algebraic structure introduced by Knot theorits, see
[6], [5] and also [4], gives rise to an example of a new situation where the Mal’tsev
condition of [1] is only satisfied by a subclass ¥ of split epimorphisms which is stable
under pullback and contains the isomorphisms.

We shall show here that this partial Mal’tsev condition implies, still in the regular
context, the permutation of a certain subclass ¥ of equivalence relations with any other
equivalence relation and allows to deal intrinsically with the notion of centralization
of the Y-equivalence relations with any other equvalence relation as well. Moreover
if we call ¥-special an extention f : X — Y such that its kernel relation R[f] lies in
¥, then we get the Baer sums of abelian Y-special extensions with a given direction
on the model of [2], provided that the ground category is efficiently regular and the
class X satisfies a further left exact condition.

References:

[1] D.Bourn, Mal’cev categories and fibration of pointed objects, Appl. Categ. Struc-
tures 4 (1996) 307-327.

[2] D. Bourn, Baer sums and fibered aspects of Mal’cev operations, Cahiers de Top.
et Géom. Diff. 40 (1999), 297-316.

[3] A. Carboni, J. Lambek and M.C. Pedicchio, Diagram chasing in Mal’cev cate-
gories, J. Pure Appl. Algebra 69 (1991) 271-284.

. Even and M. Gran, On factorization systems for surjective quandle homomor-
4 V. E dM. G On f izati f jecti dle h
phisms, J. Knot Theory and its Ramifications 23(11) (2014) 1450060.

[5] D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra
23 (1982) 37-65.

[6] S.V. Matveev, Distributive groupoids in knot theory, Mat. Sb. (N.S) 119 (161)
(1982) 78 88.



Ronald Brown
Bangor University

A philosophy of modelling and computing homotopy types

This philosophy involves homotopically defined functors H from (topological data)

to (algebraic data), and conversely “classifying space” functors B from (algebraic data)

to (topological data). These should satisfy:

1.

2.

HB is naturally equivalent to 1.
H preserves certain colimits: this allows some computation.

The algebraic data splits into several equivalent kinds, ranging from “broad” to
“narrow”, related by non trivial Dold-Kan type equivalences. The broad data is
used for conjecturing and proving theorems; the narrow data is used for calculations

and relating to classical methods.

The topological data is of a structured type, involving dimensions, reflecting the fact
that the data to specify a space often has an associated dimensionwise structure.

As an example we will consider n-cubes of pointed spaces, and the algebraic models

of cat™-groups, and crossed n-cubes of groups. For n = 1 we get maps of spaces,
and crossed modules. Calculations of the 2-type of mapping cones of Bf for f a
morphism of groups have been made by Wensley and RB. I show how to extend these
to determine the 3-type of a mapping cone of Bf when f is a morphism of crossed

modules, by using crossed squares.



Dimitri Chikhladze

Centre for Mathematics, University of Coimbra

Another perspective on skew monoidal structures

Following the work [1], we consider a certain perspective on skew monoidal struc-
tures in the sense of the series of papers starting from [2] by S. Lack and R. Street
following the work of Szlachényi [3].

References:

[1] Dimitri Chikhladze, Lax formal theory of monads, monoidal approach to bicate-
gorical structures and generalized operads, to appear in Theory and Applications
of Categories, arXiv:1412.4628.

[2] S. Lack, R. Street, Skew monoidales, skew warpings and quantum categories,
Theory and Applications of Categories 26 (2012) 385-402.

[3] Szlachényi, Skew-monoidal categories and bialgebroids, Advances in Mathematics
231 (2012) 1694-1730.
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Robin Cockett*
University of Calgary

Ttegories

In memory of Bob Walters.

Bob would not have said it this way nor necessarily would he have approved but an
itegory — though he may not have known it — is something he certainly thought about.
An itegory is a basic categorical setting for the semantics of (sequential) programs.
It is —simply put—an extensive restriction category [2] with a trace (or an iteration)
on the coproduct. Such a trace can be formulated as a “Kleene wand” which can be
characterized by just two equations and a uniformity requirement. Its computational
behaviour is essentially that of a “while loop”.

In general, for an extensive restriction category, having a Kleene wand is struc-
ture rather than a property. However, having an inductive Kleene wand is a property.
Furthermore, every extensive restriction category can be embedded into an extensive
restriction category with an inductive wand. A natural way in which an inductive
Kleene wands arise is when the category has a natural number object which is simul-
taneously a conatural number object: a situation which pertains to the partial map
categories of toposes.

An important and general way to characterize computation [1] is as the computable
maps of a Partial Combinatory Algebra (PCA). It is not the case that every itegory
can represent all partial computable maps. For example, finite sets and partial maps
form a perfectly good itegory, however, this category contains no non-trivial PCAs.
On the other hand, once an itegory has an infinite object (in a certain sense), one
can use the iteration to construct a PCA and thus show that all computations can be
expressed in such categories.

References:

[1] Cockett and Hofstra, Introduction to Turing categories, APAL, 156(2-3):183-209,
2008.

[2] Cockett and Lack, Restriction categories III: colimits, partial limits, and exten-
sivity, Mathematical Structures in Computer Science, 17(4):775-817, 2007.

*This is joint work with Pieter Hofstra, Chad Nester, and Michael St-Jules.
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Geoff Cruttwell*
Mount Allison University

The Jacobi identity for tangent categories

A tangent category, first defined by Rosicky [5], is a category equipped with an
abstract analog of the tangent bundle functor. Examples of such categories include
the ordinary category of smooth manifolds, the category of convenient smooth man-
ifolds [4], categories in synthetic differential geometry [3], and Cartesian differential
categories [1].

The Jacobi identity is one of the key results for the Lie bracket of vector fields on
the tangent bundle. Rosicky showed how to define the Lie bracket for vector fields in
a tangent category, and gave a proof of the Jacobi identity in this setting; however, his
proof required additional limit assumptions for the tangent category. In this talk, I’ll
present a proof of the Jacobi identity that does not require any additional assumptions
on the tangent category.

References:

[1] Blute, R., Cockett, R. and Seely, R. Cartesian differential categories. Theory
and Applications of Categories, 22, pg. 622-672, 2008.

[2] Cockett, R. and Cruttwell, G. Differential structure, tangent structure, and SDG.
Applied Categorical Structures, 22, pg. 331-417, 2014.

[3] Kock, A. Synthetic Differential Geometry, Cambridge University Press (2nd ed.),
2006.

[4] Kriegl, A. and Michor, P. The convenient setting of global analysis. AMS Math-
ematical Surveys and monographs, vol. 53, 1997.

[6] Rosicky, J. Abstract tangent functors. Diagrammes, 12, Exp. No. 3, 1984.

*Joint work with Robin Cockett.
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Matéj Dostal

Czech Technical University in Prague

Two-dimensional Birkhoff’s theorem

Birkhoff’s theorem from classical universal algebra states that a subcategory of a
category of (one-sorted) algebras is given by a set of equations if and only if it is closed
under quotient algebras, subalgebras, and products. In the classical case, adding new
equations to a theory given by a monad 7" corresponds to forming a quotient monad S
of T'. In the case of enrichment in categories, we follow this approach by considering
quotient monad morphisms arising from the factorisation system (b. o. full, faithful)
on Cat, which lifts to the 2-category of strongly finitary monads over Cat by results
of [1]. We give a Birkhoff-style result in this setting: we characterise equationally
defined subcategories of algebraic categories by their closure properties.

References:

[1] J. Bourke and R. Garner, Two-dimensional regularity and exactness, J. Pure
Appl. Algebra 218 (2014) 1346-1371.
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Mathieu Duckerts-Antoine*
Centre for Mathematics, University of Coimbra

A classification theorem for normal extensions

In [1], a generalized Galois theorem has been proved in the large context of so-
called admissible Galois structures. These are adjunctions (I, H): € — 2 with
classes of morphisms (“extensions”) £ and Z (of ¢ and 2, respectively) satisfying
suitable properties. In my talk, I will explain how we can obtain a similar classification
theorem for normal extensions for a particular class of (not necessarily admissible)
Galois structures. I will also give some criteria for the existence of a normalisation
functor.

References:

[1] G. Janelidze, Pure Galois theory in categories, J. Algebra 132 (1990) 270-286.

*Joint work with Tomas Everaert.
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Kadir Emir*
CMA, Universidade Nova de Lisboa and Eskigehir Osmangazi University

Pointed homotopy of 2-crossed module maps and groupoid structure

We address the homotopy theory of 2-crossed modules of commutative algebras,
which are equivalent to simplicial commutative algebras with Moore complex of length
two. In particular, we construct a homotopy relation between 2-crossed module maps,
and prove that it yields an equivalence relation in very unrestricted cases, strictly
containing the case when the domain 2-crossed module is cofibrant, defining, further-
more, a groupoid with objects the 2-crossed module maps between two fixed 2-crossed
modules, the morphisms being their homotopies.

References:

[1] I. Akca, J.F. Martins and K. Emir. Pointed homotopy of maps between 2-crossed
modules of commutative algebras. arXiv:1411.6931.

[2] Z. Arvasi and T. Porter. Simplicial and crossed resolutions of commutative alge-
bras. J. Algebra, 181(2):426-448, 1996.

*Joint work with Ilker Akga and Jodo Faria Martins.
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Valérian Even*
Université catholique de Louvain

Central extensions and closure operators in the category of quandles

The aim of this talk is to present some recent results concerning two adjunctions:
the first one between the category Qnd of quandles and its subcategory Qnd* of triv-
ial quandles, and the second one between the category of quandles and its Mal’tsev
subcategory of abelian symmetric quandles. We will show that these adjunctions
are admissible in the sense of categorical Galois theory thanks to some results about
the permutability of two different classes of congruences in the category of quan-
dles [5, 2, 7]). We will then give an algebraic description of the corresponding central
extensions [6], which for the first adjunction turn out to correspond [3] to the quandle
coverings investigated in [2]. We will also examine closure operators for subobjects in
the category of quandles. The regular closure operator and the pullback closure op-
erator both corresponding to the reflector from Qnd to Qnd* coincide [4], and we will
give an algebraic description of this closure operator. Finally, we will show that the
category of connected quandles is a connectedness (see [1] for example) corresponding
to the category of trivial quandles.
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Theory of para-toposes

A para-topos is a cartesian closed locally presentable category. Grothendieck
toposes and quasi-toposes, frames, the category of small categories, and the category
of w-complete partial orders are examples. Every para-topos is a cartesian localisation
of a presheaf category. Other examples include the category of algebraic models of the
opposite of a small distributive category. A geometric morphism of para-toposes is
defined as a pair of adjoint functors, with the left adjoint preserving finite products.
We study exponentiable para-toposes. We show that the bicategory of free para-
toposes (free over a cartesian category) is cartesian closed.

*Joint work with André Joyal.

17



Ramén Gonzalez Rodriguez*
Universidade de Vigo

Equivalences and iterations for weak crossed products

Let A be a monoid and let V' be an object living in a strict monoidal category C
where every idempotent morphism splits. In [1] an associative product, called the weak
crossed product of A and V', was defined on the tensor product A ® V' working with
quadruples Ay = (A, V,@/Jé,aé) where 1/1{3 VA — ARV and a‘é VeV - AV
are morphisms satisfying some twisted-like and cocycle-like conditions. Associated to
these morphisms we define an idempotent morphism V gy : AQV — A® V whose
image, denoted by A x V, inherits the associative product from A ® V. In order to
define a unit for A x V, and hence to obtain a monoid structure in this object, we
complete the theory in [4] using the notion of preunit.

In this talk, we give a criterion that characterizes equivalent weak crossed products,
and, as an application, we show that the main results proved by Panaite in [8], for
Brzezinski’s crossed products, admits a substantial improvement. On the other hand,
we show how iterate weak crossed products with common monoid. More concretely,
if (A®V,puagy) and (A ® W, pagw) are weak crossed products, we find sufficient
conditions to obtain a new weak crossed product (A ®V & W, pagyvew). Also, we
present the conditions under which there exists a preunit for (A®@ V @ W, pagvew)
and we discuss some examples involving wreath products [4], weak wreath products
[9], and the iteration process for Brzeziriski crossed products proposed recently by
Daug and Panaite in [3]. Finally, following the results proved in [5], we obtain a new
characterization of the iteration process.
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The Campbell-Baker—Hausdorff adjunction

The Lie algebra associated to a Lie group G encodes the first-order infinitesimal
structure of G near the identity; on the other hand, the formal group law associated
to G is a collection of formal power series which encode all finite-order infinitesimal
behaviour. One obtains the formal group law from the Lie group by Taylor expanding
the multiplication with respect to some chart around the identity; alternatively, one
may obtain the formal group law from the Lie algebra by applying the Campbell-
Baker-Hausdorff (CBH) formula, which expresses the group multiplication power
series near the identity purely in terms of iterated Lie brackets.

There are a number of ways of deriving the CBH formula, some geometric and
some algebraic in nature. The aim of this talk is to describe a categorical approach
drawing on synthetic differential geometry. We consider a category £ of microlinear
spaces wherein formal group laws may be construed as genuine internal groups; we
then construct an adjunction, the Campbell-Baker—Hausdorff adjunction of the title,
between internal groups and internal Lie algebras in £. Applying the left adjoint to a
finite dimensional Lie algebra yields its associated formal group law; applying it to the
free Lie algebra on two generators yields the free group on two non-commuting tangent
vectors, whose multiplication may be seen as a pure combinatorial manifestation of
the CBH formula.
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A comparison between ITT and CoC

Martin-Lof’s intuitionistic type theory (ITT) and Coquand’s calculus of construc-
tions (CoC) are two well-known intuitionistic dependent type type theories (or maybe
we should say families of type theories, since there are several versions of these sys-
tems) that share many features and have similar expressive power, yet there are
noticeable differences between them, the main one being that I'TT in its mature for-
mulation is a predicative system in which propositions and the types of their proofs
can be identified via Curry-Howard isomorphism (an earlier impredicative version
showed to be inconsistent), whereas CoC is an impredicative system in which there
are non-propositional types. Since the categorical semantics of extensional dependent
type systems is given by locally Cartesian closed categories, the aim of this work is
to sketch a comparison between these two systems, remarking both their similarities
and their differences from a semantical point of view.

A practical application of this comparison can be given in computational terms.
ITT and CoC are strongly normalising (and therefore non Turing-complete) type
systems, so they can be seen as the basis for functional programing languages such
as Coq or Agda. The Turing-incompleteness is not a flaw but an advantage if we
apply these systems to fields such as proof theory or type checking. Therefore, the
previous comparison between these systems can be extended to their computational
implementations and their eventual uses.
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Distributive laws for quasicategories

Distributive laws are a tool for combining a pair of monads S, T on the same cate-
gory. The fundamental results in the theory of distributive laws are that a distributive
law A : ST = T'S corresponds to a lift T of T' to the category of S-algebras, gives the
composite T'S the structure of a monad, and that T'S-algebras are then the same as
T-algebras. I will discuss work extending these results to homotopy-coherent monads
on quasicategories.

*Joint work with James Cranch.
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Ezponentiable homomorphisms of algebras

This is (the third part of) a joint work with Maria Manuel Clementino and Dirk
Hofmann on the exponentiability of homomorphisms of algebras over monads, and, in
particular, of classical algebraic structures; it partly uses the results of [1] and [2], and
will be published in [3]. However, in contrast to [1], now we shall neither restrict our
attention to the case of a weakly cartesian monads nor make any use of lax algebras.
The case of semimodules is interesting again (as in [2]), while in ‘almost semi-abelian’
cases only isomorphisms are exponentiable.

References:

[1] M. M. Clementino, D. Hofmann, and G. Janelidze, On exponentiability of étale
algebraic homomorphisms, Journal of Pure and Applied Algebra 217 (2013) 1195—
1207.

[2] M. M. Clementino, D. Hofmann, and G. Janelidze, The monads of classical al-
gebra are seldom weakly cartesian, Journal of Homotopy and Related Structures
9 (1) (2014) 175-197.

[3] M. M. Clementino, D. Hofmann, and G. Janelidze, On a few exponentiable mor-
phisms in classical algebra, submitted.

23



Zurab Janelidze
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On a symmetric proof of the non-abelian snake lemma

In this talk we present a non-abelian calculus of subquotients, which leads to
a “symmetric” proof of the non-abelian snake lemma. The categorical context in
which this is carried out is a self-dual generalization of the context of a semi-abelian
category, proposed in my CT2013 talk. It also generalizes the context of a Grandis
exact category, in which case the proof obtains a simpler and known self-dual form.
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Symmetrizing categories of lenses

So called lenses arise in applications where data needs to be synchronised between
two otherwise independent systems. A variety of kinds of lenses have been introduced
(examples include [1], [2] and [4]), but in each case lenses compose and form a category,
typically with sets or categories as objects. When the categories of lenses have sets
as their objects the lenses are called set-based, and when they have categories as their
objects they are called category-based.

Commonly lenses are asymmetric in that the data synchronisation is simple in
one direction, but requires some kind of lifting property in the other direction. An
example of a lens familiar to category theorists is a split fibration — the total space is
fibred over a base space with the functor giving synchronisation in one direction and
the chosen cartesian liftings representing synchronisation in the other direction. In
system terms such lenses are master-slave systems — the total space is the complete
system with full information, and the base space is some kind of view, that is a partial
representation of the data.

More generally interactions between systems are symmetric in that synchronisa-
tion in each direction requires a mixture of some simple data manipulation and some
liftings. Researchers have therefore repeatedly taken some category C of asymmetric
lenses and, largely in an ad-hoc way, constructed corresponding categories of sym-
metric lenses. The authors have argued previously that these constructions should
all be made via a bicategory SpC of spans in C, and we have studied appropriate
equivalences among spans which reduce the bicategory to the expected category of
symmetric lenses. The goal has been a unified category theoretic process for sym-
metrizing categories of lenses.

Naturally an appropriate equivalence of spans would include the usual isomor-
phisms of spans, but the isomorphisms themselves are too fine an equivalence relation
for the applications since the same symmetric lens — the same bidirectional syn-
chronisation of data — can be achieved through non-isomorphic spans. A natural
and appealing generalisation of the isomorphism equivalence relation arises by using
certain non-trivial lenses themselves to generate the equivalence relation. This sug-
gestion has been very well-received in the bidirectional transformation community,
and corresponds to the intuition that lenses are themselves a desirable generalisation
of isomorphism of systems, providing as they do bidirectional data synchronisation.
Indeed we had proposed [6] a unified process for symmetrizing categories of lenses by
constructing Sp C and reducing the hom sets by the equivalence relation generated by
those non-trivial lenses of C. We demonstrated that for a variety of kinds of set-based
lenses the process yielded the known categories of symmetric lenses, and showed how
it could be applied to other categories of set-based lenses to provide an appropriate
symmetrization, avoiding further ad-hoc definitions of symmetric set-based lenses.

*Joint work with Robert Rosebrugh.

25



We present here a study of category-based asymmetric and symmetric lenses and
provide a counter-example that demonstrates that the equivalence referred to in the
previous paragraph is still too fine an equivalence relation for the category-based lens
applications. Our analysis leads to a coarser equivalence relation £ for the category-
based symmetrizing process. When C is the category of Diskin et al’s asymmetric
delta lenses [2] our main theorem provides an isomorphism between Diskin et al’s
symmetric delta lenses [3] and

(SpC)/€.
Further we illustrate the equivalence relation in the special case of spans of split
fibrations.
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Functoriality of modified realizability

Recent work of the author [1], building on earlier work of Longley and of Hof-
stra & van Oosten, has completely solved the problem of describing the geometric
morphisms between ordinary realizability toposes: up to equivalence of categories,
they correspond to quasi-surjective (applicative) morphisms between the underlying
Schonfinkel algebras. In addition, the identification of the ‘Herbrand realizability
toposes’ of van den Berg with the Gleason covers of ordinary realizability toposes [2]
shows that Herbrand realizability is also a 2-functor on the 2-category of Schonfinkel
algebras and quasi-surjective morphisms, although we cannot assert that all geometric
morphisms between such toposes arise in this way. Although the notion of modified
realizability has been extensively studied by van Oosten and by Hyland and Ong, up
to now little attention has been paid to its functoriality. In this talk I shall present
a partial solution to the problem; it turns out to be complicated by the fact that a
modified realizability topos depends, not only on the choice of a Schonfinkel algebra,
but also on the choice of a ‘right ideal’ of distinguished elements which are always
available as potential realizers.
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Witt vectors and the James construction

The Witt vectors construction is a comonad on the category of commutative rings
[1] [2]. We show that the comonad is cofreely cogenerated by a pointed endo-functor.
The proof uses an abstract version of the James construction in topology [2] and the
theory of Tall and Wraith [4].
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Yoneda embeddings in double categories

We will consider the notion of yoneda embedding in a double category K. Then,
given a monad T on K, we describe the lifting of such yoneda embeddings along the
forgetful functor U: Alg(T") —IKC, where Alg(T') is the double category of algebras of
T.

To recover a well-known example we look at the monad for monoidal categories.
In that case the lifting of the yoneda embedding y: A — [A°P, Set] of a monoidal
category A equips [A°P,Set] with Day’s convolution tensor product [1]. From our
point of view y: A —[A°P, Set], with the convolution structure on [A°P, Set], lifts to
form a yoneda embedding, and consequently defines [A°P, Set] as the free cocompletion
of A, in the double category of monoidal categories. This sheds new light on classical
results such as those in [2].

By taking the monad for double categories instead we obtain a notion of yoneda
embedding for double categories which is closely related to, and gives further insight
into, a similar notion studied by Paré [3].

This work is a continuation of my study of ‘formal category theory’ within double
categories [4, 5].
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Stratification of triangulated categories

For an additive category it is a fundamental question to ask when there are non-
zero morphisms between two given objects. Support theory for triangulated categories
provides answers to this question. My talk will give an introduction to this subject,
covering examples from commutative algebra, stable homotopy theory, and modular
representation theory.
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Multiplier bimonoids, multiplier bicomonads, and comonads in a simplicial set

For a finite group G and a commutative ring k, both the group algebra k[G] and
the algebra of functions k¢ can be made into Hopf algebras. For infinite G there is
still a Hopf algebra k[G], but the situation with the algebra of functions (with finite
support) is more complicated; in general it has neither a unit nor a comultplication.
The concept of multiplier Hopf algebra was introduced by van Daele to deal with this
situation.

This concept of multiplier bialgebra can be developed in the context of a general
braided monoidal category. Furthermore, just as tensoring with a bialgebra gives
a monoidal comonad (also known as a bicomonad), so tensoring with a multiplier
bialgebra gives something called a multiplier bicomonad. Unlike the classical case,
these multiplier bicomonads do not seem to be comonads in any bicategory, but it
turns out they can be seen as “comonads in a simplicial set”. Just as comonads (and
monads) in bicategories can be classified using the Catalan simplicial set, so too can
comonads in simplicial sets.

*Joint work with Gabriella Bohm.
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Alezander Grothendieck and the modern conception of Space

Already before 1960, the profound innovation by Eilenberg and Mac Lane had
inspired further work that still plays a basic role in our present advances. I refer
to the results of Kan, Isbell, Yoneda, and Grothendieck. Grothendieck’s Tohoku
article introduced the notion of subobject (still not grasped by many writers) and
an emphasis on functor categories as a key method of construction. Grothendieck’s
elaborate construction of algebraic geometry via local ringed spaces, was rejected by
himself already in 1973 in his lecture in Buffalo; efforts to take that qualitative leap
into account have so far been incomplete.

Although in the 1950’s Grothendieck was considered to be one of the leaders of
functional analysis, recent journalistic accounts of his career seem to view that as a
youthful deviation from his path to algebraic geometry. However, closer attention
reveals that among his several advances in functional analysis was his calculation of
the dual space of a space of analytic functions, specifically revealing it concretely as
another space of analytic functions on a domain complementary to the original domain
of definition. The study of the shapes of these domains led to a concentration on
analytic geometry, where some of the first toposes emerged (but NOT as ‘generalized
spaces’). The close connection between compact analytic spaces and algebraic spaces
emphasized the contrast between the two realms with respect to an implicit function
theorem, leading to the other original class of toposes, namely the étale, which indeed
constitutes a kind of generalized space, but not a localic one.

A serious re-elaboration of the history of Grothendieck’s career will be a necessary
part of the program to re-establish the foundations of geometry in a way that is in
accord with Grothendieck’s basic insights, but that makes maximum use of recent
clarifying advances. Also helpful will be a more responsible use of the undefined term
‘generalization’.

I propose to continue the following dialog: ‘What is a Space?’ ‘A space is an
object in a category of spaces.” ‘So what is a category of spaces?’
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The reflexive completion

A fundamental operation of category theory is Isbell conjugacy, which turns a
covariant set-valued functor into a contravariant one and vice versa. The reflexive
completion of a category C consists of those set-valued functors on C that are canon-
ically isomorphic to their double conjugate. As the name suggests, and as Isbell
proved, this ‘completion’ process is idempotent. It is a larger completion than the
Cauchy completion.

Fundamental as reflexive completion is, it has been little studied and exhibits some
surprising behaviour. For example, the reflexive completion of a category always has
initial and terminal objects, as well as absolute (co)limits, but seemingly need not
have any other limits or colimits.

I will begin by introducing Isbell conjugacy and reflexive completion. I will then
present some new results with Tom Avery, including (i) some alternative character-
izations of the reflexive completion, and (ii) a necessary and sufficient condition for
the reflexive completions of two given categories to be equivalent. Finally, I will state
some open questions about this basic concept.

*Joint work with Tom Avery.
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The free tangent structure

There has been much recent work into generalising the structures involved in the
study of differential geometry. Omne approach, which has been very influential, is
synthetic differential geometry.

Another, due to Rosicky, focused more directly on the tangent functor with the
structure of (an abelian) group bundle, which in more recent times has been further
generalised by Cockett-Cruttwell, to give a structure involving the use of additive
bundles (commutative monoids).

This type of structure in fact is compatible with many existing definitions of differ-
entiability, including those used in computer science and combinatorics, the manifolds
in differential and algebraic geometry and also the abstract definitions in synthetic
differential geometry.

These tangent structures may be defined by giving an underlying category M and
a tangent functor

T M—-=M

along with a list of natural transformations and a set of axioms to be satisfied.

My work so far has involved restructuring the ideas underlying tangent structures
in terms of Weil algebras. More specifically, there is a particular full subcategory
of the Weil algebras with a universal property relative to all tangent structures, and
conversely, this (sub)category within itself has encoded the ideas of tangent structures.

More recently, I have been looking at a way to extend the scope of tangent struc-
tures by extending the class of Weil algebras under consideration to incorporate more
of the ideas underlying synthetic differential geometry. An important goal in doing
so is to illustrate a more explicit connection between the two.
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Site characterisations for local geometric morphisms

In SGA 4, Grothendieck and Verdier defined a local topos as one where the ca-
nonical geometric morphism into Set has an extra right adjoint. One can generalise
this definition by using an arbitrary topos instead of Set, and thus define a local
geometric morphism between two toposes. It was shown in [1] that such a geometric
morphism is always connected, i.e. that the extra adjoint is full and faithful, and this
implies that the codomain is a subtopos of the domain. Thus one can view a local
geometric morphism as an essential inclusion where the extra left adjoint preserves
finite limits.

It is well known that, given a site of definition, a subtopos of a Grothendieck topos
can be obtained by strengthening the Grothendieck topology. Now one can ask what
more can be said about the stronger topology when the geometric morphism is also
local. Partial results of this nature have already been achieved by Kelly and Lawvere
in [2].

I will show how using the axiomatisation of elementary local toposes given by
Birkedal in [3] and [4] one can characterise the relationship between the sites of de-
finition for geometric morphisms between localic toposes and between Grothendieck
toposes.
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Aspects of lax orthogonal factorisation systems

An algebraic weak factorisation systems (AWFSs) — [1, 3] — on a 2-category is lax
orthogonal when either its 2-comonad part or its 2-monad part is lax idempotent. In
this talk, after introducing the basic definitions, I characterise them as those AWFSs
whose diagonal fillers satisfy an extra universal property, similar to that of a left
Kan extension; ie as those AWFSs for which the canonical lifting operation on each
right map is a so-called KZ lifting operation. A basic example of a lax orthogonal
AWFS is that which factorises a morphism as a left adjoint coretract followed by a
split opfibration. We describe a method of transferring, or pulling back, this basic
AWFS through a left adjoint 2-functor using the new notion of simple 2-monad — a
two-dimensional analogue of the simple reflections of [4] — which generates a number
of examples: on Cat, on Top and on Lawvere’s metric spaces. All this can be found
in the preprint [2]. I hope to end with a few words on the appropriate notion of
cofibrant generation for lax orthogonal AWF'Ss.
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Generalising the functor of points approach

The passage from commutative rings to schemes has three main steps: first, one
identifies a distinguished class of ring homomorphisms corresponding to open immer-
sions of schemes; second, one defines the notion of an open covering in terms of these
distinguished homomorphisms; and finally, one embeds the opposite of the category of
commutative rings in an ambient category in which one can glue (the formal duals of)
commutative rings along (the formal duals of) distinguished homomorphisms. Tra-
ditionally, the ambient category is taken to be the category of locally ringed spaces,
but following [1], one could equally well work in the category of sheaves for the large
Zariski site — this is the so-called ‘functor of points approach’.

The three procedures described above can be generalised to other contexts. The
first step essentially amounts to reconstructing the class of open embeddings from the
class of closed embeddings. Once we have a suitable class of open embeddings, the
class of open coverings is a subcanonical Grothendieck pretopology. We then define
a notion of ‘charted space’ in the category of sheaves. This gives a uniform way of
defining locally Hausdorff spaces, schemes, locally finitely presented C'°°-schemes etc.
as special sheaves on their respective categories of local models, taking as input just
the class of closed embeddings. We can also get many variations on manifolds by
skipping the first step and working directly with a given class of open embeddings.
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Kan extensions and descent theory

There are two main constructions in classical descent theory: the category of
algebras and the descent category (see, for instance, [6, 2]). These constructions
are known to be examples of 2-limits (see, for instance, [6, 7, 1]). This work aims
to investigate whether pure formal methods and commuting properties of limits are
useful in proving classical and new theorems of descent theory in the classical context
of 2, 3].

Willing to give such formal approach, we employ the concept of Kan extensions.
However, since we only deal with pseudo-limits and bilimits (see [8] for pseudo-limits)
and we need some good properties w.r.t. pointwise equivalences, we use an weaker
notion: pseudo-Kan extensions, which is stronger than the notion of lax-Kan exten-
sions, already considered by John Gray in [2]. In particular, in this presentation, we
shall talk about the pseudo-Kan extensions and give a proof of the Bénabou-Roubaud
theorem.

This work is part of my PhD work under supervision of Maria Manuel Clementino.
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A general theory of measure and distribution monads
founded on the notion of commutant of a subtheory

Extending work of Anders Kock [1] and of the speaker [2], we outline a general
theory of measure and distribution monads on closed categories that specializes to
capture in a canonical way the notions of Radon probability measure, compactly
supported Radon measure (in each of its positive, signed, and probabilistic variants),
compactly supported Schwartz distribution, ultrafilter, and filter. We work with a
given closed category 2 of ‘spaces’, a commutative 2 -enriched algebraic theory
7, and a suitable J-algebra S. First defining in a general setting the notion of
commutant of a subtheory (or submonad), we define the natural distribution monad
D by

DX = FHAlg(5X, S) (Xe2)

where .7t denotes the commutant of .7 in the ‘full’ theory of S in 2. We de-
fine specific algebraic theories .7 that determine general notions of affine space over
a rig in £ and, in particular, of conver space over a preordered ring in Z. We
study the functional analysis intrinsic to the category 7-Alg of Z-algebras (e.g.,
linear/affine/convex spaces) and the object S, including suitable notions of complete-
ness of 7 -algebras [3]. We outline how much of the speaker’s work in [2] extends
to this setting, yielding a theory of wvector-valued integration in 7 -algebras, where
this generalized notion of ‘integration’ specializes to not only the Pettis integral in
vector spaces, but also the barycentre operation in suitable convex spaces, ultrafilter
convergence in compact Hausdorff spaces (following ideas of Kock and of Leinster),
and the ‘lim-inf’ operation in continuous lattices.
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Categories with 2-cell structures and their internal pseudocategories

In this talk we will survey on the work [1] where the notion of pseudocategory is
extended from the context of a 2-category to the more general one of a sesquicategory,
which is considered as a category equipped with a 2-cell structure. Some particular
examples of 2-cells arising from internal transformations in internal categories, con-
jugations in groups, derivations in crossed-modules or homotopies in abelian chain
complexes are studied in this context, namely their behaviour as abstract 2-cells in a
2-cell structure. Issues such as naturality of a 2-cell structure are investigated. This
work is intended as a preliminary starting step towards the study of the geometric
aspects of the 2-cell structures from an algebraic point of view.
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Higher-order categorical substructural logics

Whereas the concept of topos is seemingly difficult to generalise beyond higher-
order intuitionisitc logic and its variants, the concept of tripos or higher-order hyper-
doctrine, which allows us to present all toposes via the tripos-to-topos construction
(but not wice versa), is based on a more general, fibrational mechanism, thus look-
ing more promising for developing “categorical universal logic” (the concept of tripos
was originally introduced in Hyland-Johnstone-Pitts [2], then extended to allow for
general base categories).

In this talk, we introduce the concept of full Lambek tripos, and show that full
Lambek triposes give complete semantics for higher-order full Lambek calculus HoFL.
Relativising this result to different classes of additional axioms, we can obtain higher-
order categorical completeness theorems for a broad variety of logical systems, includ-
ing classical, intuitionistic, fuzzy, relevant, paraconsistent, and (both commutative
and non-commutative) linear logics. The general framework thus developed allows us
to give a tripos-theoretical account of Girard’s and Gédel’s translation for higher-order
logic.

Higher-order full Lambek calculus HoFL extends quantified full Lambek calculus
FL (see Galatos et al. [1] or Ono [6]) so that HoFL equipped with all the structural
rules boils down to higher-order intuitionistic logic, the logic of topos (see Lambek-
Scott [4]). HoFL is a so-called “logic over type theory” or “logic-enriched type theory”
in Aczel’s terms; there is an underlying type theory, upon which logic is built (see
Jacobs [3]). The type theory of HoFL is given by simply typed A-calculus extended
with finite product types (i.e., 1 and x; these amount to the structure of Cartesian
closed categories), and moreover, with the special, distinguished type

Prop

which is a “proposition” type, intended to represent a truth-value object €2 on the
categorical side. The logic of HoFL is given by full Lambek calculus FL. The Prop
type plays the key role of reflecting the logical or propositional structure into the type
or term structure: every formula or proposition ¢ may be seen as a term of type Prop.

The algebras of propositional FL. are FL algebras. The algebras of first-order FL
are FL hyperdoctrines as argued in Maruyama [5]; note that complete FL algebras
only give us completeness in the presence of the ad hoc condition of so-called safe
valuations, and yet FL hyperdoctrines allow us to prove completeness without any
such ad hoc condition, and at the same time, to recover the complete FL algebra
semantics as a special, set-theoretical instance of the FL hyperdoctrine semantics (in
a nutshell, the condition of safe valuations is only necessary to show completeness
with respect to the restricted class of FL hyperdoctrines with the category of sets
their base categories). FL triposes introduced in this talk are arguably the (fibred)
algebras of higher-order FL, allowing us to prove higher-order completeness, again
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without any ad hoc condition such as safe valuations or Henkin-style restrictions on
quantification (set-theoretical semantics is only complete under this condition).
FL hyperdoctrines and triposes are defined as follows. An FL hyperdoctrine is a
contravariant functor
P:C® —FL

such that the base category C of P is a category with finite products, and that the
adjointness conditions to express quantifiers are satisfied (see Maruyama [5]). Now, an
FL tripos, or higher-order FL. hyperdoctrine, is an FL hyperdoctrine P : C°? —FL
such that:

e The base category C is a CCC (Cartesian Closed Category);

e There is an object 2 € C such that

P ~ Homc¢(-, Q).

We then call 2 the truth-value object of the FL tripos P. Building upon these con-
cepts, we establish the following two results in this talk: (i) higher-order completeness
via full Lambek tripos, which can be instantiated for any of classical, intuitionistic,
fuzzy, relevant, paraconsistent, and (both commutative and non-commutative) linear
logics; (ii) tripos-theoretical accounts of Girard’s ! translation and Godel’s —=— trans-
lation for higher-order logic, in which the internal language of tripos is at work. As
illustrated by this account of logical translation, the general framework thus developed
allows us to compare different categorical logics within the one universal setting.

References:

[1] N. Galatos, P. Jipsen, T. Kowalski, and H. Ono, Residuated Lattices: An Alge-
braic Glimpse at Substructural Logics, Elsevier, 2007.

[2] M. Hyland, P. T. Johnstone, and A. Pitts, Tripos Theory, Math. Proc. Cambridge
Philos. Soc. 88, pp. 205-232, 1980.

[3] B. Jacobs, Categorical Logic and Type Theory, Elsevier, 1999.
[4] J. Lambek and P. J. Scott, Introduction to Higher-Order Categorical Logic, 1986.

[5] Y. Maruyama, Full Lambek Hyperdoctrine, Springer LNCS 8071, pp.211-225,
2013.

[6] H. Ono, Crawley Completions of Residuated Lattices and Algebraic Complete-
ness of Substructural Predicate Logics, Studia Logica 100, pp. 339-359, 2012.

42



Matias Menni
Universidad Nacional de La Plata

An ‘algebraic’ model of a bidirectional Fuler continuum

It is stated in [3] that “The 1973 Buffalo Colloquium by Alexander Grothendieck
had as its main theme that the 1960 definition of scheme [...] should be abandoned
AS the FUNDAMENTAL one and replaced by the simple idea of a good functor from
rings to sets”. Lawvere also suggests in [3] that “Grothendieck’s point of view could be
applied to real algebraic geometry as well” by concentrating on the “nature of positive
quantities” and gives a definite proposal in terms of really local rigs. Motivated by
this suggestion we construct a site of finitely presented R -rigs ‘without -1’ and a
uniquely-pointed object T' in the induced pre-cohesive [2, 4] topos p : £ — Set such
that: the (commutative!) submonoid R — T7 of Euler reals [1] has a retraction, its
domain is connected (i.e. piR = 1), and the subgroup U — R of invertible elements
satisfies that piU is the cyclic group of order 2. The last fact is what intuition suggests
for a ‘bidirectional line’, and contrasts with the case of algebraic geometry over the
real field R, where ;U = 1. It also holds that R has a ring structure and a subrig
R+ — R that is disjoint from the connected component of U where —1 lies.

References:

[1] Lawvere, F. W., Euler’s continuum functorially vindicated, The Western Ontario
Series in Philosophy of Science 75 (2011) 249-254.

[2] Lawvere, F. W., Axiomatic Cohesion, Theory and Applications of Categories 19
(2007) 41-49.

[3] Lawvere, F. W., Grothendieck’s 1973 Buffalo Colloquium. E-mail to the
categories-list, March, 2003.

[4] Menni, M., Sufficient Cohesion over atomic toposes, Cah. Topol. Géom. Différ.
Catég. 55 (2014) 113-149.

43



Giuseppe Metere
Universitd degli Studi di Palermo

Aspects of strong protomodularity, actions and quotients

We study the problems of extending action along a quotient of the acted object
and a quotient of the acting object. We obtain a characterization of protomodular
categories among pointed regular ones, and, in the semi-abelian case, a characteriza-
tion of strong protomodularity. Some applications are given and some generalizations
are discussed.
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Some topoi generated by topological spaces

This work suggests a topoi construction methods through topological spaces.

Given a topological monoid M, forgetting the topology of M, it determines the
topos M - Sets. Using the topology of M and final topologies, the objects of this topos
remains enriched with a topology in such way that the actions remains continuous
respect to the topology of the tensor product and the morphisms in this topos also
remains continuous. A topos equivalent to one of this form is what we have been
called a Geometric Topos. Now, a Topological Topos is the one which contains a
homeomorphic subcategory to the reflective subcategory of Top. For example, given
a topological space whose open sets are compact, the monoid of continuous functions
of this space with the compact open topology is a topological monoid. In this case,
the topos obtained is both a geometric topos and topological topos.
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On the “Smith is Huq” condition in S-protomodular categories

The “Smith is Huq” condition, which says that two equivalence relations on the
same object centralize each other (in the Smith-Pedicchio sense [1, 2]) as soon as their
normalizations commute (in the Huq sense [3]), has proved to have several important
algebraic consequences. For example, it allows to simplify the description of internal
categories, internal groupoids and crossed modules: see [4] for a detailed account of
these properties in semi-abelian categories, and [5] for an extension to the case of
pointed Mal’tsev categories.

In this talk we consider a relative version of the “Smith is Huq” condition in
the context of pointed S-protomodular categories [6]: two S-equivalence relations
centralize each other as soon as their normalizations commute. As proved in [6], in
a S-protomodular category the fact that two S-equivalence relations centralize each
other is a property, like for equivalence relations in Mal’tsev categories. We show
that the categories of monoids, of semirings, and, more generally, all categories of
monoids with operations (in the sense of [7]) are S-protomodular categories satisfying
the “Smith is Huq” condition. We explore then some consequences dealing with the
description of internal structures.
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Another approach to the Kan-Quillen model structure

Model categories were introduced by Quillen in [1] where it is shown that sSet,
the category of simplicial sets, admits a model structure. However, that proof uses
the theory of minimal fibrations and so relies heavily on the axiom of choice. Some
accounts, for example [2], employ a category of topological spaces. One might expect it
possible to give an explicit proof that uses only the intrinsic combinatorics of simplicial
sets.

I present an approach which completely avoids both minimal fibrations and topo-
logical spaces. By careful analysis of the embedding of a simplicial set X into a Kan
complex Ex> X given by Kan in [3], we obtain a new proof that it is a weak equiv-
alence. In fact it is a strong anodyne extension, i.e. a relative cell-complex of horn
inclusions (without retracts). This description as a cell-complex is powerful enough
that we can quickly deduce the model structure axioms given just a few combinatorial
facts from the classical theory of simplicial sets.
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Weak factorization systems for intensional type theory.

In Category Theory 2014, 1 gave a talk entitled “Moore factorization systems”.
In that talk, I sought to describe weak factorization systems on a category M which
are given by an endofunctor Id : M — M equipped with enough algebraic structure
to generate a weak factorization system with a factorization analogous to the one
given through the space of Moore paths in the category of topological spaces [1]. The
objective was to understand those weak factorization systems which could interpret
Martin-Lof intensional type theory [2, 3].

In this talk, I will report on further progress. These Moore factorization systems
have two important properties as weak factorization systems: (1) every object is
fibrant, and (2) the left maps are stable under pullback along right maps. It turns
out that any weak factorization system with these two properties can be given as a
Moore factorization system. This gives a full characterization of the weak factorization
systems which can interpret intensional type theory. If time permits, I will also
discuss the categories of internal categories and presheaves in a category with a Moore
factorization system.
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On the various definitions of cyclic operads

We view cyclic operads as structures combining operations that have only (named)
entries and no distinguished output. Starting from a contravariant (and non-skeletal)
version S : Bij’ — Set of Joyal’s species of structures, partial compositions and
identities are defined, as done, say, by Markl in the appendix of [1]. This leads to
a natural combinator syntax . But we found it convenient to introduce as well a -
calculus-style syntax, called u-syntax, that allows a crisp and economical formulation
of the laws to be satisfied. Instead of dealing only with operators f € S(X), the
p-syntax involves two kinds of expressions:

cu=(slt)y | fltzslr € X} and s, tu=z | px.c,
called commands (which mimick operators themselves, with no entry selected), and
terms (representing operators with one selected entry), respectively, these being
subject to the following set of equations:

(slt) = (tls),  (uacls) = cls/a] and pafaly) = y.
We prove that the set of commands of our syntax, quotiented by the given equations,
is in one-to-one correspondence with the set of unrooted trees with nodes decorated by
operations and half-edges labeled by names, thereby proving the equivalence between
the partial (or biased) presentation and the (unbiased) definition of (cyclic) operads
as algebras over a monad. Our proof makes use of rewriting. The equations of the
u-syntax give rise to a (non-confluent) critical pair

cilpz.cafy] < (py.c1|pa.c2) = colpy.c1/z].

The distinct normal forms of a command correspond in a natural way to enumerations
of the nodes of the corresponding tree.

In addition, we also discuss two monoidal-like definitions, guided by the
“microcosm principle” of Baez (like Fiore did for ordinary symmetric operads and
dioperads): according to the first one, a cyclic operad is a pair (S, v : SAS — 5)
where SAT = (0S5) ® (0T), and where v commutes (in an appropriate sense) with
the “associativity-like” isomorphism

(SAT)AU + TA(SAU) + (TAU)AS 2 SA(TAU) + (SAU)AT + UA(SAT) .

The second one will be presented in the talk.
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Skolem relations and profunctors

We develop, in parallel, two general distributive laws, one for intersection over
union in a topos, the other for limits over colimits in sets.

The key ingredient in the topos case is that of Skolem relation. Classical distribu-
tivity for arbitrary intersections over unions involves choice functions and requires
the axiom of choice. We generalize this to an arbitrary topos by replacing the choice
functions by relations. We show how this reduces to the classical result in the presence
of choice.

For distributivity of limits over colimits in sets, we get analogous results by re-
placing choice functions by profunctors. The similarities and differences of the two
theories will be discussed.
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Dagger category theory

Dagger categories are the basis of categorical approaches to quantum mechanics
[1], and are starting to see applications in fields such as reversible computing [2] or
linguistics [3].

In this talk we show how by essentially doing formal category in a 2-category Cat;
of dagger categories in the spirit of [5], we can give a more conceptual basis to standard
constructions with dagger categories; yielding for example, a general definition of
dagger-limit extending the somewhat ad-hoc definitions of dagger biproducts or dagger
kernels proposed in the literature.

We end with some speculations related to a Yoneda structure on Caty, and what
is the right setting for formal dagger category theory.
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An abstract approach to Glivenko’s theorem

The main motivation to study category of logics are methods of combining logics.
The initial steps on “global” approach to categories of logics have appeared in dual
aspect. On one hand appear a category of logic with strict morphisms L. The
object in this category are logics viewed like pairs (3,F) such that 3 is a signature
and  is a tarskian consequence operator. The morphisms f : (3,F) — (¥/,}) are
sequences of functions f : ¥ —= Y where ¥ is a sequence of pairwise disjoint sets
Y = (Xn)nen and f = (fn)nen such that f, : X, —X,. This functions extend to
formulas f : F(X) — F(X') and given T'U {p} C F(Z) then T+ ¢ = f[I] ' f(¢),
such morphism f is called a logical translation. This category has ”good” categorial
properties but unsatisfactory treatment of the “identity problem” of logics [1]. On
the other hand appear a category with flexible morphism £ having a satisfactory
treatment of “identity problem” but it does not have ”good” categorial properties ([3]).
The objects in Ly are the same in £g but the morphisms are logical translations such
that ¢, € X, = ¢, € F(X')[n] where F(X)[n] is the set of formulas in {xg, -+, x,-1}.

On these categories, it is possible building others categories like:

As(respect.Ay), the category strict (respect. flexible) of (Blok-Pigozzi) BP- alge-
braizable logics [2]. In this category a morphism f : 1 — ' ; f € L(L,U)(Ls(1,1))
“preserves algebraizing pair”. QL;: "quotient” category: f ~ g iff flo) 4+ g(e).
The logics | and I" are equipollent ([3]) iff [ and I’ are QL-isomorphic. L C Ly
”congruential” logics: Logics which the relation - is a congruence relation over the
connectives. Lind(Ay) C Ay: "Lindenbaum algebraizable” logics: ¢ 4 1) & F pA.
QL‘; (or simply Qjc): 7good” category of logics: represents the major part of logics;
has good categorial properties (is an accessible category complete/cocomplete); solves
the identity problem for the presentations of classical logic in terms of isomorphism;
allows a good notion of algebraizable logic [5].

The concern to study of category of logics is describe translation of meta-logics
and logic properties between logics. In this work arise a way to obtain a notion of
Abstract Glivenko’s Theorem to algebraizable logics. To do this, we use a catego-
rial framework called Institution [4] whose allows treat the semantic and syntactic
parts of a logic in a same time. An Institution I = (Sig, Sen, Mod, |=) consist of:
a category Sig, whose the objects are called signature; a functor Sen : Sig — Set,
for each signature a set whose elements are called sentence over the signature; a
functor Mod : (Sig)°®® — Cat, for each signature a category whose the objects
are called model, a relation ExC |Mod(X)| x Sen(X) for each ¥ € |Sig|, called
Y-satisfaction, such that for each morphism A : ¥ —= 3, the compatibility condition
M' =5y Sen(h)(¢) if and only if Mod(h)(M') Ex ¢ holds for each M’ € |[Mod(Y)
and ¢ € Sen(X).

*Joint work with Hugo Luiz Mariano.
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An Institution morphism (®, «, 3) : I —= I’ consist of: a functor ® : Sig — Sig/;
a natural transformation o : Sen’ o ® = Sen; a natural transformation
B : Mod = Mod o ®°, such that the following compatibility condition holds:
M' =5 as(p) iff B (M) Faorsy ¢

We use this notion to define the institutions of Lindenbaum algebraizable logics
which is: Given a € Lind(Ay). I, defines the Institution of Lindenbaum algebraizable
associated to a where:

Sig is the category whose the objects are a1 = (31,F1) € Lind(Ay), that are
isomorphic to a in the quotient category QLind(Ay) and the morphisms are only the
isomorphisms in QLind(Ay), Mod : Sig? — Cat such that Mod(a;) = QV (ay) for
all a; € |Sig| and Mod(ay i az) = (QV (a2) M QV(ay1)) and Sen : Sig—Set such
that Sen(ap) is the set all tuples

((laol, [Bol), - -+ ([an—1]; [Bn-1]); ([a], [8]))

that represents quasi-equations, i.e., EqyA...AEq,—1 — Eq such that [a;], [8;] belongs
to F(X1)(X)/ 4, the free QV (aq)-structure on the set X, and o; = e(¢p;), 8i = 0(i),
for some algebraizable pair of aj, ((¢,0),A).

Then we are to able to define and prove the following;:

Definition 0.1. A Glivenko’s context is a pair G = (h : a—=d,p) where h €
Lind(Ay)(a,a’) and p : K*[ oLy = Id is a natural transformation that is a section of
the unit of the adjunction (Ly, h*]).

Theorem 0.2. Each G = (h:a—=d,p) Glivenko’s context induces a institutions
morphism Mg : I, — 1.

Corollary 0.3. For each Glivenko’s context G = (h : a —=d’,p), is associated an
abstract Glivenko’s theorem between a and a i.e; given I' U {p} C F(X) then

prx) LT oo (@) < h[TTH h(ep).
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The Grothendieck Construction for Model Categories

The Grothendieck construction is a classical correspondence between diagrams of
categories and coCartesian fibrations over the indexing category. In this paper we
consider the analogous correspondence in the setting of model categories. As a main
result, we establish an equivalence between suitable diagrams of model categories in-
dexed by M and a new notion of model fibrations over M. When M is a model
category, our construction endows the Grothendieck construction with a model struc-
ture which gives a presentation of Lurie’s oo-categorical Grothendieck construction
and enjoys several good formal properties. We apply our construction to various ex-
amples, yielding model structures on strict and weak group actions and on modules
over algebra objects in suitable monoidal model categories.

References:

[1] Y. Harpaz and M. Prasma, The Grothendieck construction for model categories,
arXiv preprint arXiv:1404.1852 (2014).
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Virtual equipments for co-categories

We reclaim the terms oo-category and oo-functor to mean objects and morphisms
in a suitable context: a category that is strictly enriched over André Joyal’s quasi-
categories with a distinguished class of isofibrations satisfying familiar axioms. Ex-
amples include quasi-categories, complete Segal spaces, Segal categories, marked sim-
plicial sets, n-fold complete Segal spaces, and slices of all of these over a fixed object.
Thus, our meaning of oco-category is both more restrictive, in that it only includes
certain models of (oo, 1)-categories, and more general, in that it includes models of
(00, n)-categories, than Jacob Lurie’s.

The advantage of our approach is it allows for greater precision when generaliz-
ing ordinary category theory to oco-categories. Relative to our axiomatization for a
context, we develop a formal category theory of oo-categories and oo-functors that
makes no use of the combinatorial details that differentiate each model. Our strat-
egy is to work inside the homotopy 2-category, a strict 2-category associated to each
context, first introduced in the context of quasi-categories by Joyal. Each homotopy
2-category admits weak comma oo-categories, which are used to develop the theory
of adjunctions, (co)limits, fibrations, and the Yoneda lemma. We define modules
between oo-categories to be two-sided discrete fibrations, meant here in a suitably
weak sense, and prove that modules assemble into a virtual equipment, as defined by
Geoff Cruttwell and Michael Shulman. Dominic Verity will explain the virtues of this
framework in his talk.
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Diana Rodelo

University of Algarve and Centre for Mathematics, University of Coimbra

A tour through n-permutability

The aim of this talk is to gather the, more or less, recent results concerning n-
permutable categories that we have developed in the past few years. As so, it is a
joint work with the authors listed in the references below.

For n > 2, an n-permutable category is a regular category such that the compo-
sition of (effective) equivalence relations R and S on a same object is n-permutable:
RSR--- =SRS -, each composite involving n factors. The 2-permutable categories
are better known as Mal'tsev categories, while the strictly weaker 3-permutable cate-
gories are usually called Goursat categories. For each n, an n-permutable category is
necessarily an (n + 1)-permutable, but the converse fails to be true.

The Mal’tsev (=2-permutability) property has been widely studied over the past
years; first in a varietal context, then later generalised to a categorical one. As
first in the list, they are naturally endowed with simplest property: RS = SR, the
commutativity of the composition of (effective) equivalence relations R and S on a
same object. As a consequence, their study developed remarkably and lead to a big
contribution to categorical algebra.

Next in the list we have Goursat categories (=3-permutable categories). Although
closely related to Mal’tsev categories, Goursat categories turned out to be more dif-
ficult to handle and were therefore less popular. Two natural question arising are:
Which are the typical properties of Goursat categories? Which properties known for
Mal’tsev categories still hold in Goursat categories? We answer these question by
providing some new characterisations of Goursat categories in terms of natural con-
structions involving pushouts and pullbacks, by investigating the internal categorical
structures, and by establishing some new homological type lemmas. Some of these
results are then extended to a context where pointed and non-pointed algebra can be
treated simultaneously, while others are extended further to the general context of
n-permutable categories.
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Jiti Rosicky*
Masaryk University, Brno

Classification theory for accessible categories

This is a continuation of my talk given at CT2014 where I presented a hierar-
chy spanning from accessible categories with directed colimits to abstract elementary
classes in the sense of Shelah. A prominent role was played by accessible categories
with concrete directed colimits. Our aims are twofold — on one hand, we show how
particular members of this hierarchy are closed under constructions of limit type. The
main result is that abstract elementary classes are closed under PIE-limits, which im-
proves the approach of [3]. On the other hand, the recent interest in metric abstract
elementary classes (see [1], [4]), which may be thought as a kind of amalgam of ab-
stract elementary classes with the program of continuous logic, prompts an extension
of our approach: metric abstract elementary classes do not, in general, have concrete
directed colimits. Consequently, we consider accessible categories with directed coli-
mits which are concrete only if sufficiently highly directed, i.e. k-directed for some
regular cardinal k. In the case of metric abstract elementary classes, in particular,
we have kK = w;. Using results of [2], we produce, for a start, a categorical analogue
of Shelah’s Presentation Theorem and an associated Ehrenfeucht-Mostowski functor.
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Giuseppe Rosolini
DIMA, Universita degli Studi di Genova

Ezxact completions as homotopical quotients

Following recent work by Steve Awodey and the author [1], we retrace an idea of
Aurelio Carboni that the equivalence determining the maps of an exact completion
(see [2]) is obtained from a homotopy.

We show that the exact completion of an arithmetic universe A4 is the homotopical
quotient of a category of weak 2-groupoids on A with respect to a specific notion of

interval.
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Christian Sattler
University of Leeds

Initial algebras for dependent from plain polynomial functors in quasicategories

Let C be a locally cartesian-closed category. Gambino and Hyland [1] construct
initial algebras for dependent polynomial functors

¢/ —=~c/B-L

t

c/A—=c)I

from initial algebras for non-dependent ones (where I = 1) in a locally cartesian-closed
category. Their motivation came from dependent type theory: here plain polynomial
functors model ordinary W-types, while dependent polynomial functors model indexed
W-types.

Recent work by Szumilo [4] and Kapulkin (unpublished) exhibits the syntax of
intensional type theory with function extensionality as a locally cartesian-closed qua-
sicategory. In relating ordinary and indexed notions of W-types in homotopy type
theory [2], one is thus naturally led to continue the categorical analysis of type theo-
retic concepts of [1] and study the relation of initial algebras for plain and dependent
polynomial functors in arbitrary locally-cartesian closed quasicategories.

We first illuminate a deeper categorical nature of the 1-categorical construction [1],
which originally was very much hands-on, giving a significantly more abstract presen-
tation. A key step is an intriguing application of the rolling rule [3], with a reduction
to certain fibrational arguments. The resulting level of conceptuality then makes
the proof amendable to quasicategorification, which we hope to sketch in the second
half of the talk. A crucial distinction is the need to replace a certain equalizer by a
coreflexive one, these concepts not coinciding in the higher categorical context.
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Paul Slevin *
University of Glasgow

Cyclic homology arising from adjunctions

Given a monad and a comonad, one obtains a distributive law between them
from lifts of one through an adjunction for the other. In particular, this yields for
any bialgebroid the Yetter-Drinfel’d distributive law between the comonad given by
a module coalgebra and the monad given by a comodule algebra. It is this self-dual
setting that reproduces the cyclic homology of associative and of Hopf algebras in the
monadic framework of Bohm and Stefan [2]. In fact, their approach generates two
duplicial objects and morphisms between them which are mutual inverses if and only
if the duplicial objects are cyclic. In my talk, I will discuss the above in detail and
give a 2-categorical perspective on the process of twisting coefficients [4, 5].
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Sergejs Solovjovs*
Brno University of Technology

On monoidal (co)nuclei and their applications

Quantic (co)nuclei provide a convenient technique for constructing quotients and
subquantales of quantales [3]. This talk shows its analogue for the monoidal approach
to topology of [2] in the form of the categories (T,V)-Cat, the latter based in a
monad T on Set and a unital quantale V. As a consequence, we get a machinery
for constructing quotient categories and subcategories of the categories (T, V)-Cat,
thereby providing a common framework for several of the already defined ones in
the literature (for example, sets, preordered sets, metric spaces, topological spaces,
V-closure spaces, V-weighted H-labelled graphs, and V-enriched multi-ordered sets).
We also get a representation theorem for the categories (T,V)-Cat, which arises
as an analogue of the quantale representation theorem of [3]. We then apply our
(co)nuclei technique to the (op-)canonical extensions of monads of G. Seal [4, 5] and
the topological theories of D. Hofmann [1], thereby providing quotient categories and
subcategories of (T, V')-Cat in the form of (T, 2)-Cat for the two-element quantale 2.
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Categories of “lax fractions”

The concept of orthogonality is closely linked to full reflective subcategories (and,
thus, to idempotent monads). The concept of Kan-injectivity plays for KZ-monads
(or lax-idempotent monads) the same role as orthogonality for the idempotent ones,
as demonstrated in the papers [2, 1] in the case of order-enriched categories (i.e.,
categories enriched in Pos).

In an order-enriched category X, an object A is said to be (left) Kan-injective with
respect to a morphism f : X—Y, if the Pos-morphism X (f, A) : X(Y, A)—X (X, A)
is a right adjoint retraction. And a morphism k : A— B is Kan-injective with respect
to f if it satisfies the equality (X(f,B))* - X(X,k) = X (Y, k) - (X(f,A))*, where
(X(f,A))* denotes the left adjoint of X'(f, A). For a given subcategory A, we study
the class AKX of all morphisms with respect to which all objects and morphisms of
A are Kan-injective. In particular, we show that A%/ is, in a certain sense, closed
under weighted colimits. In the case of A being a KZ-monadic subcategory of X, we
construct a category of “lax fractions” for AKX/ This construction resembles the
one of a category of fractions for the class of morphisms inverted by a reflector into a
full reflective subcategory.
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Vrije Universiteit Brussel

Regularity for relational algebras and the case of approach spaces

Topological and approach spaces are known to be relational T-algebras for suitable
monads T on Set, laxly extended to Rel.

Top is known to be isomorphically described as (3, 2) — Cat for the ultrafiltermonad
with the Barr extension [1] or as (F,2) — Cat for the filtermonad [7]. App can be
isomorphically described as (B, 2) — Cat for the prime functional ideal monad B [6] or
as (I,2) — Cat for the functional ideal monad [ [2], [3]. Both F and [ are power-enriched
monads and their extension to Rel is the Kleisli extension. For the monad B, we use
the initial extension to Rel.

In this talk we look at objects in (T, 2) — Cat as spaces and we explore the topo-
logical property of T-regularity. When applied to (§3,2) — Cat, -regularity is known
to be equivalent to the usual regularity of the topological space [5].

Consider now a monad T, power-enriched by the monad morphism 7 : P—T, with
the Kleisli extension. We prove that under mild conditions, even when abandoning
improper elements, T-regularity is too strong since it implies the space to be indiscrete.
Both [ and F satisfy these mild conditions. In the case of the functional ideal monad
[, we present weaker conditions in order to describe the usual notion of regularity in
App.

For the prime functional ideal monad B, a submonad of [, the situation is different.
Again abandoning improper elements to avoid uninteresting results, we explain that
B-regularity is equivalent to the approach space being topological and regular. We
also present weaker conditions based on the monad B describing the usual regularity
in App.
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The calculus of modules for oco-categories

Under very general conditions one may start with a theory of co-categories, such
as n-fold Segal spaces (a model of (co,n)-catgories), and derive an associated rich
calculus of modules dubbed a virtual equipment by Geoff Cruttwell and Michael Shul-
man. This opens up the prospect of developing the foundations of co-category theory
in a model agnostic way, which allows it to be applied equally to a very diverse range
of higher co-categorical structures.

In this talk we examine how this calculus may be deployed to provide an entirely
elementary development of a number of the key ingredients that should be present in
any self respecting oo-category theory. As exemplars, we develop the theory of exact
squares and finality, weighted (co)limits and pointwise Kan extensions. Furthermore,
we demonstrate that this theory coincides with established accounts in the special
case of quasi-category theory to be found in the work of Joyal, Lurie and others.

While this gets us a long way, it is just a first step towards providing a full account
of the foundations of co-category theory at this level of model agnostic generality. If
time permits, we will briefly touch upon extensions of this work which encompasses
questions of size and free co-completion.
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Macquarie University

Internal algebra classifiers as codescent objects of crossed internal categories

This talk is a report on the work contained in the preprint [3]. In this work the
setting of an adjunction of 2-monads is proposed as a general context for speaking
about internal structures within an ambient structure. The problem of constructing
the universal ambient structure containing the prescribed internal structure is stud-
ied. Following the work of Lack [2], these universal objects must be constructed as
codescent, objects of simplicial objects arising from our setting. We isolate the extra
structure present on these simplicial objects which enable their codescent objects to
be computed. These are the crossed internal categories of the title, and generalise the
crossed simplicial groups of Loday and Fiedorowicz [1].

The most general results of this work are concerned with how to compute such
codescent objects in 2-categories of internal categories, and on isolating conditions on
our monad-theoretic situation which enable these results to apply. Combined with
earlier work [4] in which operads are seen as polynomial 2-monads, our results are
then applied to the theory of non-symmetric, symmetric and braided operads. In
particular, the well-known construction of a PROP from an operad is recovered, as
an illustration of our techniques.
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Waves and total distributivity

Following joint work with Francisco Marmolejo and Bob Rosebrugh on “Completely
and totally distributive categories”, I reported at CT2013 on the wave functor W :
H =X = set”™ of a totally cocomplete category #. Indeed, if the defining
property of J# is given by an adjunction \/ 1Y : % - sz\, where Y is the Yoneda
functor, then W is given for objects A and K in JZ by

W(A)(K) = set” (A (A, -).\/, K, ~])

where [K, —| denotes evaluation of an object of A at K. set denotes the category
of small sets and it requires some work to show that W is well-defined. W arises
along with natural transformations 8: W\ =1 _—>and v: VW = 1, that satisfy
VB =~V and fW = Wr. A total # is said to be totally distributive if \/ has a left
adjoint. It was shown that J#" is totally distributive iff v is invertible iff W 4 \/.

For any total J there is a well-defined, associative composition of waves. If we
write # : H —= for the small profunctor determined by W then composition
becomes an arrow o : .# o w H = X, , although H o w A is not in general small.
Moreover, there is also an augmentation (—) : ,%/(—, —) = 4 (—,—), corresponding
to a natural transformation §: W = Y constructed via 8. We will show that if JZ is
totally distributive then o: H o o H = A is invertible, meaning that composition
of waves is mterpolatwe and # thus supports an idempotent comonad structure. In
fact, A o w H = H o ~<%/ so that # becomes a tazon structure, in the sense of
Koslowski, on the obJects of 2. In the paper with Marmolejo and Rosebrugh we
showed that, for any small taxon .7, the category of taxon functors Tax(.7°P, set) is
totally distributive. To this we now add, for any totally distributive %", there is an
equivalence of categories %~ Tax(,%A//Op, set).
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Marek Zawadowski*
University of Warsaw

Fibrations of polynomial and analytic functors and monads

It is well known that many notions like monad, Kleisli and Eilenebrg-Moore cat-
egory, mnonidal category, category of monoids, action of a monoidal category and
category of actions along an action introduced in the context of the 2-category Cat,
when suitably internalized, make sense in any 2-category A with finite (2-dimensional)
products. Moreover, we can say that a 0-cell in cal A has some limits and/or colimits
if the category A(X,C) has such limits for any 0-cell X' in A and/or colimits and the
precomposing functors preserve them. This permits to internalize to any 2-category
with finite products several arguments that holds true in Cat and use them directly
in different contexts.

We have shown, among other things, that if we have a monoidal monad (R, ¢, 7, i)
on a monoidal object (C,®, I, a, A, p) so that C has reflexive coequalizers, both struc-
tures respect them, and (R,n,u) admits an Eilenberg-Moore object in A, then
(R, ¢,m, 1) admits an Eilenberg-Moore object in the 2-category Mon(Cat) of monoidal
objects, (lax) monoidal functors, and monoidal transformations in A. This extends
earlier results due to F. Linton, R. Guitar, and G. Seal, as well as some of our ear-
lier results. A similar result for the Kleisli object is also true and it is of a much
simpler nature. Both Eilenberg-Moore and Kleisli objects lift along 2-fibration to a
2-category of lax slices, and similar results also hold for the 2-category of (lax) actions
of monoidal objects on a given 0-cell.

The development of this abstract theory was inspired by the theory of polynomial
and analytic functors and monads. When applied to a symmetrization monad on a
fibration of signatures in a (suitable) 2-category of fibrations, it shows in a natural
way how these notions arise and how they are related to each other. The theory
applies to some other natural cases of monoidal monads, as well. For example, it
gives rise to the semi-analytic and all finitary functors and monads on slices of Set.

*Joint work with Stanistaw Szawiel.
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