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Abstract—Simulations and bisimulations are ubiquitous in the
study of concurrent systems and modal logics of various types.
Besides classical relational transition systems, relevant system
types include, for instance, probabilistic, weighted, neighbourhood-
based, and game-based systems. Universal coalgebra abstracts
system types in this sense as set functors. Notions of (bi)simulation
then arise by extending the functor to act on relations in a
suitable manner, turning it into what may be termed a relator. We
contribute to the study of relators in the broadest possible sense,
in particular in relation to their induced notions of (bi)similarity.
Specifically, (i) we show that every functor that preserves a very
restricted type of pullbacks (termed 1/4-iso pullbacks) admits
a sound and complete notion of bisimulation induced by the
coBarr relator; (ii) we establish equivalences between properties
of relators and closure properties of the induced notion of
(bi)simulation, showing in particular that the full set of expected
closure properties requires the relator to be a lax extension,
and that soundness of (bi)simulations requires preservation of
diagonals; and (iii) we show that functors preserving inverse
images admit a greatest lax extension. In a concluding case study,
we apply (iii) to obtain a novel highly permissive notion of twisted
bisimulation on labelled transition systems.

I. INTRODUCTION

State-based systems as used, for instance, in concurrency
or in the semantics of modal logics, come in many different
flavours, and in particular may vary in their branching type.
While classically, attention has focused on relational systems,
in particular nondeterministic ones such as labelled transition
systems (LTS) or Kripke frames, there has been long-standing
interest in other types where branching is probabilistic (e.g. [1]),
weighted (e.g. [2], [3]), game-based [4], or neighbourhood-
based as in the Montague-Scott semantics of modal logic [5],
concurrent dynamic logic [6], or game logic [7].

A unifying framework for such diverse system types is
available in the shape of universal coalgebra [8], in which the
system type is abstracted as a set functor, whose coalgebras then
play the role of systems. For instance, coalgebras for the pow-
erset functor are relational transition systems, and coalgebras
for the distribution functor are probabilistic transition systems.
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The coalgebraic framework induces a canonical abstract notion
of behavioural equivalence, which instantiates to standard
branching-time equivalences (such as Park-Milner bisimilarity
on LTS) in all examples [9]. Roughly speaking, two states are
behaviourally equivalent if they may be identified under suitable
coalgebra morphisms. The situation is more complicated
regarding the task of certifying behavioural equivalence by
means of (ideally, small) witnessing relations, in generalization
of bisimulations on Kripke frames or LTS; the existence of
such relations typically depends on properties of the underlying
functor. One of the first insights in universal coalgebra was that
Aczel-Mendler bisimulations [10] are sound and complete for
behavioural equivalence if the functor preserves weak pullbacks;
here, we call a notion of bisimulation sound if bisimilar states
are behaviourally equivalent, and complete if the converse holds,
where as usual two states are bisimilar if they are related by
some bisimulation.

Generally, coalgebraic notions of bisimulation rely on
extending the action of the underlying functor to relations;
we refer to such extensions in the most general sense, es-
sentially only requiring well-typedness, as relators, following
Thijs [11] (noting that the term has been used with different
meanings in the field, e.g. [12], [13]). For instance, the above-
mentioned notion of Aczel-Mendler bisimulation is induced by
a particular form of relator, the Barr extension [14]. Relators
have been equipped with various sets of axioms that ensure
good properties of the induced class of bisimulations. Notably,
notions of bisimulation induced by normal (or diagonal-
preserving) lax extensions [11], [13], [15], [16] are sound
and complete for behavioural equivalence and closed under
relational composition, and moreover allow for sound up-to
techniques such as bisimulation up to transitivity.

Depending on the exact set of required properties, suitable
relations and corresponding notions of bisimulation may or
may not exist for given functors and their associated system
types. For instance, the above-mentioned Barr extension is a lax
extension iff the functor weakly preserves pullbacks [14], [17].
It has recently been shown that normal lax extensions exist for
functors that preserve either inverse images or weakly preserve
kernel pairs and so-called 1/4-iso pullbacks, i.e. pullbacks



in which at least one leg is isomorphic, and moreover that
preservation of 1/4-iso pullbacks is a necessary condition for
existence of a normal lax extension [18].

In the present work, we further analyse the landscape of
relators and lax extensions, in particular strengthening the
perspective that a given functor potentially comes with a
whole range of relevant relators and associated notions of
(bi)simulation. In detail, our contributions are as follows.

• We show that functors preserving 1/4-iso pullbacks admit
a sound and complete notion of bisimulation induced by the
coBarr relator (Corollary III.7), which however is not in general
a lax extension.

• We show that a given relator is a lax extension iff the
induced class of of (bi)simulations contains all coalgebra
homomorphisms and their converses and is closed under com-
position (Theorem III.3). Moreover, we show that normality is
essentially a necessary condition for soundness of bisimulations
(Theorem III.15).

• We show that functors that preserve inverse images admit
a greatest normal lax extension (Theorem IV.9), and hence a
maximally permissive notion of bisimulation.

• In a concluding case study, we illustrate the latter result
on functors of the form (−)A, which model deterministic A-
labelled transition systems. We arrive at a new notion of twisted
bisimulation, which we extend to obtain a notion of twisted
bisimulation on LTS that is more permissive than the standard
notion (Section V). Both notions are illustrated for A = {a, b}
in Fig. 1. The left hand diagram recalls the standard definition:
A relation r between the state sets of two LTS is a bisimulation
if whenever x r y for states x, y, then the forth condition (for
every labelled transition x u−→ x′, there is y′ such that x′ r y′

and y u−→ y′) and the symmetric back condition hold. The
definition of twisted bisimulation alternatively allows x, y
to satisfy the right-hand clause in Fig. 1, in which actions
are mismatched. Explicitly, r is a twisted bisimulation if
whenever x r y, then either the standard forth and back
conditions shown on the left hold, or the alternative clauses
shown on the right hold for all (u, v) ∈ {(a, b), (b, a), (b, b)}.
Indeed one can allow a third set of alternative clauses with
the roles of a and b interchanged. Since twisted bisimulation
is induced by a normal lax extension, it remains sound for
standard bisimilarity while allowing for smaller bisimulation
relations.

Related work: Up to variations in the axiomatics, lax
extensions go back to work on coalgebraic simulation [19]
(under the name relational extensions). The axiom for lax
preservation of composition first appears explicitly in work on
simulation quotients [13], where the term relator is used. We
have already mentioned work by Marti and Venema relating lax
extensions to modal logic [15], [16]; at the same time, Marti
and Venema prove that the notion of bisimulation induced
by a normal lax extension captures the standard notion of
behavioural equivalence. Lax relation liftings, constructed for
functors carrying a coherent order structure [20], also serve the
study of coalgebraic simulation but obey a different axiomatics
than lax extensions (cf. [16, Remark 4]). There has been

recent interest in quantitative notions of lax extensions that
act on relations taking values in a quantale, such as the
unit interval, in particular with a view to obtaining notions
of quantitative bisimulation [21], [22], [23], [24], [25] that
witness low behavioural distance (the latter having first been
treated in coalgebraic generality by Baldan et al. [26]). The
correspondence between normal lax extensions and separating
sets of modalities generalizes to the quantitative setting [23],
[24], [25].

II. PRELIMINARIES: RELATIONS AND COALGEBRAS

We assume basic familiarity with category theory (e.g. [27]).
Unless stated otherwise, we work in the category Set of

sets and functions throughout. Another relevant category is the
category Rel whose objects are again sets, but whose morphisms
are the corresponding relations. We use the notation r : X−7−→Y
to indicate that r is a relation r ⊆ X × Y .

We say that r : X−7−→Y and s : Y ′−7−→Z are composable if Y =
Y ′, and extend this terminology to sequences of relations in
the obvious manner. Both for functions and for relations, we
use applicative composition, i.e. given r : X−7−→Y and s : Y−7−→Z,
their composite s · r : X−7−→Z is {(x, z) | ∃y ∈ Y. x r y s z}.
Relations between the same sets are ordered by inclusion,
hence we write r ≤ r′ as a synonym to r ⊆ r′. We denote by
1X : X → X the identity map (hence relation) on X , and we
say that a relation r : X−7−→X is a subidentity if r ≤ 1X . The
identity endofunctor will generally be denoted as Id.

Given a relation r : X−7−→Y , r◦ : Y−7−→X denotes the cor-
responding converse defined by y r◦ x ⇐⇒ x r y;
in particular, if f : X → Y is a function, then f◦ : Y−7−→X
denotes the converse of the corresponding relation. For a
relation r : X−7−→Y , we denote by dom r ⊆ X and img r ⊆ Y
its respective domain (dom r = {x ∈ X | ∃y ∈ Y. x r y}
and image (img r = {y ∈ Y | ∃x ∈ X.x r y}). A
special class of relations of interest are difunctional relations
[28], which are relations factorizable as g◦ · f for some
functions f : X → Z and g : Y → Z, i.e. x r y iff f(x) = g(y).
The difunctional closure of a relation r : X−7−→Y is the least
difunctional relation r̂ : X−7−→Y greater than or equal to r. More
explicitly, r̂ =

∨
n∈N r · (r◦ · r)n (e.g. [28], [29]).

Given an endofunctor F : Set→ Set, an F-relator, or simply
a relator, is a monotone map R : Rel→ Rel that sends a relation
from X to Y to a relation from FX to FY . (See [11], [12], [13]
for other uses of the term “relator”). A relax extension of F [25]
is a relator that satisfies Ff ≤ Rf and (Ff)◦ ≤ R(f◦) for all
functions f . A lax extension is such a relax extension R that
satisfies lax preservation of composition: Rs ·Rr ≤ R(s · r) for
all r : X−7−→Y , s : Y−7−→Z. A relator R : Rel→ Rel is a relational
connector [32] if for every set X , 1FX ≤ R1X and for every
relation r : X−7−→Y , and all function f : A→ X and g : B → Y ,
R(g◦ · r · f) = (Fg)◦ · Rr · Ff . It is well-known that every lax
extension is a relational connector (e.g. [21]), and it is easy to
see that every relational connector is a relax extension.
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Figure 1: Standard bisimulation (left) and alternative additional clauses for twisted bisimulation (right).

In summary:

Relational connector Relator

Lax extension Relax extension

⊆⊆ ⊆

We say that a relator R : Rel → Rel is symmetric if
R(r◦) = (Rr)◦ and normal if R1X = 1FX . We order F-relators
pointwise, i.e, given F-relators R1 and R2, we write R1 ≤ R2

if for every relation r, R1r ≤ R2r.
Given a functor F : Set→ Set, we will be interested in its

(weak) pullback preservation properties, specifically in (weak)
preservation of pullbacks of the form:

P B

X Y

⌟
f g

where f is a mono (which are pullbacks iff they are weak
pullbacks, so weak preservation and preservation of such
pullbacks coincide). We say that F preserves 1/4-iso pullback
if F preserves the above pullbacks when f is an isomorphism,
and that F preserves inverse images if F preserves the above
pullbacks when g is a monomorphism. Both properties are
significantly weaker than weak pullback preservation, i.e.
preservation of weak pullbacks by F [8].

An F-coalgebra (X,α) for an endofunctor F : Set → Set
consists of a set X of states and a transition map α : X → FX .

A morphism f : (X,α) → (Y, β) of F-coalgebras is a
map f : X → Y for which β · f = Ff · α. Such mor-
phisms are thought of as preserving the behaviour of states,
and correspondingly, states x and y in coalgebras (X,α)
and (Y, β), respectively, are behaviourally equivalent if there
exist a coalgebra (Z, γ) and morphisms f : (X,α)→ (Z, γ),
g : (Y, β)→ (Z, γ) such that f(x) = g(y).

III. SIMULATIONS INDUCED BY RELATORS

We fix a functor F : Set → Set for the remainder of the
technical development until the end of Section IV.

Relators induce notions of simulation and similarity between
(possibly distinct) F-coalgebras. Given a relator R : Rel →
Rel, a relation r : X−7−→Y is an R-simulation from a coalge-
bra α : X → FX to a coalgebra β : Y → FY if

r ≤ β◦ · Rr · α,

i.e, if x r y entails α(x)Rr β(y), for all x ∈ X and y ∈ Y .
When we speak of notions of simulation, we always understand

them as being induced by a relator in this way. Relators are
naturally composed. In particular, given an F-relator R and a
relator U of the identity functor on Set, R·U yields an F-relator,
and we say that an R · U-simulation is an R-simulation up-
to U. Whenever R1 and R2 are F-relators such that R1 ≤ R2,
then every R1-simulation is an R2-simulation; in the running
discussion, we phrase this by saying that R2 induces a more
permissive notion of simulation than R1. As we assume relators
to be monotone, given coalgebras α : X → FX and β : Y →
FY , the map sending a relation r : X−7−→Y to the relation β◦ ·Rr·
α : X−7−→Y is monotone. Therefore, by the Knaster-Tarski fixed
point theorem, this map has a greatest fixed point, the greatest R-
simulation from α to β, which we call R-similarity from α to β.
When R is symmetric, we often speak about R-bisimulations
instead of R-simulations, and about R-bisimilarity instead of R-
similarity; this will be justified in Theorem III.3. For every
relator R : Rel → Rel, if for all F-coalgebras α and β, R-
similarity from α to β is greater or equal than behavioural
equivalence from α to β, then we say that R-similarity is
complete. Conversely, if R-similarity from α to β is smaller
or equal than behavioural equivalence from α to β, then we
say that R-similarity is sound.

In this section, we study general properties of notions of
simulation. We begin by providing sufficient conditions for
soundness and for completeness. The next result substantially
generalizes [16, Theorem 1], which states that every symmetric
normal lax extension induces a sound and complete notion of
bisimilarity. Throughout the paper we will see examples of
relators, such as the coBarr relator, that satisfy the conditions
of theorem below but are not symmetric lax extensions.

Theorem III.1. Let R be an F-relator.
1) If for all functions f : X → A and g : Y → A, R(g◦ ·

f) ≥ (Fg)◦ · Ff , then R-similarity is complete.
2) If R preserves difunctional relations and for every epi-

cospan (f : X → A, g : Y → A) ∈ Set, R(g◦ ·f) ≤ (Fg)◦ ·Ff ,
then R-similarity is sound.

Proof. 1) Let (X,α) and (Y, β) be F-coalgebras, and
let x ∈ X and y ∈ Y be behaviourally equivalent elements.
Then, there are coalgebra homomorhpisms f : (X,α)→ (Z, γ)
and g : (Y, β) → (Z, γ) such that f(x) = g(y). Hence,
with r = g◦ · f , we have x r y and as f, g are coalgebra
homomorphisms, by hypothesis, we obtain r ≤ β◦ · (Fg)◦ ·
Ff · α ≤ β◦ · Rr · α. Therefore, x and y are R-similar.

2) Let r : X−7−→Y be an R-simulation from (X,α) to (Y, β)
and (π1 : A → X,π2 : A → Y ) be a span in Set such that



r = π2 · π◦
1 . Consider the pushout (p1 : X → O, p2 : Y → O)

of (f, g). Then, p◦2 · p1 is the difunctional closure r̂ of r
and, in particular, for every x ∈ X and y ∈ Y , if x r y,
then p1(x) = p2(y). Hence, the assertion follows once we
show that there is a coalgebra (O, γ) s.t. p1 : (X,α)→ (O, γ)
and p2 : (Y, β) → (O, γ) are coalgebra homomorphisms. To
this end, put γ(o) = Fp1 ·α(x), if p1(x) = o, for some x ∈ X
and γ(o) = Fp2 · β(y), if p2(y) = o, for some y ∈ Y . Note
that (p1, p2) is an epi-cocone, so we are assigning an element
of FO to every element of O. We claim that this assignment
is well-defined. To see this, we begin by observing that as R
is monotone, r ≤ β◦ ·Rr ·α ≤ β◦ ·Rr̂ ·α, and, as R preserves
difunctional relations, β◦ ·Rr̂·α is a difunctional relation greater
or equal than r, which entails, by definition of difunctional
closure, r̂ ≤ β◦ · Rr̂ · α; i.e, r̂ is an R-simulation. Hence, by
hypothesis, we obtain r̂ ≤ β◦ ·(Fp2)◦ ·Fp1 ·α, i.e, for all x ∈ X
and y ∈ Y , if p1(x) = p2(y), then Fp1 · α(x) = Fp2 · β(y).
Furthermore, by the way that pushouts are constructed in Set,
we have:
a) for all x, x′ ∈ X such that x ̸= x′, p1(x) = p1(x

′) iff there
is y ∈ Y such that p1(x) = p2(y) = p1(x

′);
b) for all y, y′ ∈ Y such that y ̸= y′ , p2(y) = p2(y

′) iff there
is x ∈ X such that p2(y) = p1(x) = p2(y

′).
Now, the claim follows straightforwardly by case distinc-

tion. Moreover, by definition of γ we obtain immediately
that p1 : (X,α)→ (O, γ) and p2 : (Y, β)→ (O, γ) are coalge-
bra homomorphisms. Therefore, R-similarity is sound.

Corollary III.2. Let R be an F-relator such that for all
functions f : X → A and g : Y → A, R(g◦ · f) = (Fg)◦ · Ff .
Then, R-similarity is sound and complete.

The notion of relator is quite liberal and, naturally, the
properties of the corresponding class of simulations can vary
significantly from one relator to the other. In this work we
think of simulations as witnesses for behavioural equivalence
and, therefore, as coalgebra homomorphisms are thought to be
“behaviour preserving maps”, we are interested in relators whose
classes of simulations contain all coalgebra homomorphism
and their converses since behavioural equivalence is a sym-
metric relation. And, among such relators, we are particularly
interested in those whose corresponding classes of simulations
are closed under composition or, at least, under composition
with coalgebra homomorphisms.

Theorem III.3. Let R be an F-relator . The class of all R-
simulations

1) contains all homomorphisms of F-coalgebras and their
converses iff for every non-empty function, Ff ≤ Rf
and (Ff)◦ ≤ R(f◦);

2) is closed under composition iff for all relations r : X−7−→Y
and s : Y−7−→Z such that s·r is non-empty, Rs·Rr ≤ R(s·r);

3) is closed under converses iff for every non-empty rela-
tion r : X−7−→Y , R(r◦) = (Rr)◦.

Proof. We show (2), the other claims follow analogously. Sup-
pose that r : X−7−→Y is an R-simulation from (X,α) to (Y, β)

and s : Y−7−→Z is an R-simulation from (Y, β) to (Z, γ). If s · r
is empty, then it is trivially an R-simulation. On the other
hand, suppose that s · r is non-empty. Then, as r and s are R-
simulations, by hypothesis, s·r ≤ γ◦·Rs·β·β◦·Rr·α ≤ γ◦·R(s·
r)·α. Therefore, s·r is an R-simulation. To see that the converse
statement holds, let r : X−7−→Y and s : Y−7−→Z be relations such
that s · r is non-empty. Suppose that there are u ∈ FX ,
v ∈ FY and w ∈ FZ such that uRr v and v Rsw. Consider
the coalgebras u : X → FX , v : Y → FY and w : Z → FZ
given by constant maps into u, v, w, respectively. Then, r is
an R-simulation from u to v and s is an R-simulation from v
to s. Hence, by hypothesis, s · r is an R-simulation, which
means that s · r ≤ w◦ · R(s · r) · u, and w◦ · R(s · r) · u non-
empty implies uR(s · r)w. Therefore, as s · r is non-empty,
uR(s · r)w.

A key feature of behavioural equivalence is that it is
invariant under coalgebra homomorphisms. For R-similarity,
this typically follows by showing that the class of R-simulations
is closed under (pre/post)composition with coalgebra homo-
morphisms.

Theorem III.4. Let R be an F-relator. The class of all R-
simulations

1) is closed under postcomposition with coalgebra homo-
morhpisms iff for every relation r : X−7−→Y and every
function f : A → X such that r · f is non-empty,
Rr · Ff ≤ R(r · f);

2) is closed under postcomposition with converses of coalge-
bra homomorhpisms iff for every relation r : X−7−→Y and
every function f : X → A such that r · f◦ is non-empty,
Rr · (Ff)◦ ≤ R(r · f◦);

3) is closed under precomposition with coalgebra homo-
morhpisms iff for every relation r : X−7−→Y and every
function g : Y → B such that g · r is non-empty,
Fg · Rr ≤ R(g · r);

4) is closed under precomposition with converses of coalge-
bra homomorhpisms iff for every relation r : X−7−→Y and
every function g : B → Y such that g◦ · r is non-empty,
(Fg)◦ · Rr ≤ R(g◦ · r).

Proof. Analogous to the proof of Theorem III.3.

The previous results motivate the study of simulations
induced by (re)lax extensions and relational connectors (cf. Sec-
tion II).

The prototypical example of relax extension is the Barr
relator [14] which is normal, symmetric, and it is a lax
extension iff it is a relational connector iff the functor
preserves weak pullbacks. The Barr relator F : Rel → Rel
of a functor F : Set → Set is defined as follows. Given a
relation r : X−7−→Y , take a span (π1 : A→ X,π2 : A→ Y ) such
that r = π2 · π◦

1 . Then, put Fr = Fπ2 · (Fπ1)◦.

Example III.5. The powerset functor P : Set → Set weakly
preserves pullbacks and its Barr extension coincides with the
well-known Egli-Milner extension: Given r : X−7−→Y , S ∈ PX ,



and T ∈ PY , we have S Lr T iff for all x ∈ S, there exists y ∈
T such that x r y, and symmetrically. For relational transition
systems, understood as P-coalgebras, a P-bisimulation is then
just a bisimulation in the standard sense.

The Barr relator is the standard relator used to define a
notion of bisimulation coalgebraically. Regarding soundness
and completeness, it is known that, independently of the functor,
Barr-bisimilarity is sound [10], and that for functors that weakly
preserve pullbacks, Barr-bisimilarity is complete [16].

However, Corollary III.2 suggests a different canonical
construction to obtain sound and complete notions of similarity
that is dual to the Barr relator on difunctional relations. Given
a difunctional relation r : X−7−→Y , take a cospan (p1 : X → O,
p2 : Y → O) ∈ Set such that r = p◦2 · p1. Then, put Fr =
(Fp2)

◦ · Fp1. Of course, for such construction to be well-
defined, Fr must be independent of the choice of the cospan,
and it has been shown recently [18] that this is equivalent to
the functor preserving 1/4-iso pullbacks which is equivalent
to the functor being monotone on difunctional relations in
the following sense: for all difunctional relations factorized
as g◦ · f : X−7−→Y and g′◦ · f ′ : X−7−→Y , if g◦ · f ≤ g′◦ · f ′
then (Fg)◦ · Ff ≤ (Fg′)◦ · Ff ′. This means that whenever F
preserves 1/4-iso pullbacks, sending a relation r : X−7−→Y to Fr̂
as described above, with r̂ being the difunctional closure of r,
defines an F-relator, which we call the coBarr relator of F and
denote by F. In the sequel we record some properties of this
construction that follow straighforwardly from the definition.

Proposition III.6. Suppose that F preserves 1/4-iso pullbacks.
Then:

1) F is a normal symmetric relax extension.
2) If F weakly preserves pullbacks, then for every relation r,

Fr = Fr̂, where r̂ denotes the difunctional closure of r.
3) F ≤ F and F ≤ R ≤ F, for every normal relational

connector R of F.

Regarding coBarr-bisimulations, from Corollary III.2 and
Proposition III.6(2) we obtain:

Corollary III.7. Suppose that F preserves 1/4-iso pullbacks.
Then:

1) F-bisimilarity is sound and complete.
2) If F weakly preserves pullbacks, then the F-bisimulations

are precisely the F-bisimulations up-to difunctional clo-
sure.

Remark III.8. As far as we know, the coBarr relator was first
proposed by Kurz in a private communication to Hansen et
al. [30]. We note that Hansen et al. do not require the functor to
preserve 1/4-iso pullbacks, instead, given a relation r : X−7−→Y ,
they define Fr as we have done here but w.r.t a pushout of
the canonical span that determines r. This construction is
independent of the pushout and defines a relator for every
functor, and, in particular, they show that coBarr-bisimilarity is
sound. Corollary III.7(1) complements their result by showing
that coBarr-bisimilarity is complete under the assumption that
the functor preserves 1/4-iso pullbacks.

Preserving 1/4-iso pullbacks is a significantly weaker condi-
tion than weakly preserving pullbacks, which means that coBarr-
bisimulations provide a sound and complete proof method for
behavioural equivalence for a much larger class of functors
than what is currently known generically for Barr-bisimulations.
However, a major drawback of the coBarr relator is that it
is rarely a lax extension or even a relational connector, and,
therefore, as we have seen in Theorem III.3, the class of
coBarr-bisimulations is rarely closed under composition.

Example III.9. Even for the coBarr relator Id of the identity
functor Id, lax preservation of relational composition fails.
(Of course, this functor by itself has trivial behavioural
equivalence, but it serves as a building block in composite
functors where triviality disappears, e.g. 2× Id.) Consider the
endorelation z = {(a, a), (b, a), (b, b)} on the set 2 = {a, b},
the map a : 1 → 2 that selects the element a, and the
map !2 : 2→ 1. The coBarr relator Id sends every relation to its
difunctional closure. Therefore, Id(z · a) = a but Idz · Ida =!◦2.
The fact that the class of Id-bisimulations fails to be closed
under composition often implies the same for the class of R-
bisimulations up-to difunctional closure. For instance, the
class of Barr-bisimulations up-to difunctional closure of the
functor 2× Id is not closed under composition.

Nevertheless, an important consequence of Proposition III.6
is that the class of simulations induced by a normal relational
connector is contained in the class of coBarr-simulations.
Hence, for a functor that preserves 1/4-iso pullbacks, the
notion of coBarr-simulation is sound and complete, and it
is more permissive than any notion of simulation induced by a
normal relational connector. It has been shown that preserving
1/4-iso pullbacks is a necessary condition for a functor to
admit a normal relational connector [25] and, therefore, coBarr-
simulations help us understanding the simulations induced by
normal relational connectors, such as the simulations induced by
normal lax extensions which are closed under composition. Our
interest in simulations induced by normal relational connectors
stems from the following application of Corollary III.2.

Corollary III.10. Every notion of similarity induced by a
relational connector of a set functor is complete, and it is
sound if the relational connector is normal.

In particular, this result shows that symmetry of lax exten-
sions is not necessary to obtain sound and complete notions
of similarity induced by lax extensions as assumed by Marti
and Venema [16]; we will see how to construct non-symmetric
normal lax extensions for exponential functors in Section V,
and a concrete example is given in Example V.7(2). This fact
may be counter-intuitive at first sight, but the reason is that
normal lax extensions coincide with the coBarr relator on
difunctional relations which is symmetric. And, as we have
seen in Theorem III.1 to show soundness and completeness
we only need to inspect the action of a relator on difunctional
relations.

This motivates us to understand next when normality of a
relational connector is necessary for soundness. We stress that



preserving monomorphisms is a very mild condition. In fact,
every set functor is “naturally isomorphic up-to ∅” to a functor
that preserves monomorphisms [31] and, hence, the category
of coalgebras of every set functor is isomorphic to the category
of coalgebras of a set functor that preserves monomorphisms.

Theorem III.11. Suppose that F admits a terminal coalgebra
(Z, γ). Let R be a relational connector of F.

1) R-similarity is sound iff R1Z = 1FZ .
2) If F preserves monomorphisms, then R-similarity is sound

iff for every set A of cardinality less or equal than |Z|,
R1A = 1FA.

Proof. 1) It is well-known that two states in a terminal
coalgebra are behaviorally equivalent iff they are equal and
that behavioural equivalence is invariant under coalgebra
homomorphisms. Therefore, the condition is clearly necessary,
and it is also sufficient since, for every relational connector,
R-similarity is invariant under coalgebra homomorphisms [32,
Lemma 4.2].

2) Let (X,α) be an F-coalgebra of cardinality less or
equal than the cardinality of Z. Then, there is an injective
map i : X ↣ Z. Hence, we have 1X = i◦ · 1Z · i, and, as R
is a relational connector, we obtain R1X = (Fi)◦ · R1Z · Fi.
Therefore, by the previous item, R1X = (Fi)◦ ·Fi, and since F
preserves monomorphisms, R1X = 1FX .

Theorem III.11 makes it easy to see that normality is not
necessary. In fact, as the next example shows, there are functors
that do not admit a normal relational connector but even admit
a lax extension that induces a sound and complete notion of
similarity.

Example III.12. Consider the functor (−)2/∆ that sends a
set X to the quotient of the set X2 by the equivalence relation
that identifies exactly the elements of the diagonal of X ×X ,
and acts in the obvious way on functions.

This functor does not preserve 1/4-iso pullbacks and, hence,
does not admit a normal relational connector [18]. However,
since it preserves the terminal object, behavioural equivalence
is trivial, therefore, its greatest lax extension which sends a
relation r : X−7−→Y to the relation FX × FY induces a sound
and complete notion of similarity.

On the other hand, the next result shows that normality is
typically necessary.

Definition III.13. A functor G : Set→ Set is ζ-bounded if it
admits a terminal coalgebra Z → GZ and for every set X and
every pair of elements u, v ∈ GX there is a set A of cardinality
less or equal than |Z| and an injective map i : A ↣ X such
that u, v ∈ img(Gi).

(Except in the corner case that Z is finite, one can rephrase
this definition as saying that G has a final coalgebra G and
is κ-accessible where κ is the cardinal successor of |Z|.)

Example III.14. The following set functors are ζ-bounded.
1) Every constant functor.

2) Every finitary functor with an infinite terminal coalgebra,
e.g., the finite powerset functor and the finite multiset
functor.

Failures of ζ-boundedness typically relate to triviality of
behavioural equivalence: If a set functor satisfies F1 = 1,
then 1 is the terminal coalgebra, so all states are behaviourally
equivalent. For instance, the identity functor, more generally
all exponential functors (−)A except the constant functor (−)∅,
and the discrete distribution functor all fail to be ζ-bounded
for this reason. ζ-Boundedness is typically reinstated when
such functors are combined with others to allow for actual
observations; e.g. 2 × Id is ζ-bounded. More generally, we
show in the appendix that all polynomial functors except the
exponential functors (−)A are ζ-bounded.

Theorem III.15. Suppose that F is ζ-bounded and preserves
monomorphisms. Let R be a relational connector of F.

If R-similarity is sound, then R is normal.

Proof. Let (Z, γ) be a terminal F-coalgebra, and let (X,α)
be an F-coalgebra. If the cardinality of X is less or equal
than the cardinality of Z, then, by Theorem III.11, R1X =
1FX . On the other hand, suppose that the cardinality of X
is greater or equal than the cardinality of Z. Let u, v ∈ FX .
As F is ζ-bounded, there is set A of cardinality less or equal
than Z and an injective map i : A↣ X u, v belong to img(Fi).
Then, since i is injective, we have 1A = i◦ · 1X · i. Hence,
as the cardinality of A is less or equal than the cardinality
of Z, by Theorem III.11 and the fact that R is a relational
connector, 1FA = R1A = (Fi)◦ · R1X · Fi. Therefore, uR1X v
iff u = v.

Example III.16. Let M = (M,+, 0) be a commutative
monoid. Then the monoid-valued functor M (−) is defined
on sets X by M (X) being the set of maps µ : X →M with
finite support, i.e. with µ(x) = 0 for all but finitely many x.
On maps f : X → Y , M (−) is defined by M (f)(µ)(y) =∑

f(x)=y µ(x) for µ ∈M (X) and y ∈ Y . Coalgebras for M (−)

are M -weighted transition systems, i.e. finitely branching
transition systems in which every transition is labelled with
an element of M [33]. It has been shown recently that M (−)

admits a normal lax extension iff M is positive, i.e. if m+n = 0
implies m = n = 0 for m,n ∈ M . For non-positive M ,
for instance for M being the additive group of the integers,
we obtain by Theorems III.3 and III.15 that there is no
notion of simulation on M -weighted transition systems that is
closed under composition and contains all bounded maps (i.e.
morphisms of M (−)-coalgebras) and their converses, and is
sound and complete for behavioural equivalence.

IV. THE GREATEST NORMAL LAX EXTENSION

We proceed to capitalize on the fact that a given set functor
potentially comes with a whole range of relevant relators with
associated sound and complete notions of simulation. In the
main result of this section, we show that set functors that
preserve inverse images admit a greatest normal lax extension
w.r.t. the pointwise order on relators. As we have seen in



Section III, this means essentially that for these functors,
there is a maximally permissive notion of simulation such that
similarity is sound and complete and whose class of simulations
contains all coalgebra homomorphisms, their converses and
is closed under composition. The case of normal relational
connectors is less interesting since it is easy to see that non-
empty pointwise suprema of relational connectors are relational
connectors. We begin by describing the supremum of lax
extensions with the help of relax extensions.

The pointwise infimum of a family of lax extensions of F is
again a lax extension of F and, therefore, the partially ordered
class of lax extensions of F is complete, with infimum given by
pointwise infimum. Since the subclass of normal lax extensions
is downwards closed, it follows that F admits a greatest normal
lax extension iff the supremum of every family of normal lax
extensions of F is normal.

However, while the non-empty pointwise supremum of relax
extensions is a relax extension, as the next example shows, in
general the non-empty supremum of lax extensions does not
coincide with the pointwise supremum.

Example IV.1. Consider the ‘upper’ and ‘lower’ lax extensions
L□ : Rel → Rel and L♢ : Rel → Rel, respectively, of the
powerset functor P : Set → Set that are defined on relations
r : X−7−→Y and sets A ⊆ X and B ⊆ Y by

A (L□r) B ⇔ ∀a ∈ A.∃b ∈ B. a r b;
A (L♢r) B ⇔ ∀b ∈ B.∃a ∈ A. a r b.

The relax extension R∨ : Rel → Rel given by the pointwise
supremum of L□ and L♢ does not preserve composition laxly
and, hence, is not a lax extension. For instance, over 2 = {0, 1},
we have {0} L□12 {0, 1} and {0, 1} L♢12 {1}, which implies
{0}(R∨12 · R∨12){1}; but R∨12 does not relate {0} to {1}.

Indeed, the supremum of lax extensions is given by the
laxification [18] of their pointwise supremum. The laxification
R• : Rel→ Rel of a relax extension R : Rel→ Rel of F is the
lax extension of F defined on r : X−7−→Y by

R•r =
∨

r1,...,rn :
rn·...·r1≤r

Rrn · . . . · Rr1. (1)

Proposition IV.2. Let (Li)i∈I be a family of lax extensions
of F, and let L∨ be the relax extension given by pointwise
supremum of the lax extensions in the family. The supremum
of the lax extensions in the family is given by the laxification
of L∨.

Proof. Immediate consequence of the fact that sending a
relax extension to its laxification defines a left adjoint [18,
Proposition 4.1].

Our proof strategy to show that the supremum of normal
lax extensions of F is normal relies on F having the property
that every normal lax extension of F preserves composition
with subidentities. This allows restricting the collection of
composable sequences of relations needed in (1) to produce
laxifications. We first fix some notation that we need throughout
this section.

Given a relation r : X−7−→Y , we denote the inclu-
sions dom(r) ↣ X and img(r) ↣ Y by dr and ir, respectively.
Furthermore, for an injective map i : A↣ X , we denote by ⌈i⌉
the induced subidentity relation i · i◦ : X−7−→X . In particular,
for a relation r : X−7−→Y we have subidentities ⌈dr⌉ ≤ 1X and
⌈ir⌉ ≤ 1Y .

Lemma IV.3. Let R be a relax extension of F that preserves
composition with subidentities. Suppose that Rrn · . . . · Rr1 ≤
1FX for every set X and every composable sequence r1, . . . , rn
of relations such that rn · . . . · r1 ≤ 1X and img(ri−1) =
dom(ri) for i = 2, . . . , n. Then the laxification of R is normal.

Proof. Let X be a set, and let r1, . . . , rn be a composable
sequence of relations such that rn · · · r1 ≤ 1X . By (1), to
show that the laxification of R is normal we need to show that
Rrn · . . . · Rr1 ≤ 1FX .

By [18, Lemma A.1], we obtain composable sequences of
relations

1) s1, . . . , sn defined by sn = rn, and si = ⌈dsi+1
⌉ · ri, for

i = 1, . . . , n− 1;
2) t1, . . . , tn defined by t1 = s1, and ti = si · ⌈iti−1

⌉, for
i = 2, . . . , n,

that satisfy tn · · · t1 = sn · · · s1 = rn · · · r1 and img(ti−1) =
dom(ti) for i = 2, . . . , n. Therefore, since R preserves
composition with subidentities and Rtn · . . . · Rt1 ≤ 1FX by
hypothesis,

Rrn · · ·R1r1 = Rsn · R⌈dsn⌉ · Rrn−1 · · ·Rr1
= Rsn · R(⌈dsn⌉ · rn−1) · · ·Rr1
= Rsn · Rsn−1 · R⌈dsn−1⌉ · Rrn−2 · · ·Rr1

...
= Rsn · · ·Rs1
= Rsn · · ·Rs2 · R⌈it1⌉ · Rt1
= Rsn · . . .R(s2 · ⌈it1⌉) · Rt1
= Rsn · · ·Rs3 · R⌈it2⌉ · Rt2 · Rt1

...
= Rtn · · ·Rt1 ≤ 1FX .

Remark IV.4. If a relax extension satisfies the condition of
Lemma IV.3 then it is necessarily normal.

To apply Lemma IV.3 to relax extensions given as point-
wise suprema of normal lax extensions, we next show that
preservation of composition with subidentities is stable under
suprema.

Proposition IV.5. The relax extension given by the pointwise
supremum of a non-empty family of normal lax extensions Li,
i ∈ I , of F preserves composition with subidentities iff all Li
preserve composition with subidentities.

It turns out that the functors whose normal lax extensions
preserve composition with subidentities are essentially the ones



that preserve inverse images. To see this, first we record some
useful properties of lax extensions:

Lemma IV.6. Let L be a lax extension of F. Then:
1) For every relation r : X−7−→Y , img(F dr) ⊆ dom(Lr).
2) If L is normal, then for every difunctional rela-

tion r : X−7−→Y , L(r◦) = (Lr)◦.
3) If L is normal and F preserves empty intersections, then

for all injective maps i : A↣ X and j : A↣ Y ,

L(j · i◦) = Fj · (Fi)◦.

In the next result we show that the normal lax extensions of a
functor that preserve inverse images are precisely the ones that
when applied to a relation r return a relation whose (co)domain
is completely determined by the action of the functor on the
(co)domain of r.

Lemma IV.7. The following clauses are equivalent:
(i) F preserves inverse images.

(ii) F admits a normal lax extension and, for every normal lax
extension L of F and every difunctional relation r : X−7−→Y ,
the map

Fdr : F dom(r) ↣ FX

corestricts to an isomorphism F(dom r) ∼= dom(Lr).
(iii) F admits a normal lax extension and, for every normal

lax extension L of F and every relation r : X−7−→Y , the
maps

Fdr : F dom(r) ↣ FX and Fir : F img(r) ↣ FY

corestrict to isomorphisms F(dom r) ∼= dom(Lr) and
F(img r) ∼= img(Lr), respectively.

(iv) F admits a normal lax extension and for every normal lax
extension L of F, every relation r : X−7−→Y and all injective
maps i : X ↣ A and j : Y ↣ B,

L(j · r · i◦) = Fj · Lr · (Fi)◦.

(v) F admits a normal lax extension that satisfies the condition
of (iv).

Finally, as a consequence of the previous result, we obtain
the above mentioned characterization of the functors that
preserve inverse images in terms of their normal lax extensions.
We stress that preserving empty intersections is a very mild
condition that from a coalgebraic point of view is comparable
to preserving monomorphisms.

Proposition IV.8. The following clauses are equivalent:
(i) F preserves inverse images.

(ii) F admits a normal lax extension and each of its nor-
mal lax extensions preserves composition with partial
monomorphisms.

(iii) F admits a normal lax extension that preserves composi-
tion with partial monomorphisms.

(iv) The functor F preserves empty intersections, admits a
normal lax extension and each of its normal lax extensions
preserves composition with subidentities.

(v) F preserves empty intersections and admits a normal lax
extension that preserves composition with subidentities.

Proof. (i) ⇒ (ii). Every functor that preserves inverse im-
ages admits a normal lax extension [18], and the fact that
each normal lax extension preserves composition with par-
tial monomorphisms is a straightforward consequence of
Lemma IV.7(v). Indeed, let L : Rel → Rel be a normal lax
extension of a functor F : Set→ Set. Suppose that r : X−7−→Y
is a relation and s : A−7−→X is a partial monomorphism. Then,
there are injective maps i : S → A and j : S → X such
that s = j · i◦. Hence, by Lemma IV.7(v) and the fact
that L is a relational connector, L(r · j · i◦) = Lr · Fj · (Fi)◦.
Therefore, by Lemma IV.6(3), L(r · j · i◦) = Lr · Ls. The
case of postcomposition with a partial monomorphism follows
analogously.

(ii) ⇒ (iii). Trivial.
(ii) ⇒ (iv) and (iii) ⇒ (v). Every subidentity is a partial

monomorphism and, hence, the claims follow immediately due
to Lemma IV.6(3).

(iv) ⇒ (v). Trivial.
(v) ⇒ (i). Let L : Rel→ Rel be a normal lax extension of F

that preserves composition with subidentities. We will see that
for every relation r : X−7−→Y and all injective maps i : X ↣ A
and j : Y ↣ B, L(j · r · i◦) = Fj · Lr · (Fi)◦. Then, the
claim follows by Lemma IV.7. Let r : X−7−→Y be a relation
and i : X ↣ A be an injective map. Then i · i◦ is a subidentity
and as F preserves empty intersections, by Lemma IV.6(3),
L(i · i◦) = Fi(̇Fi)◦. Therefore, by hypothesis, L(r · i◦) =
L(r·i◦ ·i·i◦) = L(r·i◦)·L(i·i◦) = L(r·i◦)·Fi·(Fi)◦ = Lr·(Fi)◦.
Similarly, we obtain that for every injective map j : Y ↣ B,
L(j · r) = Fj · Lr, and the claim follows.

Now we are ready to show the main result of this section:

Theorem IV.9. Every set functor that preserves inverse images
admits a greatest normal lax extension.

Proof. Let F : Set → Set be a functor that preserves inverse
images. Then, by [18], F has a normal lax extension and,
therefore, the least lax extension of a functor is normal. To
show that the non-empty supremum of normal lax extensions
is normal, due to Proposition IV.8 and Proposition IV.5, we
use the criterion of Lemma IV.3. Let (Li)i∈I be a non-
empty family of normal lax extensions of F and let L∨

be the corresponding relax extension given by pointwise
supremum. We have to show that for every composable
sequence of relations r1, . . . , rn such that rn · . . . · r1 ≤ 1X ,
for some set X , and img(ri−1) = dom(ri), for i = 2, . . . , n,
L∨rn · . . . · L∨r1 ≤ 1FX . First, we note that we can assume
w.l.o.g. that all relations in the sequences are total and surjective,
which entails rn · . . . · r1 = 1X . Indeed, let r1, . . . , rn be a
composable sequence of relations such that rn ·. . .·r1 ≤ 1X , for
some set X , and img(ri−1) = dom(ri), for i = 2, . . . , n. Then,
by (co)restricting each relation in the sequence to its (co)domain
we obtain a composable sequence r′1, . . . , r

′
n of total and

surjective relations such that r′n · . . . · r′1 = 1A, where A =
dom(rn · . . . ·r1). Furthermore, as F preserves monomorphisms,



it follows from Lemma IV.7(v) that L∨rn · . . . · L∨r1 =
Fi · Lr′n · . . . · Lr′1 · (Fi)◦, where i : A ↣ X is the inclusion
of A into X . Therefore, as F preserves monomorphisms,
L∨rn · . . . · L∨r1 ≤ 1FX ⇔ Lr′n · . . . · Lr′1 ≤ 1FA.

Now, we proceed by induction on n. The base case n = 1 is
trivial as L∨ is normal. To see the inductive step from n
to n + 1, let r1, . . . , rn+1 be a composable sequence of
total and surjective relations such that rn+1 · . . . · r1 = 1X .
Then, by [18, Lemma 4.20], r̂n+1 · . . . · r1 = 1X , where r̂
is the difunctional closure of rn+1. Furthermore, as normal
lax extensions coincide on difunctional relations, relational
composition preserves supremums and lax extensions preserve
composition laxly, L∨r̂n+1 · L∨rn = L∨r̂n+1 · (

∨
i∈I Lirn) =∨

i∈I(Lir̂r+1 · Lirn) ≤
∨

i∈I Li(r̂r+1 · rn) = L∨(r̂n+1 · rn).
Therefore, by induction hypothesis, L∨rn+1 · . . . · L∨r1 ≤
L∨r̂n+1 · . . . · L∨r1 ≤ L∨(r̂n+1 · rn) · . . . · Lr1 ≤ 1FX .

Recall from Example III.16 that a monoid-valued functor
admits a normal lax extension iff the monoid is positive [18],
which in turn is known to be equivalent to preservation of
inverse images by the monoid-valued functor [33]. Therefore,

Corollary IV.10. A monoid-valued functor admits a greatest
normal lax extension iff the monoid is positive.

V. CASE STUDY: LABELLED TRANSITIONS

The first and so far only example reported in the literature
of a functor that admits more than one normal lax extension,
due to Paul Levy, involves a monoid-valued functor for a fairly
sophisticated submonoid of the non-negative reals generated
as a division semiring by a transcendental number [34, Exam-
ple 4.11]. We will show that functors of the form C +B × Id
admit a unique normal lax extension. However, we will also
show that it is not uncommon for a functor to have multiple
normal lax extensions; in fact, we give a simple and widely used
class of examples: Almost all exponential functors, i.e. functors
of the form (−)A (which in coalgebra represent deterministic A-
labelled transitions), admit multiple normal lax extensions.

For brevity, we write HA for (−)A. Building on the
results of the previous sections, we describe the complete
lattice of normal lax extensions of HA, in particular ob-
taining a maximally permissive sound and complete notion
of (bi)simulation for deterministic automata whose class of
(bi)simulations is closed under composition. By combining this
result with the usual notion of bisimulation on P-coalgebras
(i.e. unlabelled transition systems), we obtain a new notion of
twisted bisimulation on labelled transition systems that is more
permissive than standard Park-Milner bisimulations.

Since the functor HA preserves limits, it preserves weak
pullbacks, and its Barr extension sends a relation r : X−7−→Y to
the relation HAr : HAX−7−→HAY defined by:

f HAr g ⇔ ∀a ∈ A, f(a) r g(a)⇔ 1A ≤ g◦ · r · f.

We obtain non-standard notions of simulation by additionally
allowing other relations on A in place of 1A in the last

inequality: We work with a set A of endorelations on A and
define

f ĤA
Ar g ⇔ (∃ϕ ∈ A. ϕ ≤ g◦ · r · f), (2)

or, in pointful notation, ∃ϕ ∈ A, ∀a, b ∈ A, aϕb⇒ f(a)rg(b).
We show next that this construction yields a lax extension

of HA whenever A forms a submonoid of Rel(A,A), and that
normality of this lax extension is captured as a condition on
the relations in A.

Definition V.1. An endorelation ϕ : A−7−→A is normal if its
difunctional closure is reflexive, i.e., if for every a in A there
is a chain a r x1 r

◦ x2 r . . . r◦xn−1 r a of alternating r-
and r◦-steps of (necessarily odd) length n ≥ 1.

Proposition V.2. A relation ϕ : A−7−→A is normal iff for every
set X and every pair of functions f, g : A → X , ϕ ≤ g◦ · f
implies f = g.

Proof. Let ϕ : A−7−→A be a normal relation, and f, g : A→ X
be functions such that ϕ ≤ g◦ · f . Then, by definition
of difunctional closure, ϕ̂ ≤ g◦ · f , where ϕ̂ denotes the
difunctional closure of ϕ. Hence, by normality of ϕ, 1A ≤ g◦ ·f
which is equivalent to g ≤ f . Therefore, as f and g are
functions, f = g. To see the converse statement, suppose
that the difunctional closure ϕ̂ of ϕ is given by g◦ · f . Then,
by definition of difunctional closure, ϕ ≤ g◦ · f . Hence, by
hypothesis, f = g. Therefore, ϕ̂ = g◦ · g ≥ 1A.

Intuitively, normal relations correspond to roundabout ways
of proving equality. For instance, if A = {a, b}, then two
functions f, g : A → X are of course equal if we can show
that f(a) = g(a) and f(b) = g(b), but also if we instead
show that f(a) = g(b), g(a) = g(b) and g(a) = f(b). This
second proof corresponds to the relation {(a, b), (b, b), (b, a)}
from Figure 1.

Theorem V.3. Let A be a submonoid of the monoid of endore-
lations on a set A. Then assigning to every relation r : X−7−→Y
the relation ĤA

Ar : HAX−7−→HAY defines a lax extension of HA

to Rel. Furthermore,
1) if A is closed under converses, then ĤA

A preserves
converses, and

2) if every relation in A is normal, then ĤA
A is normal.

Proof. Let r : X−7−→Y and s : Y−7−→Z be relations, and
f, f ′ : A → X , g : A → Y , h : A → Z and t : X → Y be
functions.

Monotonicity. Trivial.
Lax preservation of composition. Suppose that f ĤA

Ar g

and g ĤA
As h. Then there exist ϕ, ψ ∈ A such that ϕ ≤ g◦ ·r ·f

and ψ ≤ h◦ · s · g. Hence,

ψ · ϕ ≤ h◦ · s · g · g◦ · r · f ≤ h◦ · s · r · f,

and the claim follows from the fact that A is closed under
composition.

Extension of functions. We have 1A ≤ (t·f)◦ ·t·f = f◦ ·t◦ ·
(t ·f), and thus, since 1A ∈ A, f ĤA

At (t ·f) and (t ·f) ĤA
At f .



When A is closed under converses, we show 1. calculating
as follows:

g ĤAr
◦ f ⇔ ϕ ≤ f◦ · r◦ · g ⇔ ϕ◦ ≤ g◦ · r · f ⇔ f ĤAr g.

Moreover, by definition, f ′(ĤA
A1X)f iff there is ϕ ∈ A such

that ϕ ≤ f◦ · f ′. Hence, if every relation in A is normal we
obtain 1X ≤ f◦ · f ′. Therefore, f = f ′, which yields 2.

Conversely, every lax extension L : Rel→ Rel of HA gives
rise to a set S(L) of endorelations given by

S(L) = {ϕ : A−7−→A | 1A Lϕ 1A} (3)

Proposition V.4. Let L : Rel→ Rel be a lax extension of the
functor HA : Set → Set. Then the set S(L) is an upwards-
closed submonoid of Rel(A,A). Furthermore, S(L) is closed
under converses if L preserves converses, and every relation
in S(L) is normal if L is normal.

Proof. All claims are straightforward except maybe the last.
So suppose that L is normal. To show that r ∈ S(L) is normal,
let r ≤ d where d is difunctional, and hence of the form d =
g◦ ·f where f, g : A→ X are functions. Then, as L is a normal
relational connector, Lr ≤ Ld = (HAg)

◦ · HAf . . Hence, by
definition of S(L), (HAg)

◦ · HAf relates 1A to 1A, which by
definition of HA entails f = g.

These two constructions are inverses of each other:

Theorem V.5. Every lax extension L : Rel → Rel of the
functor HA : Set → Set is induced by the set S(L) =
{r : A−7−→A | 1A (Lr) 1A} and every upwards-closed sub-
monoid A of Rel(A,A) is induced by the lax extension ĤA

A .

Proof. Let L : Rel → Rel be a lax extension of the functor
HA : Set→ Set, r : X−7−→Y a relation, and let f : A→ X and
g : A → Y be functions. First note that if there is ϕ ∈ S(L)
such that ϕ ≤ g◦ · r · f , then, by definition of S(L) and local
monotonicity of L, L(g◦ · r · f) relates 1A to 1A. Therefore,
the claim follows from the fact that Lr relates f = HAf(1A)
to g = HAg(1A) iff L(g◦ · r · f) relates 1A to 1A.

Conversely, let A be an upwards-closed submonoid
of Rel(A,A). Then

ϕ ∈ S(ĤA
A)⇔ 1A ĤA

Aϕ 1A ⇔ ∃ψ ∈ A, ψ ≤ ϕ⇔ ϕ ∈ A.

Corollary V.6. The normal lax extensions of the functor
HA : Set → Set correspond precisely to the upward-closed
submonoids of Rel(A,A) consisting only of normal relations.

Example V.7. 1) With A = 2 = {a, b}, consider the
upwards-closed submonoid A of Rel(2, 2) generated from
the single relation Φ = {(a, b), (b, b), (b, a)}. The lax ex-
tension ĤA

2 of H2 : Set → Set to Rel is normal, preserves
converses and differs from the Barr extension of H2 since
ĤA

2 Φ relates 12 to itself but H2Φ does not. The corresponding
notion of bisimulation, combined with the standard notion of
bisimulation for unlabelled transition systems, is the ‘twisted’
bisimulation mentioned in the introduction.

2) With A = 3 = {a, b, c}, consider the upwards-closed
submonoid A of Rel(3, 3) generated from the single relation
Φ = P(3×3)\{(a, a), (b, c)}. We obtain a normal lax extension
L of H3 : Set → Set that does not preserve converses and,
hence, differs from the Barr extension. Indeed, ĤA

3 Φ relates
13 to itself but ĤA

3 (Φ
◦) does not. As far as we know, this is

the first example of a non-symmetric normal lax extension.
Furthermore, since L is normal, by Corollary III.2, L-similarity
is sound and complete.

Theorem V.5 implies in particular that the class Lax(HA)
of lax extensions of HA is small, so we will regard it
as a set. It is easy to see that the mutually inverse con-
structions described in Theorem V.3 and Proposition V.4
define monotone maps S : Lax(HA) → SubMon↑(Rel(A,A))

and Ĥ
(−)
A : SubMon↑(Rel(A,A)) → Lax(HA) between

the partially ordered set Lax(HA) of lax extensions of
the functor HA : Set → Set and the partially ordered
set SubMon↑(Rel(A,A)) of upwards-closed submonoids of
Rel(A,A) ordered by inclusion.

This allows reasoning about suprema of lax exten-
sions in terms of suprema of sets of endorelations in
SubMon↑(Rel(A,A)) which is given by closure under compo-
sition of union of the sets; more specifically, the supremum of
a family (A)i∈I of elements of SubMon↑(Rel(A,A)), denoted
as

∨
i∈I Ai, is the smallest set that contains

⋃
i∈I Ai and is

closed under composition.

Proposition V.8. Let (Li)i∈I be a family of lax extensions of
the functor HA : Set → Set. Then the supremum

∨
i∈I Li is

given by the lax extension induced by set
∨

i∈I S(Li).

Example V.9. The squaring functor H2 : Set → Set has
precisely four normal lax extensions, which are induced by the
upwards-closed submonoids of Rel(2, 2)

• A⊥ generated by the empty set – the Barr extension;
• Aa generated from the single relation Φa =
{(a, b), (a, a), (b, a)};

• Ab generated from the single relation Φb =
{(a, b), (b, b), (b, a)};

• A⊤ generated by the set {Φa,Φb}.

ĤA⊤
2

ĤAa
2 ĤAb

2

ĤA⊥
2

Since exponential functors preserve terminal objects, all
states belonging to coalgebras for a exponential functor are
behaviourally equivalent. This means that similarity w.r.t. the
greatest lax extension of a exponential functor – which induces
the most permissive notion of simulation but that in general
fails to be normal – is sound, complete and the corresponding
class of simulations is closed under composition. The situation
is far more interesting for polynomial functors, whose definition
we recall next.



Given a family F = (Fs)s∈S of set functors indexed by a
set S, we denote by Σ(F) : Set→ Set the canonical functor
“sum of a family of functors” that sends a set X to the
coproduct

∑
s∈S FsX , and we denote by cs : Fs → Σ(F)

the natural transformation whose X-component is defined by
the coprojection csX : FsX → σ(F).

Definition V.10. A polynomial set functor is a functor of the
form Σ(H) for a family H of exponential functors.

Recall from Example III.14 that almost all polynomial
functors (except the exponential functors) are ζ-bounded, so
that Theorem III.15 applies. In particular, this means that
notions of simulation on coalgebras for polynomial functors
induced by a lax extension are sound iff the lax extension is
normal. This further motivates the investigation of the structure
of the lattice of normal lax extensions of polynomial functors.
We show next that greatest normal lax extensions of polynomial
functors are constructed from greatest normal lax extensions
of exponential functors; we will illustrate this principle on the
minimization of deterministic automata, which are coalgebras
for polynomial functors of the form 2× HA.

In the remainder of the paper, we fix a set S and a
family F = (Fs)s∈S of set functors, and we say that a family
of lax extensions (Ls)s∈S is a family of lax extensions of F
if for every s ∈ S, Ls is a lax extension of Fs.

It is easy to see that a family of lax extensions of F gives rise
to a lax extension for Σ(F) that sends every relation r : X−7−→Y
to the relation ΣL(L)r given by

∨
s∈S

(
csY · Lsr · (csX)◦

)
; or,

in pointful notation, for all u ∈ Σ(F)X and v ∈ Σ(F)Y ,
u ΣL(L)r v iff there is s ∈ S and u′ ∈ FsX , v′ ∈ FsY
s.t. u = csX(u′), v = csY (v

′) and u′ Lsr v′. Then, assigning to
every family of lax extensions of F the lax extension ΣL(L)
defines a monotone map ΣL(−) : Fam(F)→ Lax(ΣF) from
the partially ordered class of families of lax extensions
of F , ordered pointwise, to the partially ordered class of lax
extensions of Σ(F) ordered pointwise.

Conversely, every lax extension L for the functor Σ(F) gives
rise to an S-indexed family c∗(L) of lax extensions of F by
“(co)restricting” the action of the lax extension to Fs, i.e., for
every s ∈ S and every relation r : X−7−→Y , c∗(L)s(r) is given
by (csY )

◦ · Lr · csX ; or in pointful notation, for all u′ ∈ FsX
and v′ ∈ FsY , u′ c∗(L)s(r) v′ iff csX(u′) Lr csY (v

′).
Then, assigning to every lax extension L of Σ(F) the

family c∗(L) of lax extensions of F defines a monotone
map c∗(−) : Lax(ΣF)→ Fam(F).

Immediately from the definions we have:

Proposition V.11. The map ΣL(−) is an order reflecting left
adjoint of c∗(−).

Of course, in general, the constructions defined above are
not inverse of each other.

Example V.12. Consider the pair (C1,C1) where C1 : Set→
Set denotes the constant functor to 1 = {∗}. The functor C1 +
C1 is isomorphic to the constant functor C2 : Set→ Set to 2 =
{0, 1}. The greatest lax extension L⊤ of C2 sends every relation

to the greatest relation on 2 which is different from the identity
on 2. However, c∗(L⊤) = (C1,C1) and ΣL(c∗(L⊤)) is the Barr
extension of C2 which sends every relation to the identity map
on 2.

However, as we show next, they become inverse of each other
when F consists of functors that weakly preserve pullbacks
and only normal lax extensions are allowed.

Let NLax(ΣF) be the partially ordered subclass of Lax(ΣF)
given by the normal lax extensions of ΣF , and let NFam(F)
be the partially ordered subclass of Fam(F) given by the
families of normal lax extensions of F . Clearly, the map ΣL(−)
(co)restricts to a map ΣL(−) : NFam(F) → NLax(ΣF), and,
as each natural transformation cs is monic, it is easy to see
that the map c∗(−) (co)restricts to c∗(−) : NLax(ΣF) →
NFam(F).

Remark V.13. It has been observed that the canonical forgetful
functor from the category of lax extensions to the category of
Set-endofunctors is topological [35], and hence, in particular,
has a left adjoint. Furthermore, this left adjoint picks, for every
F : Set → Set, the smallest element of the fibre Lax(F) of F
with respect to this forgetful functor. We also note that, if F
weakly preserves pullbacks, this element is given by the Barr
extension of F.

Suppose now that every functor in the family F weakly
preserves pullbacks. Let L = (Fs)s∈S be the family of the
corresponding Barr extensions. It is easy to see that the
functor Σ(F) weakly preserves pullbacks as well, and, by
adjointness, its Barr extension is given by ΣL(L).

Theorem V.14. If all functors in F weakly preserve pull-
backs, then the maps ΣL(−) : NFam(F) → NLax(ΣF)
and c∗(−) : NLax(ΣF)→ NFam(F) are inverse of each other.

Proof. Due to Proposition V.11 we are left with the task of
showing ΣL(c∗(L)) ≥ L. Let r : X−7−→Y be a relation, and
let u ∈ Σ(F)X and v ∈ Σ(F)Y s.t. u Lr v. Suppose
that all functors in F weakly preserve pullbacks. Then, by
Remark V.13, the functor Σ(F) weakly preserves pullbacks.
Hence, as L is a normal relational connector, by Proposi-
tion III.6(3), u Σ(F)(r̂) v, where r̂ is the difunctional closure
of r. Thus, by Remark V.13, there is s ∈ S, u′ ∈ FsX
and v′ ∈ FsY s.t. u = csX(u′) and v = csY (v

′). Hence, by
definition, u′(c∗(L)r) v′. Therefore, by definition of sum of a
family of lax extensions, u ΣL(c∗(L))r v.

Thererefore:

Corollary V.15. The greatest normal lax extension of a
polynomial set functor determined by a family H of exponential
functors is given by the sum of the family of the greatest normal
lax extensions of the exponential functors in H.

Interestingly, as a consequence of our results, we obtain
that the usual notion of (bi)simulation for stream systems with
termination is the only sound notion induced by a lax extension:

Corollary V.16. For all sets C and B, the functor C +B ×
Id : Set→ Set admits a unique normal lax extension.



Proof. Every functor of the form C +B × Id preserves weak
pullbacks and, therefore, admits a normal lax extension. On the
other hand, from Corollary V.6 we conclude that the identity
functor admits a unique normal lax extension. Now, the claim
follows from Theorem V.14.

In particular, the maximally permissive notion of simulation
induced by a lax extension for deterministic automata can be
obtained as follows.

Corollary V.17. Let A,B and C be sets. The greatest normal
lax extension of C +B × HA is given by postcomposing the
Barr extension of C + B × Id with the greatest normal lax
extension of HA.

Example V.18 (Automata minimization). Let us reinterpret Ex-
ample V.9 in automata-theoretic terms.

Let S = {s0, . . . , sn−1} ∪ {t0, . . . , tm−1} be the state
space of a deterministic automaton with all states accepting,
with n and m being mutually prime, and with {a, b} being the
alphabet of actions. The transition function is as follows: the a-
transitions connect every si with s(i+1) mod n and every tj
with t(j+1) mod m; the b-transitions connect every si with t0
and every tj with s0.

Since all states are accepting, they are all bisimilar, and thus
the minimal automaton has one state. A bisimilarity relation in
the usual sense – which is induced by Barr extension (ĤA⊥

2 in
Example V.9) – for showing equivalence of any sn and any tm
must include every pair (si, tj), and thus is potentially quadratic
in size. The following non-standard bisimulation of linear size
for the greatest normal lax extension ĤA⊤

2 from Example V.9
can be used instead: R = S × {s0, t0} ∪ {s0, t0} × S. This is
essentially because either s0 or t0 is reachable by a b-transition
from any state in one step, and they are related to everything
by R.

To conclude, we derive the notion of twisted bisimulation on
labelled transition systems (LTS) mentioned in the introduction
as follows. For the sake of readability, we continue to restrict
to the case where the set of labels is 2 = {a, b}. Then 2-
labelled transition systems are coalgebras for the functor F =
H2 · P where P is the covariant powerset functor. For A being
one of the upwards closed submonoids of Rel(2, 2) listed in
Example V.9, we obtain a normal lax extension F̂A of F by
composing ĤA

2 with P (cf. Example III.5), i.e.

F̂Ar = ĤA
2 (Pr) for r : X−7−→Y .

Then, the most permissive notion of twisted bisimulation is the
one induced by F̂A⊤ . In terms of the standard representation
of 2-labelled LTS as pairs (X, (→l)l∈2) consisting of a set X
of states and transition relations →l⊆ X ×X (always denoted
by the same symbol if no confusion is likely), this notion
is explicitly described as follows: Given LTS (X, (→u)u∈2),
(Y, (→u)u∈2), a relation r : X−7−→Y is a twisted bisimulation
(for A⊤) if whenever x r y, then one of the following clauses
holds (cf. Figure 1):

1) Whenever x →u x′, then there exists y →u y′ such
that x′ r y′, and whenever y →u y′, then there
exists x→u x

′ such that x′ r y′, for u ∈ 2.
2) For (u, v) ∈ {(a, b), (b, a), (b, b)}, whenever x →u x′,

then there exists y →v y′ such that x′ r y′, and
whenever y →v y′, then there exists x →u x′ such
that x′ r y′.

3) Dito, for (u, v) ∈ {(a, b), (b, a), (a, a)}.
(In particular, every bisimulation in the standard sense is a
twisted bisimulation.) Since F̂A⊤ is a normal lax extension,
twisted bisimulation is sound (and complete) for standard
bisimilarity, i.e. two states are bisimilar if (and only if) they
are connected by a twisted bisimulation [16, Theorem 11]. Our
statement from the introduction to the effect that twisted bisim-
ulations on LTS can be smaller than standard bisimulations is
illustrated by Example V.18, as a deterministic automaton with
all states accepting is in particular an LTS. Since the functor
HA · P preserves weak pullbacks, due to Proposition III.6(2)
and Proposition III.6(3), another way of thinking about twisted
bisimulations is that they form a subclass of bisimulations
(in the usual sense) up-to difunctionality that, unlike the full
class of bisimulations up-to difunctionality, is closed under
relational composition. This phenomenon disappears when HA

is combined with functors that fail to preserve weak pullbacks:

Example V.19. Combining the greatest normal lax extension
of HA with the standard lax extension of the monotone neigh-
bourhood functor [16] (which fails to preserve weak pullbacks)
yields a notion of twisted neighbourhood bisimulation on
labelled monotone neighbourhood frames, which are exactly
the models underlying the semantics of concurrent PDL [6]
that is more permissive than the standard notion of (labelled)
monotone bisimulation [36].

VI. CONCLUSIONS

We have analysed aspects of notions of (bi)simulation induced
by relators and lax extensions, reinforcing the view that a
given functor (i.e. a given system type) can be associated with
multiple relevant notions of (bi)simulation. By establishing key
results on the existence and properties of lax extensions, we
have clarified their role in certifying behavioural equivalence
across diverse system types. Notably, we have demonstrated
that functors preserving 1/4-iso pullbacks admit a sound and
complete notion of bisimulation induced by the coBarr relator,
and that normality is essentially a necessary condition for
soundness. Furthermore, we have shown that functors preserv-
ing inverse images possess a greatest normal lax extension,
providing a maximally permissive notion of bisimulation.

In a case study on functors of the form (−)A, which model
A-labelled transitions, we have introduced the notion of twisted
bisimulation and demonstrated its greater permissiveness
compared to standard bisimilarity, while retaining soundness.
This result can potentially offer new tools for reasoning about
state-based systems of various branching types, and allows for
smaller bisimulations certifying behavioural equivalence.

Our work contributes to the general theory of bisimulations
by refining the structural conditions under which sound and



complete bisimulation notions exist. One direction for future
investigation is to identify further sufficient conditions for a
functor to admit a greatest normal lax extension; one candidate
condition is weak preservation of 1/4-iso and 4/4-epi pullbacks,
which has recently been shown to guarantee existence of a
normal lax extension [18]. Such endeavour will require a
completly new proof strategy because, as we have shown,
preservation of inverse images is crucial for the techniques
used in this paper. A further important open question is the
uniqueness of normal lax extensions and a characterization of
functors whose Barr-bisimilarity is complete.
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APPENDIX: OMITTED PROOF DETAILS

A. Useful pullbacks

Lemma A.1. Let f : X → A and g : Y → A. Then, the following diagram is a pullback square

dom(r) g[Y ]

X A.

f |dom(r)

⌟
j

f

where r = g◦ · f and j : g[Y ] ↣ A is the obvious inclusion.

Proof. Noting the image factorization Y → g[Y ] j−→ A of g, we form the pullback

f -1[g[Y ]] g[Y ]

X A

f |f -1[g[Y ]]

⌟
j

f

We are left to show that f -1[g[Y ]] = dom(r). Indeed, dom(r) = img(r◦) = img((g◦ · f)◦) = img(f◦ · g) = f -1[g[Y ]].

Lemma A.2 (e.g. [18][Lemma 2.2). ] Let r : X−7−→Y be a relation. Then the following are equivalent:

(i) r is difunctional;
(ii) for every span X π1←− R π2−→ Y such that r = π2 · π◦

1 , the pushout square

R Y

X O

π2

π1

⌜
p1

p2

is a weak pullback.

B. Proof of Proposition III.6

The clauses 1, 2 and the first inequality of 3 follow straightforwardly from the definition of coBarr relator. To see the second
inequality of 3, let R be a normal relational connector and let r : X−7−→Y be a relation. Furthermore let r̂ be the difunctional
closure of r and f : X → O and g : Y → O r̂ : X−7−→Y be maps s.t. r̂ = g◦ · f . Then, as R is a normal relational connector,
R(r) ≤ (Fg)◦ · Ff = Fr. On the other hand, let p : A→ X and q : A→ Y be maps s.t. r = q · p◦. Then, 1A ≤ q◦ · r · p. Hence,
as R is a normal relational connector 1FA ≤ (Fq)◦ · L(r) · Fp. Therefore, by adjointness, Fq · (Fp)◦ ≤ Rr .

C. Details for Example III.14

We prove the claim that a polynomial functor is ζ-bounded if it is not an exponential functor.
Let Σ(H) : Set → Set be a polynomial functor, with H = (HAs)s∈S , for some set S. If S = ∅, then Σ(H) is a constant

functor, hence ζ-bounded. If |S| = 1, then Σ(H) is an exponential functor. Thus, suppose that |S| ≥ 2. Moreover, if all As

are empty, then Σ(H) is a constant functor, hence ζ-bounded; so suppose that there is s ∈ S such that As ̸= ∅. Let Z
be the carrier of a terminal coalgebra for Σ(H), which is well-known to exist (e.g. [8]). Now for all s ∈ S and X ∈ Set,
|1 +HAs

(X)| ≤ |Σ(H)(X)|. Thus, for every s ∈ S, the cardinality of Z is greater or equal than the cardinality of the terminal
coalgebra for 1 +HAs , which is greater or equal than the cardinality of As and it is infinite for As non-empty (cf. [8, Example
10.2(6)]). In particular, this means that the cardinality of Z is infinite.

Now, let u, v ∈ Σ(H)(X) for some set X . We claim that there is a set Y and an injective map i : Y ↣ X s.t. u, v ∈
img(Σ(H)i) and |Y | ≤ |Z|. By definition of Σ(H) there are s, t ∈ S and u′ ∈ HAs

(X), v′ ∈ HAs
(X) s.t u = csX(u′)

and v = ctX(v′). Let Y be the set img(u′) ∪ img(v′), and let i : Y ↣ X be the inclusion of Y into X . Then, as |Z| is
infinite and | img(u′)| ≤ |As| ≤ |Z| and | img(v′)| ≤ |At| ≤ |Z|, |Y | ≤ |Z|. Furthermore, as u′ and v′ corestrict to Y and
cs : HAs → Σ(H) and ct : HAj → Σ(H) are natural transformations, it follows that u, v ∈ img(Σ(H)i).



D. Proof of Proposition IV.5

Let L be the pointwise supremum of the Li. Let r : X−7−→Y be a relation, and let s : X−7−→X be a subidentity. Since normal lax
extensions coincide on difunctional relations (e.g. [16], [21]), in particular on subidentities, all Li and, hence L map s to the
same relation s̄, which by normality of the Li is a subidentity.

‘If:’ Since relational composition preserves suprema, L(r·s) =
∨

i∈I Li(r·s) =
∨

i∈I(Lir·s̄) = (
∨

i∈I Lir)·s̄ = Lr·s̄ = Lr·Ls.
The case of postcomposition with subidentities runs analogously.

‘Only if:’ We show that Li(r · s) ≤ Lir · Lis = Lir · s̄; the other inequality holds by the definition of lax extension. So
let a ∈ FX and b ∈ FY such that a Li(r · s) b. We claim that a Lir b and a s̄ a. Indeed, as s is a subidentity, r · s ≤ r, whence
a Lir b.

Moreover, a L(r · s) b because Li is below L. Since L preserves composition with subidentities, we thus have c such that a s̄ c
and c Lr b. But then a = c because s̄ is a subidentity. The case of postcomposition with a subidentity runs analogously.

E. Proof of Lemma IV.6

1) Let r : X−7−→Y be a relation. Consider a span X R Y
π1 π2 such that r = π2 · π◦

1 . Then, π1 factors as e · dr,
with e : R ↠ dom(r) and dr : dom(r) ↣ X . Hence, Fπ2 · (Fe)◦ · (F dr)◦ ≤ Lr. Therefore, as every set functor preserves
epimorphisms, img(F dr) ⊆ dom(Lr).

2) Let X f−→ Y i←− B be a cospan in Set. Then, as L is a normal relational connector, L((g◦ ·f)◦) = L(f◦ ·g) = (Ff)◦ ·Fg =
(L(g◦ · f))◦.

3) Let i : A↣ X and j : A↣ Y be injective maps. Then, j · i◦ : X−7−→Y is difunctional. Hence, by Lemma A.2, the pushout
square of i along j

A X

X O

i

i p2

p1

⌜

is a pullback square, in fact it is the square of an intersection. Since F preserves empty intersections by hypothesis, then it
preserves all intersections [37, Proposition 2.1]. Thus, as L is a normal relational connector, we obtain L(j · i◦) = L(p◦2 · p1) =
(Fp2)

◦ · Fp1 = Fj · (Fi)◦.

F. Proof of Lemma IV.7

(i) ⇒ (ii). Suppose that F preserves inverse images and let L be a normal lax extension of F. Then, by [18], F has a normal
lax extension. Now, suppose that r = g◦ · f for some cospan X f−→ A g←− Y . Then, by Lemma A.1 we have a commutative
diagram

dom(r) g[Y ] Y

X A,

f |dom(r)

dr
⌟

j

e

g

f

in which the square is a pullback and g = j · e is the image factorization of g. Since F preserves inverse images it preserves
monomorphisms, and every set functor preserves epimorphisms, so Fj · Fe is an epi-mono factorization of Fg. This means
that Fj : F(g[Y ]) ↣ FA corestricts to an isomorphism h : F(g[Y ]) ∼= Fg[FY ]. Furthermore, as L is a normal relational connector,
Lr = (Fg)◦ · Ff . Thus, by Lemma A.1 and Lemma IV.6(1) we obtain the following diagram where the outer square is a
pullback since F preserves inverse images by hypothesis.

F dom(r) Fg[Y ]

dom(Lr) Fg[FY ]

FX FA.

⌟

F(f| dom(r))

F dr

h

Fj

Ff(dom(Lr)

dLr

⌟
k

Ff

Furthermore, as k is mono and the bottom square and the triangles commute, the top square also commutes. Hence, as h is
an isomorphism, we conclude that (F dr, h · F(f| dom(r))) is a pullback of (Ff, k). Therefore, as pullbacks are unique, F dr
corestricts to an isomorphism between F dom(r) and dom(Lr).



(ii) ⇒ (iii). Note that the codomain of a relation is the domain of its converse and by Lemma IV.6(2) every normal lax
extension preserves converses of difunctional relations. Therefore, the claim follows from (ii) by duality.

(iii) ⇒ (iv). We show the case of precomposition with the converse of an injective map, the other case follows analogously.
Let L : Rel→ Rel be a normal lax extension of F, and let r : X−7−→Y be a relation and j : X → A be an injective map. It suffices
to show that L(r · i◦) ≤ Lr · (Fi)◦ since the other inequality holds by definition of lax extension. We begin by observing that
as i · i◦ = di◦ ·di◦◦, Fi · (Fi)◦ = F di◦ ·(F di◦)◦.

Furthermore, as i is injective, Lr = L(r · i◦ · i) = L(r · i◦) · Fi. Hence, the claim follows once we show L(r · i◦) ≤
L(r · i◦) · Fi · (Fi)◦ = L(r · i◦) · F di◦ ·(F di◦))◦ which is equivalent to showing dom(L(r · i◦)) ⊆ img(F di◦). To see this note
that by hypothesis Fdr·i◦ : F(dom(r · i◦))→ dom(L(r · i◦)) corestricts to an isomorphism h : F(dom(r · i◦)) ∼= dom(L(r · i◦)).
Furthermore, as dom(r · i◦) ⊆ dom(i◦), we have dr·i◦ = di◦ ·k, where k denotes the inclusion dom(r · i◦) ↣ dom(i◦). Hence,
the inclusion dom(L(r · i◦)) ↣ FX factors as F di◦ ·Fk · h−1. Therefore, dom(L(r · i◦)) ⊆ img(F di◦).

(iv) ⇒ (v). Trivial.
(v) ⇒ (i). Let X f−→ Y i←− B be a cospan in Set with i injective and L : Rel→ Rel be a normal lax extension of F that

satisfies the condition required in (v). Consider a pullback (p1, p2) of (f, i). Then, since pullbacks reflect monomorphisms,
p1 is injective. Hence, as L is normal, by hypothesis we obtain (Fi)◦ · Ff = L(i◦ · f) = L(p2 · p◦1) = Fp2 · (Fp1)◦. Therefore,
(Fp1,Fp2) is a weak pullback of (Fj,Fi) and it is in fact a pullback since Fp1 is injective because F preserve injective maps
given that it admits a normal lax extension [18].
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