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Abstract
Generic notions of bisimulation for various types of systems (nondeterministic, probabilistic, weighted
etc.) rely on identity-preserving (normal) lax extensions of the functor encapsulating the system
type, in the paradigm of universal coalgebra. It is known that preservation of weak pullbacks is a
sufficient condition for a functor to admit a normal lax extension (the Barr extension, which in fact
is then even strict); in the converse direction, nothing is currently known about necessary (weak)
pullback preservation conditions for the existence of normal lax extensions. In the present work, we
narrow this gap by showing on the one hand that functors admitting a normal lax extension preserve
1/4-iso pullbacks, i.e. pullbacks in which at least one of the projections is an isomorphism. On the
other hand, we give sufficient conditions, showing that a functor admits a normal lax extension if it
weakly preserves either 1/4-iso pullbacks and 4/4-epi pullbacks (i.e. pullbacks in which all morphisms
are epic) or inverse images. We apply these criteria to concrete examples, in particular to functors
modelling neighbourhood systems and weighted systems.
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1 Introduction

Branching-time notions of behavioural equivalence of reactive systems are typically cast as
notions of bisimilarity, which in turn are based on notions of bisimulation, the paradigmatic
example being Park-Milner bisimilarity on labelled transition systems [29]. A key point about
this setup is that while bisimilarity is an equivalence on states, individual bisimulations can
be much smaller than the full bisimilarity relation, and in particular need not themselves
be equivalence relations. In a perspective where one views bisimulations as certificates for
bisimilarity, this feature enables smaller certificates.

The concept of bisimilarity via bisimulations can be transferred to many system types
beyond basic labelled transition systems, such as monotone neighbourhood systems [20],
probabilistic transition systems, or weighted transition systems. In fact, such systems can be
treated uniformly within the framework of universal coalgebra [34], in which the system type
is encapsulated in the choice of a set functor (the powerset functor for non-deterministic
branching, the distribution functor for probabilistic branching etc.). Coalgebraic notions of
bisimulation were originally limited to functors that preserve weak pullbacks [34], equivalently
admit a strictly functorial extension to the category of relations [5, 40]. They were later
extended to functors admitting an identity-preserving or normal lax extension [27, 28] to the
category of relations (this is essentially equivalent to notions of bisimilarity based on modal
logic [14]). While there is currently no formal definition of what a notion of bisimulation
constitutes except via normal lax extensions, there is a reasonable claim that notions of
bisimulation in the proper sense, i.e. with bisimulations not required to be equivalence
relations, will not go beyond functors admitting a normal lax extension.

The Barr extension that underlies the original notion of coalgebraic bisimulation for
weak-pullback-preserving functors [34] is, in particular, a normal lax extension; that is,
preservation of weak pullbacks is sufficient for existence of a normal lax extension. However,
this condition is far from being necessary; there are numerous functors that fail to preserve
weak pullbacks but do admit a normal lax extension, such as the monotone neighbourhood
functor [27, 28]. It has been shown that a finitary functor admits a normal lax extension
if and only if it admits a separating set of finitary monotone modalities [27, 28] (a similar
result holds for unrestricted functors if one considers class-sized collections of infinitary
modalities [13]). The latter condition amounts to existence of an expressive modal logic that
has monotone modalities [31, 35], and as such admits µ-calculus-style fixpoint extensions [10].
In a nutshell, a system type admits a good notion of bisimulation if and only if it admits
an expressive temporal logic. The characterization via sets of predicate liftings, however, is
often similarly elusive in that it demands the construction of a fairly complicated object.

In the present work, we narrow the gap between weak pullback preservation as a sufficient
condition for admitting a normal lax extension, and no known necessary pullback preservation
condition. On the one hand, we establish a necessary preservation condition, showing that
functors admitting a normal lax extension (weakly) preserve 1/4-iso pullbacks, i.e. pullbacks
in which at least one of the projections is isomorphic. (We often put ‘weakly’ in brackets
because for many of the pullback types we consider, notably for inverse images and 1/4-iso
pullbacks, weak preservation coincides with preservation.) This is a quite natural condition:
A key role in the field is played by difunctional relations [33], which may be thought of as
relations obtained by chopping the domain of an equivalence in half; for instance, given
labelled transition systems X, Y , the bisimilarity relation from X to Y is difunctional. In a
nutshell, we show that a functor preserves 1/4-iso pullbacks iff it acts in a well-defined and
monotone manner on difunctional relations. A first application of this necessary condition
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is a very quick proof of the known fact that the neighbourhood functor does not admit a
normal lax extension [28].

We then go on to establish two separate sets of sufficient conditions: We show that a
functor admits a normal lax extension if it (weakly) preserves either inverse images or 1/4-iso
pullbacks and 4/4-epi pullbacks, i.e. pullbacks in which all morphisms are epi (these are also
known as surjective pullbacks [38], and weak preservation of 4/4-epi pullbacks is equivalent to
weak preservation of kernel pairs [15]). These sufficient conditions are technically substantially
more involved. As indicated above, they imply that finitary functors (weakly) preserving
either inverse images or 1/4-iso pullbacks and 4/4-epi pullbacks admit a separating set of
finitary modalities; this generalizes a previous result showing the same for functors preserving
all weak pullbacks [25]. We summarize our main contributions in Figure 1.

weakly
preserves
pullbacks

preserves
inverse images

weakly preserves 1/4-iso
and 4/4-epi pullbacks

admits
normal lax
extensions

preserves
1/4-iso

pullbacks

Theorem 4.22

Theorem 4.16

Corollary 3.13

Example 4.12

Figure 1 Summary of main results. Solid arrows are present contributions, dashed arrows are
trivial. All implications indicated by arrows are non-reversible; in particular, Example 4.12 shows
this for Corollary 3.13.

The criterion of weak preservation of 1/4-iso pullbacks and 4/4-epi pullbacks is satisfied
by the monotone neighbourhood functor and generalizations thereof (e.g. [38]), and thus in
particular reproves the above-mentioned known fact that functors admitting separating sets
of monotone modalities have normal lax extensions. The criterion of (weak) preservation
of inverse images, in connection with the necessary criterion, implies that a monoid-valued
functor for a commutative monoid M (whose coalgebras are M -weighted transition systems)
admits a normal lax extension if and only if M is positive (which in turn is equivalent to the
functor preserving inverse images [17]).

Related work With variations in the axiomatics and terminology, lax extensions go back
to an extended strand of work on relation liftings (e.g. [3, 39, 21, 26, 37, 36]). We have
already mentioned work by Marti and Venema relating lax extensions to modal logic [27, 28];
at the same time, Marti and Venema prove that the notion of bisimulation induced by a
normal lax extension captures the standard notion of behavioural equivalence. Lax relation
liftings, constructed for functors carrying a coherent order structure [23], also serve the
study of coalgebraic simulation but obey a different axiomatics than lax extensions [28,
Remark 4]). Strictly functorial extensions of set functors to the category of sets and relations
are known to be unique when they exist, and exist if and only if the functor preserves weak
pullbacks [7, 40]; this has been extended to other base categories [3, 8]. There has been
recent interest in quantitative notions of lax extensions that act on relations taking values
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in a quantale, such as the unit interval, in particular with a view to obtaining notions of
quantitative bisimulation [22, 12, 42, 43, 13] that witness low behavioural distance (the latter
having first been treated in coalgebraic generality by Baldan et al. [4]). The correspondence
between normal lax extensions and separating sets of modalities generalizes to the quantitative
setting [42, 43, 13].

Organization We review material on relations, in particular difunctional relations, and
lax extensions in Section 2. In Section 3, we introduce our necessary pullback preservation
condition and show that it characterizes well-definedness of the natural functor action on
difunctional relations. We prove our main results in Section 4. In Subsection 4.1 we show
that a functor that weakly preserves 1/4-iso pullbacks and 4/4-epi pullbacks admits a normal
lax extension, and in Subsection 4.2 we show the same for functors that preserve 1/4-mono
pullbacks.

2 Preliminaries: Relations and Lax Extensions

We work in the category Set of sets and functions throughout. We assume basic familiarity
with category theory (e.g. [2]). A central role in the development is played by (weak)
pullbacks: A commutative square f · p = g · q is a pullback (of f, g) if for every competing
square f · p′ = g · q′, there exists a unique morphism k such that p · k = p′ and q · k = q′;
the notion of weak pullback is defined in the same way except that k is not required to be
unique. A functor F weakly preserves a given pullback if it maps the pullback to a weak
pullback; it is known that weak preservation of pullbacks of a given type is equivalent to
preservation of weak pullbacks of the same type [16, Corollary 4.4]. Our interest in functors
F : Set → Set is driven mainly by their role as encapsulating types of transition systems
in the paradigm of universal coalgebra [34]: An F-coalgebra (X, α) consists of a set X of
states and a transition map α : X → FX assigning to each state x ∈ X a collection α(x) of
successors, structured according to F. For instance, coalgebras for the powerset functor P
assign to each state a set of successors, and hence are just standard relational transition
systems, while coalgebras for the distribution functor D (which maps a set X to the set
of discrete probability distributions on X) assign to each state a distribution on successor
states, and are thus Markov chains.

A morphism f : (X, α) → (Y, β) of F-coalgebras is a map f : X → Y for which
β · f = Ff · α. Such morphisms are thought of as preserving the behaviour of states,
and correspondingly, states x and y in coalgebras (X, α) and (Y, β), respectively, are beha-
viourally equivalent if there exist a coalgebra (Z, γ) and morphisms f : (X, α)→ (Z, γ),
g : (Y, β)→ (Z, γ) such that f(x) = g(y). One is then interested in notions of bisimulation
relation that characterize behavioural equivalence in the sense that two states are behaviour-
ally equivalent iff they are related by some bisimulation [34, 28]; this motivates the detailed
study of relations and their liftings along F.

We write r : X−7−→Y to indicate that r is a relation from the set X to the set Y (i.e.
r ⊆ X × Y ), and we write x r y when (x, y) ∈ r. Both for functions and for relations, we
use applicative composition, i.e. given r : X−7−→Y and s : Y−7−→Z, their composite is s · r : X−7−→Z

(defined as s · r = {(x, z) | ∃y ∈ Y. x r y s z}). We say that r, s of type r : X−7−→Y and
s : Y−7−→Z are composable, and we extend this terminology to sequences of relations in
the obvious manner. Relations between the same sets are ordered by inclusion, that is
r ≤ r′ ⇐⇒ r ⊆ r′. We denote by 1X : X → X the identity map (hence relation) on X,
and we say that a relation r : X−7−→X is a subidentity if r ≤ 1X . Given a relation r : X−7−→Y ,
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r◦ : Y−7−→X denotes the corresponding converse relation; in particular, if f : X → Y is a
function, then f◦ : Y−7−→X denotes the converse of the corresponding relation. For a relation
r : X−7−→Y , we denote by dom r ⊆ X and cod r ⊆ Y the respective domain and codomain (i.e.
dom r = {x ∈ X | ∃y ∈ Y. x r y} and cod r = {y ∈ Y | ∃x ∈ X. x r y}). A special class of
relations of interest are difunctional relations [33], which are relations factorizable as
g◦ · f for some functions f : X → Z and g : Y → Z, i.e. x r y iff f(x) = g(y). In the following
we record some folklore facts about difunctional relations.

▶ Lemma 2.1. Let r : X−7−→Y be a relation. Then the following are equivalent:

(i) r is difunctional;
(ii) for all x1, x2 in X and y1, y2 ∈ Y , if x1 r y r◦ x2 r y2, then x1 r y2.

(iii) for every span X
π1←−− R

π2−→ Y such that r = π2 · π◦
1 , the pushout square

R Y

X O

π2

π1

⌜
p1

p2

is a weak pullback.

As we can see in Lemma 2.1(iii) above, difunctional relations are characterized as weak
pullbacks, and in this regard we recall that generally, a commutative square f · p = g · q is a
weak pullback iff q · p◦ = g◦ · f , equivalently p · q◦ = f◦ · g.

The difunctional closure of a relation r : X−7−→Y is the least difunctional relation
r̂ : X−7−→Y greater than or equal to r. It follows from Lemma 2.1 that the difunctional closure
of a relation r : X−7−→Y given by a span X

π1←−− R
π2−→ Y is obtained by computing its pushout

X
p1−→ O

p2←−− Y ; i.e., the difunctional closure r̂ of r is the relation p◦
2 · p1. More explicitly,

r̂ =
∨

n∈N r · (r◦ · r)n (e.g. [33, 19]). A lax extension L of an endofunctor F : Set→ Set is a
mapping that sends any relation r : X−7−→Y to a relation Lr : FX−7−→FY in such a way that

(L1) r ≤ r′ =⇒ Lr ≤ Lr′,
(L2) Ls · Lr ≤ L(s · r),
(L3) Ff ≤ Lf and (Ff)◦ ≤ Lf◦,

for all r : X−7−→Y , s : Y−7−→Z and f : X → Y .
We define relax extensions in the same way, without however requiring property 2. We

call a (re)lax extension identity-preserving, or normal, if L1X = 1FX for every set X, and
we say that a (re)lax extension preserves converses if L(r◦) = (Lr)◦. A tactical advantage
of using the term “relax extension” is that we can thus refer to constructions that produce lax
extensions most of the time, except for some cases when 2 may fail. A prototypical example
of this sort is the Barr extension F [6], which for weak-pullback-preserving F is even a
strict extension, and is defined as follows. Given a relation r : X−7−→Y , choose a factorization
π2 · π◦

1 for some span X
π1←−− R

π2−→ Y and put Fr = Fπ2 · (Fπ1)◦. This assignment is
independent of the factorization of r, and r admits a canonical factorization which is
given by projecting into X and Y the subset of X × Y of pairs of elements related by r. It is
well-known that for every Set-functor, the Barr extension is a normal relax extension, but it
is a lax extension precisely when F preserves weak pullbacks [24].

In this case, the Barr extension is also the least lax extension of F, for it follows from 2–2
that Fπ2 · (Fπ1)◦ ≤ Lr for every lax extension L. Lax extensions have been used extensively
to treat the notion of bisimulation coalgebraically (e.g. [21, 26, 28]).
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Given a lax extension L : Rel→ Rel of a functor F : Set→ Set, an L-simulation between
F-coalgebras (X, α) and (Y, β) is a relation s : X−7−→Y such that β · s ≤ Ls · α. If L preserves
converse, then L-simulations are more suitably called L-bisimulations. Between two given
coalgebras, there is a greatest L-(bi)simulation, which is termed L-(bi)similarity. It has
been shown [28] that if L is normal and preserves converses, then L-bisimilarity coincides
with coalgebraic behavioural equivalence as recalled above.

▶ Remark 2.2. As mentioned in the introduction, a functor F admits a normal lax extension
iff F admits a separating class of monotone predicate liftings [28, 13]. For readability, we
discuss only the case where both the functor and the predicate liftings are finitary [28]. An
n-ary predicate lifting λ for F is a natural transformation of type λ : Qn → Q · Fop where
Q denotes the contravariant powerset functor; that is, for a set X, λX lifts n predicates
on X to a predicate on FX. Predicate liftings determine modalities in coalgebraic modal
logic [31, 35]; a basic example is the unary predicate lifting λ for the (covariant) powerset
functor P given by λX(A) = {B ∈ PX | B ⊆ A} for a predicate A ⊆ X, which determines
the standard box modality on P-coalgebras, i.e. on standard relational transition systems. A
set of predicate liftings is separating if distinct elements of FX can be separated by lifted
predicates; this condition ensures that the associated instance of coalgebraic modal logic is
expressive, i.e. separates behaviourally inequivalent states [31, 35].

Monotonicity of predicate liftings allows the definition of modal fixpoint logics for temporal
specification [10]. In the mentioned correspondence between lax extensions and predicate
liftings, the construction of predicate liftings from a lax extension L roughly speaking involves
application of L to the elementhood relation.

3 Functor Actions on Difunctional Relations

Our pullback preservation criterion for existence of normal lax extensions grows from an
analysis of how functors act on difunctional relations. To start off, it is well-known that
normal lax extensions of a given Set-functor are given on difunctional relations by the action
of the functor (e.g. [28, 22]):

▶ Proposition 3.1. Let L be an assignment of relations Lr : FX−7−→FY to relations r : X−7−→Y

that satisfies 2, 2 as well as L1X ≤ 1FX for all X ∈ Set. Then L is a lax extension of
F (it is then normal) iff for all functions f : W → X, g : Z → Y and relations r : X−7−→Y ,
L(g◦ · r · f) = (Fg)◦ · Lr · Ff.

▶ Corollary 3.2. All normal lax extensions of a given Set-functor coincide on difunctional
relations. Specifically, for every normal lax extension L of F : Set→ Set, L(g◦ · f) = Fg◦ · Ff

for all f : X → A and g : Y → A.

Therefore, a functor F : Set → Set that admits at least one normal lax extension must be
monotone on difunctional relations in the following sense: for all difunctional relations
g◦ · f : X−7−→Y and g′◦ · f ′ : X−7−→Y , if g◦ · f ≤ g′◦ · f ′ then (Fg)◦ · Ff ≤ (Fg′)◦ · Ff ′. This
property no longer mentions lax extensions, and implies that the functor is well-defined
on difunctional relations, i.e. that F sends cospans that determine the same difunctional
relation to cospans that determine the same difunctional relation. In this section, we show
that being monotone on difunctional relations is equivalent to preserving 1/4-iso (2/4-mono)
pullbacks in the sense defined next; as indicated in the introduction, this allows for a quick
proof of the fact that the neighbourhood functor fails to admit a normal lax extension [28].
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▶ Definition 3.3. We say that a functor F : Set → Set preserves 1/4-iso 2/4-mono
pullbacks, 1/4-iso pullbacks, 1/4-mono pullbacks and inverse images if it sends
pullbacks of the following forms, respectively, to pullbacks, with arrows ↣ and

≃
−→ indicating

injectivity and bijectivity correspondingly.

P B

X Y

⌟
≃ P B

X Y

⌟
≃ P B

X Y.

⌟
P B

X Y

⌟

▶ Remark 3.4. 1/4-Iso 2/4-mono pullbacks are special inverse images, characterized by the
property that the fibre over every element in the image of the function B ↣ Y is a singleton.
In particular, the inverse image of the empty subset is a 1/4-iso 2/4-mono pullback.

Due to the following proposition, for consistency, we tend to use “preservation of 1/4-mono
pullbacks” instead of “preservation of inverse images”.

▶ Proposition 3.5. A Set-functor preserves 1/4-mono pullbacks iff it preserves inverse
images.

Similarly, we will see in Theorem 3.12 that preservation of 1/4-iso pullbacks is equivalent to
preservation of 1/4-iso 2/4-mono pullbacks. We thus tend to use the terms “1/4-iso 2/4-mono
pullback preserving” and “1/4-iso pullback preserving” interchangeably. Furthermore, in
Example 3.10 we will see that preservation of 1/4-mono pullbacks is properly stronger than
preservation of 1/4-iso pullbacks.

Each of the preservation properties introduced in Definition 3.3 implies preservation
of monomorphisms, even if we only require that the corresponding pullbacks are weakly
preserved. Hence, as at least one of the projections of the pullbacks is monic, preserving the
pullbacks mentioned is equivalent to weakly preserving them, and, therefore, each of the
properties is implied by weakly preserving pullbacks. Also, note that weakly preserving limits
of a given shape is equivalent to preserving weak limits of that shape (e.g. [16, Corollary 4.4]).
Furthermore, weakly preserving pullbacks is known to be sufficient for the existence of a
normal lax extension – the Barr extension – and this condition can be decomposed as follows:

▶ Theorem 3.6. [18, Theorem 2.7] A Set-functor weakly preserves pullbacks iff it weakly
preserves inverse images and kernel pairs.

It turns out that weakly preserving kernel pairs is equivalent to weakly preserving 4/4-epi
pullbacks as defined next.

▶ Definition 3.7. We say that a functor F : Set→ Set weakly preserves 4/4-epi pullbacks,
if it sends pullbacks of the form

P B

X Y,

⌟

with arrows ↠ indicating surjectivity, to weak pullbacks (necessarily of surjections).

▶ Theorem 3.8. [15, Corollary 5] A Set-functor weakly preserves kernel pairs iff it weakly
preserves 4/4-epi pullbacks.

Therefore, the condition of weakly preserving pullbacks can be decomposed as:
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▶ Corollary 3.9. A Set-functor weakly preserves pullbacks iff it weakly preserves 1/4-mono
pullbacks and 4/4-epi pullbacks.

In Section 4, we will show that either preserving 1/4-mono pullbacks or weakly preserving
1/4-iso pullbacks and 4/4-epi pullbacks is sufficient for the existence of a normal lax extension.

▶ Example 3.10. 1. The subfunctor (−)3
2 : Set → Set of the functor (−)3 : Set → Set

that sends a set X to the set of triples of elements of X consisting of at most two distinct
elements does not preserve pullbacks weakly [1] but it preserves inverse images.

2. The neighbourhood functor N : Set → Set (whose coalgebras are neighbourhood
frames [9]) sends a set X to the set NX = PPX of neighbourhood systems over X, and a
function f : X → Y to the function N f : NX → NY that assigns to every element A ∈ NX

the set {B ⊆ Y | f−1[B] ∈ A}. The monotone neighbourhood functor M : Set→ Set is the
subfunctor of the neighbourhood functor that sends a set X to the set of upward-closed
subsets of (PX,⊆). Its coalgebras are monotone neighbourhood frames, which feature,
e.g., in the semantics of game logic [30] and concurrent dynamic logic [32]. A closely
related functor is the clique functor C : Set → Set, which is the subfunctor of M given by
CX = {α ∈ MX | ∀A, B ∈ α. A ∩ B ̸= ∅}. The functors M and C do not preserve inverse
images: Consider the sets 3 = {0, 1, 2} and 2 = {a, b}. Let e : 3 → 2 be the function that
sends 0, 1 to a and 2 to b, and B = {a}. Then Me(↑{0, 1} ∪ ↑{1, 2}) = ↑{a} where ↑ denotes
upwards closure, but ↑{0, 1} ∪ ↑{1, 2} does not belong to M({0, 1}) =M(e−1[B]). However,
routine calculations show that these functors do preserve 1/4-iso (2/4-mono) pullbacks and
weakly preserve 4/4-epi pullbacks (for the first functor, see [38, Proposition 4.4]).

3. Given a commutative monoid (M, +, 0) (or just M), the monoid-valued functor M (−)

maps a set X to the set M (X) of functions µ : X → M with finite support, i.e. µ(x) ̸= 0
for only finitely many x. The coalgebras of M (−) are M -weighted transition systems. It
is known that M (−) preserves inverse images iff M is positive, i.e. does not have non-zero
invertible elements. Moreover, M (−) preserves weak pullbacks iff M is positive and refinable,
i.e. whenever m1 + m2 = n1 + n2 for m1, m2, n1, n2 ∈M , then there exists a 2× 2-matrix
with entries in M whose i-th column sums up to mi and whose j-th row sums up to nj , for
i, j ∈ {1, 2} [17]. Positive but not refinable monoids are fairly common [11]; the simplest
example is the additive monoid {0, 1, 2} where 2 + 1 = 2.

The functor M (−) preserves 1/4-iso (2/4-mono) pullbacks iff it preserves inverse images
iff M is positive. Indeed, suppose that M is not positive. Consider the function !2 : 2→ 1.
Then, for mutually inverse non-zero elements u and v of M , the function M !2 sends the pair
(0, 0) and the pair (u, v) to 0 ∈M1 wich belongs to the image of M !∅ : M∅ →M1.

4. In recent work [15], it has been shown that the functor of a monad induced by a
variety of algebras preserves inverse images iff whenever a variable x is canceled from a term
when identified with other variables, then the term does not actually depend on x. This
provides a large reservoir of functors that preserve inverse images but do not always have
easily guessable normal lax extensions (whose existence will however be guaranteed by our
main results). One example is the functor that maps a set X to the free semigroup over X

quotiented by the equation xxx = xx, as neither idempotence nor associativity cancel any
variables. Notice that this functor does not preserve 4/4-epi pullbacks.

Finally, we show that being monotone on difunctional relations is equivalent to preserving
1/4-iso (2/4-mono) pullbacks. The next lemma connects the order on difunctional relations
and pullbacks of such type.



S. Goncharov, D. Hofmann, P. Nora, L. Schröder and P. Wild 9

▶ Lemma 3.11. Let X
f−→ A

g←− Y and X
f ′

−→ A′ g′

←− Y be cospans for which there is a
map h : A → A′ such that f ′ = h · f and g′ = h · g. Moreover, consider the commutative
square

f [X] ∩ g [Y ] f ′ [X] ∩ g′ [Y ]

A A′

h′

h

(1)

where h′ : f [X] ∩ g[Y ]→ f ′[X] ∩ g′[Y ] is the restriction of h to f [X] ∩ g[Y ] and the vertical
arrows denote subset inclusions.

1. If g◦ · f ≥ g′◦ · f ′, then h′ is a bijection.
2. If g◦ · f ≥ g′◦ · f ′ and the cospan (f, g) is epi, then (1) is a pullback.
3. If h′ is a bijection and (1) is a pullback,

then g◦ · f ≥ g′◦ · f ′.

▶ Theorem 3.12. The following clauses are equivalent for a functor F : Set→ Set:

(i) F preserves 1/4-iso 2/4-mono pullbacks.
(ii) F is well-defined on difunctional relations.

(iii) F is monotone on difunctional relations.
(iv) F preserves 1/4-iso pullbacks.

▶ Corollary 3.13. If a Set-functor admits a normal lax extension, then it preserves 1/4-iso
pullbacks.

Therefore, the following functors do not admit a normal lax extension.

▶ Example 3.14. 1. The neighbourhood functor N : Set→ Set does not preserve 1/4-iso
pullbacks: the element P1 ∈ N1 belongs to the image of the function N !∅, with !∅ : ∅ ↣ 1,
however, its fiber w.r.t. N !2, with !2 : 2→ 1, is not a singleton.

2. For every non-positive commutative monoid, the monoid valued functor M (−) : Set→
Set does not preserve 1/4-iso pullbacks (Example 3.10(3)).

3. By (the proof of) [11, Proposition 4.4], the functor F : Set→ Set of the monad induced
by a variety of algebras that admit a weak form of subtraction (for instance, groups, rings
and vector spaces) does not preserve 1/4-iso pullbacks.

4. For every set A with at least two elements, consider the functor Set(A,−)/ ∼ that
sends a set X to the quotient of the set Set(A, X) by the smallest equivalence relation ∼
on Set(A, X) that identifies all non-injective maps, and sends a function f : X → Y to the
following one between the corresponding equivalence classes: [g]∼ 7→ [f · g]∼. The resulting
functor does not preserve 1/4-iso pullbacks. For instance, for A = {0, 1}, consider the sets
3 = {a, b, c} and B = {0}. Then, the fibre of each element of B ⊆ A w.r.t. the function
f : 3→ A that sends a to 0 and b, c to 1 is a singleton; however, the fibre of the equivalence
class of the constant map into 0 w.r.t. Set(A, f)∼ is not a singleton. Similar counterexamples
can be constructed for arbitrary A with at least two elements.

4 Existence of Normal Lax Extensions

We proceed to present the main results of the paper: a Set-functor that weakly preserves
1/4-iso pullbacks and 4/4-epi pullbacks, or that preserves 1/4-mono pullbacks admits a
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normal lax extension. In view of the facts recalled in Section 2, this means that these functors
admit a notion of bisimulation that captures behavioural equivalence, or equivalently, that
they admit a separating class of monotone predicate liftings.

We begin by showing that the smallest lax extension of a Set-functor is obtained by
“closing its Barr relax extension under composition”. As a consequence, in Corollary 4.5 we
obtain a criterion to determine if a Set-functor admits a normal lax extension.

Consider the partially ordered classes Lax(F) and ReLax(F) of lax and relax extensions of F,
respectively, ordered pointwise. With the following result we can construct lax extensions
from relax extensions in a universal way.

▶ Proposition 4.1. Let F : Set→ Set be a functor. The inclusion Lax(F) ↣ ReLax(F) has a
left adjoint (−)• : ReLax(F)→ Lax(F) that sends a relax extension R : Rel→ Rel of F to its
laxification R• : Rel→ Rel, which is defined on r : X−7−→Y by

R•r =
∨

r1,...,rn :
rn·...·r1≤r

Rrn · . . . · Rr1. (2)

Furthermore, if a relax extension R : Set → Set preserves converses, then so does its
laxification.

Since every lax extension of a functor is greater or equal than the Barr relax extension
(cf. Section 2), we thus have:

▶ Corollary 4.2. The smallest lax extension of a functor is given by the laxification of its
Barr relax extension.

For the Barr relax extension of a Set-functor, the supremum in the formula (2) can be
restricted as follows.

▶ Lemma 4.3. For every composable sequence r1, . . . , rn such that rn · . . . · r1 ≤ r, for
some relation r, there is a composable sequence r′

1, . . . , r′
n such that r′

n · . . . · r′
1 = r and

Frn · . . . · Fr1 ≤ Fr′
n · . . . · Fr′

1.

▶ Corollary 4.4. Let F : Set→ Set be a functor. For every relation r : X−7−→Y ,

(F)•r =
∨

r1,...,rn :
rn·...·r1=r

Frn · . . . · Fr1.

Therefore, as normality of a lax extension also implies normality of any lax extension
below it, we have

▶ Corollary 4.5. A functor F : Set→ Set admits a normal lax extension iff the laxification
of its Barr relax extension is normal. More concretely, a functor F : Set → Set admits a
normal lax extension iff for every set X and every composable sequence of relations r1, . . . , rn,
whenever rn · . . . · r1 = 1X , then Frn · . . . · Fr1 ≤ 1FX .

▶ Remark 4.6. It is well-known [6] that for every functor F : Set → Set and all relations
r : X−7−→Y and s : Y−7−→Z, F(s · r) ≤ Fs ·Fr. Hence, once we show the inequality of Corollary 4.5
we actually have equality.

In general terms, our main results follow by showing that in Corollary 4.5, under certain
conditions on Set-functors, it suffices to consider composable sequences of relations that
satisfy nice properties. In this regard, it is convenient to introduce the following notion.
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▶ Definition 4.7. Let r1, . . . , rn be a composable sequence of relations. A composable sequence
s1, . . . , sk is said to be a Barr upper bound of the sequence r1, . . . , rn if rn·. . .·r1 = sk ·. . .·s1
and Frn · . . . · Fr1 ≤ Fsk · . . . · Fs1.

In Section 3 we have seen that every Set-functor that admits a normal lax extension
preserves 1/4-iso pullbacks, or equivalently, it is monotone on difunctional relations (The-
orem 3.12). As we show next, the latter condition is also equivalent to satisfying the criterion
of Corollary 4.5 for pairs of composable relations.

▶ Proposition 4.8. Let F : Set→ Set be a functor. The following clauses are equivalent:

(i) The functor F : Set→ Set preserves 1/4-iso pullbacks.
(ii) For all relations r1 : X−7−→Y , r2 : Y−7−→X such that r2 · r1 ≤ 1X , Fr2 · Fr1 ≤ 1FX .

(iii) For all relations r1 : X−7−→Y , r2 : Y−7−→X such that r2 · r1 = 1X , Fr2 · Fr1 ≤ 1FX .

Now, suppose that we want to extend the previous result in inductive style to composable
triples of relations. Due to the next lemma, a simple idea to reduce the case of composable
triples to the case of composable pairs of relations is to take the difunctional closure of the
second relation in the sequence.

▶ Lemma 4.9. Let r1 : X0−7−→X1 , r2 : X1−7−→X2 and r3 : X2−7−→X3 be relations given by spans
that form the base of the commutative diagram

O

X0 R1 X1 R2 X2 R3 X3.π1 ρ1 π2 ρ2 π3 ρ3

p1 p2

ρ′
1 π′

3

⌞

Then, with r′
1 : X−7−→O and r′

3 : O−7−→X3 defined by the spans X0
π1←−− R1

ρ′
1−→ O and

X0
π′

3←−− R3
ρ3−→ X3, respectively, Fr3 · Fr2 · Fr1 ≤ Fr3 · Fr̂2 · Fr1 ≤ Fr′

3 · Fr′
1.

Indeed, let r1 : X−7−→X1 , r2 : X1−7−→X2 and r3 : X2−7−→X be relations such that r3 ·r2 ·r1 = 1X .
Then, by Proposition 4.8 and Lemma 4.9, we conclude that Fr3 · Fr2 · Fr1 ≤ 1FX once we
show that r′

3 · r′
1 = 1X . Of course, in general, this does not hold. Consider the following

example where the arrows depict pairs of related elements.

• •

x • • x

y • • y

• •

X X1 X2 X

r1 r2 r3

By taking the difunctional closure r̂2 of r2 we get
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• •

x • • x

y • • y

• •

r1 r̂2 r3

So, r3 · r̂2 · r1 = r′
3 · r′

1 is not a subidentity. Now the property of preserving 1/4-iso
pullbacks is helpful again. As we will see in Lemma 4.10, under this condition, the sequence
below is a Barr upper bound of the first one and it is obtained from it by “splitting” where
necessary the elements of X1 that do not belong to the codomain of r1 and the elements of
X2 that do not belong to the domain of r3.

• •

x • • x

•

•

y • • y

• •

r1 r2 r3

In this situation we can apply the difunctional closure to r2 (which in this particular
example is already difunctional) to reduce the number of relations as disussed in Lemma 4.9.

▶ Lemma 4.10. Let F : Set → Set be a functor that preserves 1/4-iso pullbacks, and let
r1 : X−7−→Y , r2 : Y−7−→Z and r3 : Z−7−→W be relations. Then, there are relations s1 : X−7−→Y ′,
s2 : Y ′−7−→Z ′ and s3 : Z ′−7−→W such that s1, s2, s3 is a Barr upper bound of r1, r2, r3 and

1. for all y, y′ ∈ Y ′ and all z ∈ Z ′, if y ̸= y′, y s2 z and y′ s2 z, then z ∈ dom(s3);
2. for all y ∈ Y ′ and z, z′ ∈ Z ′, if z ̸= z′, y s2 z and y s2 z′, then y ∈ cod(s1).

The previous lemma essentially closes the argument that we have been crafting so far.

▶ Theorem 4.11. Let F : Set→ Set be a functor. The following clauses are equivalent:

(i) The functor F : Set→ Set preserves 1/4-iso pullbacks.
(ii) For all relations r1 : X−7−→Y , r2 : Y−7−→Z and r3 : Z−7−→X such that r3 · r2 · r1 ≤ 1X , Fr3 ·Fr2 ·

Fr1 ≤ 1FX .
(iii) For all relations r1 : X−7−→Y , r2 : Y−7−→Z and r3 : Z−7−→X such that r3 · r2 · r1 = 1X , Fr3 ·Fr2 ·

Fr1 ≤ 1FX .

However, as we see next, Theorem 4.11 is as far as we can go under the assumption of
1/4-iso pullbacks preservation. In other words, the fact that a Set-functor preserves 1/4-iso
pullbacks is not sufficient to conclude that it admits a normal lax extension.
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▶ Example 4.12. Let us define a functor F : Set→ Set as a quotient of
∐

n∈{f,g}{n}×X5 ∼=
X5 + X5 under the equivalence defined by the clauses:

f(y, x, z, x, t) ∼ f(y′, x, z′, x, t′) f(t, x, x, y, y) ∼ f(t′, x, x, y, y)
g(y, x, z, x, t) ∼ g(y′, x, z′, x, t′) g(x, x, y, y, t) ∼ g(x, x, y, y, t′)
f(y, x, z, x, t) ∼ g(y′, x, z′, x, t′) f(t, x, z, y, z) ∼ g(t, x, t, y, z)

where f(x1, . . . , x5) and g(x1, . . . , x5) denote the corresponding elements (f, x1, . . . , x5),
(g, x1, . . . , x5) ∈

∐
n∈{f,g}{n} ×X5. Let 2 = {x, y} and consider the composable sequence of

relations depicted below.

• • • x

• • y

x • •

y • • •

r1 r2 r3 r4

Then, F preserves 1/4-iso pullbacks and r4 · r3 · r2 · r1 = 12, however, Fr4 ·Fr3 ·Fr2 ·Fr1 ̸≤ 1F2.

4.1 The case of functors that weakly preserve 4/4-epi pullbacks
From Theorem 4.11 it basically follows that a functor that weakly preserves 1/4-iso pullbacks
and 4/4-epi pullbacks admits a normal lax extension. But to see this, first we need to
sharpen Corollary 4.5. The goal is to show that it suffices to consider composable sequences
of relations where all relations other than the first and the last are total and surjective. To
illustrate how we achieve this, let us consider the sequence of relations depicted below.

x • • • x

y • • • y

X X1 X2 X3 X

r1 r2 r3 r4

Then, by adding new elements 0 and 1 to X1, X2 and X3 we can extend this sequence to
the sequence

0 0 0

x • • • x

y • • • y

1 1 1

X X ′
1 X ′

2 X ′
3 X,

r′
1 r′

2 r′
3 r′

4
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where the dotted arrows indicate pairs of elements that were added to the correponding
relation as follows: for i = 2, 3, r′

i relates 0 ∈ Xi−1 to every element of Xi ∪ {0} that does
not belong to the codomain of ri and relates every element of Xi−1 ∪ {1} that does not
belong to the domain of ri to 1 ∈ Xi. In this way, we guarantee that r′

2 and r′
3 are total and

surjective and that r′
4 · r′

3 · r′
2 · r′

1 = r4 · r3 · r2 · r1 = 1X . We could have extended r2 and r3
to total and surjective relations by adding just a single element ∗ to X1, X2 and X3 that
would simultaneously take the role of 0 and 1. However, composing the resulting sequence of
relations would not yield a subidentity:

∗ ∗ ∗

• • • • •

• • • • •

X X ′
1 X ′

2 X ′
3 X.

r′
1 r′

2 r′
3 r′

4

In other words, by splitting ∗ in two elements 0 and 1, the former to make the relations
r2 and r3 surjective and the latter to make them total, we obtain a subidentity because
we never create paths between elements of X1 that are not part of the domain of r2 and
elements of X3 that are not part of the codomain of r3. In the next lemma we formalize this
procedure for arbitrary composable sequences of relations and show that it yields Barr upper
bounds.

▶ Lemma 4.13. A functor F : Set→ Set that preserves 1/4-iso pullbacks admits a normal
lax extension iff for every composable sequence of relations r1, . . . , rn such that n ≥ 4 and
r2, . . . , rn−1 are total and surjective, whenever rn · . . . · r1 = 1X , for some set X, then
Frn · . . . · Fr1 ≤ 1FX .

▶ Remark 4.14. In a composable sequence of relations that satisfies the conditions of
Lemma 4.13 the first relation is necessarily total while the last one is necessarily surjective.

Now, our first main result follows straightforwardly. Since the composite of total and
surjective relations is total and surjective, due to the following fact, every composable
sequence of relations where all relations other than the first and the last are total and
surjective admits a Barr upper bound consisting of three relations.

▶ Proposition 4.15. A functor F : Set→ Set weakly preserves 4/4-epi pullbacks iff for all
relations r : X−7−→Y and s : Y−7−→Z, whenever r is surjective and s is total, Fs · Fr = F(s · r).

▶ Theorem 4.16. A Set-functor that weakly preserves 1/4-iso pullbacks and 4/4-epi weak
pullbacks admits a normal lax extension.

▶ Remark 4.17. Preservation of 4/4-epi pullbacks plays a role in the analysis of interpolation
in coalgebraic logic [38]. In particular, this analysis implies that given a separating set Λ of
monotone predicate liftings for a finite-set-preserving functor F, which induces an expressive
modal logic L(Λ) for F-coalgebras, the logic L(Λ) has interpolation iff F weakly preserves
4/4-epi pullbacks [38, Theorem 37]. In connection with the fact that a functor has a normal
lax extension iff it has a separating set of monotone predicate liftings [28], we obtain the
following application of Theorem 4.16 and Corollary 3.13: A finite-set preserving functor F
has a separating set of monotone predicate liftings such that the associated modal logic has
uniform interpolation iff F weakly preserves 1/4-iso pullbacks and 4/4-epi pullbacks.
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4.2 The case of functors that preserve 1/4-mono pullbacks
To obtain Theorem 4.16, we refined Corollary 4.5 to composable sequences of relations where
all relations other than the first and the last are total and surjective. And to achieve this in
Lemma 4.13, given a composable sequence of relations, we added pairs of related elements to
the relations in the sequence. In the sequel, we will show that every functor that preserves
1/4-mono pullbacks admits a normal lax extension. We will see that for these functors it is
even possible to refine Corollary 4.5 to composable sequences of relations where all relations
are total and surjective. However, we will achieve this in Lemma 4.19 below by, given a
composable sequence of relations, removing pairs of related elements from the relations in
the sequence. Our proof strategy is justified by the next fact.

▶ Proposition 4.18. A functor F : Set→ Set preserves 1/4-mono pullbacks iff for all relations
r : X−7−→Y and s : Y−7−→Z, whenever r is the converse of a partial function or s is a partial
function, Fs · Fr = F(s · r).

This result enables a “look ahead and behind” strategy for Corollary 4.5. The idea is
that, given a composable sequence of relations r1, . . . , rn such that rn · . . . · r1 = 1X , then,
with ri : Xi−1−7−→Xi being a relation in the sequence, removing the elements of Xi that do not
belong to the codomain of ri · . . . · r1 or do not belong to the domain of rn · . . . · ri+1 yields a
Barr upper bound of our original sequence. For instance, consider the composable sequence
of relations depicted in Example 4.12, which we used to show that there are functors that
preserve 1/4-iso pullbacks but do not admit a normal lax extension. In the next lemma, in
particular, we show that for functors that preserve 1/4-mono pullbacks the sequence below of
total and surjective relations is a Barr upper bound of this one. The dotted arrows represent
pairs of related elements that were removed, and the grey boxes represent the elements of
each set that are not removed.

• • • x

• • y

x • •

y • • •

r′
1 r′

2 r′
3 r′

4

▶ Lemma 4.19. A functor F : Set→ Set that preserves 1/4-mono pullbacks admits a normal
lax extension if for every composable sequence of total and surjective relations r1, . . . , rn,
whenever rn · . . . · r1 = 1X for some set X, then Frn · . . . · Fr1 ≤ 1FX .

It turns out that the sufficient condition of the previous lemma is actually satisfied by
every Set-functor that preserves 1/4-iso pullbacks. Indeed, due to the next result, Lemma 4.9
and the fact that surjections are stable under pushouts, every composable sequence of total
and surjective relations whose composite is an identity admits a Barr upper bound consisting
of three relations.

▶ Lemma 4.20. Let r1 : X−7−→X1, r2 : X1−7−→X2 and r3 : X2−7−→X be a composable sequence
of total and surjective relations, and let r̂2 : X1−7−→X2 be the difunctional closure of r2. If
r3 · r2 · r1 = 1X , then r3 · r̂2 · r1 = 1X .

▶ Proposition 4.21. Let F : Set→ Set be a functor that preserves 1/4-iso pullbacks, and let
r1, . . . , rn be a composable sequence of total and surjective relations. If rn · . . . · r1 = 1X for
some set X, then Frn · . . . · Fr1 ≤ 1FX .
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Therefore,

▶ Theorem 4.22. Every Set-functor that preserves 1/4-mono pullbacks admits a normal lax
extension.

In particular, since in Example 3.10(3) we have seen that for (commutative) monoid-
valued functors preserving 1/4-mono pullbacks is equivalent to preserving 1/4-iso pullbacks,
as a consequence of Theorem 4.22 and Corollary 3.13 we obtain:

▶ Corollary 4.23. A (commutative) monoid-valued functor admits a normal lax extension iff
the monoid is positive.

The class of Set-functors that admit a normal lax extension is closed under subfunctors
and several natural constructions such as the sum of functors. This makes it easy to extend
the reach of our sufficient conditions, but it also shows that it is easy to provide examples of
functors that admit a normal lax extension and do not weakly preserve 1/4-mono pullbacks
nor 4/4-epi pullbacks. A quick example is the functor given by the sum of the functor (−)3

2
and the monotone neighbourhood functor. To conclude this section, we present a less obvious
example that is constructed analogously to Example 4.12. Notice that, as we have seen in
Example 3.14(4), the class of functors that admit a normal lax extension is not closed under
quotients.

▶ Example 4.24. For any set X, let FX

be the quotient of X3 under the equivalence relation ∼ defined by the clauses (x, x, y) ∼
(x, x, x) ∼ (y, x, x). This yields a functor F : Set → Set that neither weakly preserves
1/4-mono pullbacks nor 4/4-epi pullbacks, however, F admits a normal lax extension.

5 Conclusions

Normal lax extensions of functors play a dual role in the coalgebraic modelling of reactive
systems, on the one hand allowing for good notions of bisimulations on functor coalgebras and
on the other hand guaranteeing the existence of expressive temporal logics. We have shown
on the one hand that every functor admitting a lax extension preserves 1/4-iso pullbacks,
and on the other hand that a functor admits a normal lax extension if it weakly preserves
either 1/4-iso pullbacks and 4/4-epi pullbacks or inverse images. These results improve on
previous results [25, 27, 28], which combine to imply that weak-pullback-preserving functors
admit normal lax extensions. One application of our results implies, roughly, that a given
type of monoid-weighted transition systems admits a good notion of bisimulation iff the
monoid is positive.

The most obvious issue for future work is to close the remaining gap, i.e. to give a
necessary and sufficient criterion for the existence of normal lax extensions in terms of limit
preservation. Additionally, the structure of the lattice of normal lax extensions of a functor
merits attention, in the sense that larger lax extensions induce more permissive notions of
bisimulation.
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A Omitted Details and Proofs

A.1 Proof of Lemma 2.1
(i) ⇒ (ii). Given r = g◦ · f , the hypothesis of (ii) means that f(x1) = g(y1) = f(x2) =

g(y2), so x1 r y2.
(ii) ⇒ (iii). The pullback of the pushout is a relation X−7−→Y that relates x ∈ X to y ∈ Y

iff x and y are equivalent under the equivalence relation on X + Y generated by r. By (ii),
such elements x, y are already related by r; that is, the pullback is r. If r = π2 · π◦

1 as in (iii),
then R maps surjectively onto r, hence is a weak pullback.

(iii) ⇒ (i). Immediate, since every relation r can be written in the form r = π2 · π◦
1 . ◀

A.2 Proof of Proposition 3.5
Let F : Set → Set be a functor. It is clear that if F preserves 1/4-mono pullbacks, then it
preserves inverse images. To see that the converse statement holds, suppose that F preserves
inverse images and consider a cospan X

f−→ B
g←− Y in Set. Then a pullback of the cospan

(f, g) can be obtained by pasting the following pullbacks where the bottom horizontal arrows
are given by the image factorization of f .

P P ′ Y

X f [X] B

⌟
m g

f

⌟
m′

Moreover, if m is injective, i.e., if we have a 1/4-mono pullback (square), then by the way
pullbacks are formed in Set, m′ is also injective. Therefore, in this case, the pullback of (f, g)
is preserved because F preserves inverse images. ◀

A.3 Details of Example 3.10
To see that the functor (−)3

2 preserves 1/4-mono pullbacks, consider a pullback

P Y

X Z.

⌟

p2

p1 g

f

Note that as p1 : P ↣ X is injective, for every x ∈ X such that f(x) ∈ g[Y ] there is one and
only one element y ∈ Y such that f(x) = g(y). Now, let x = (x1, x2, x3) and y = (y1, y2, y3)
be elements of X3

2 and Y 3
2 , respectively, such that (f(x1), f(x2), f(x3)) = (g(y1), g(y2), g(y3)).

Then, from the fact that x consists of at most two elements of X, we conclude that
((x1, y1), (x2, y2), (x3, y3)) consists of at most two elements of P and it is clear that projecting
this element to X and Y yields x and y, respectively.

To see that the monotone neighbourhood functor and the clique functor weakly preserve
4/4-epi pullbacks, consider a pullback

P Y

X Z.

⌟

p2

p1 g

f

(3)
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Suppose that there are A ∈ MX and B ∈ MY such that Mf(A) =Mf(B). We have to
show that there is E ∈ MP such that Mp1(E) = A and Mp2(E) = B. Put

E = ↑{p◦
1[A] | A ∈ A} ∪ ↑{p◦

2[B] | B ∈ B},

where, given r : U−7−→V and C ⊆ U , r[C] denotes the relational image. Then, it is clear
that E is monotone. Moreover, as p1 is surjective, A ⊆ Mp1(E), since for every A ∈ A,
A = (p1 · p◦

1)[A] ∈ Mp1(E). On the other hand, for every set B ⊆ Y , (p1 · p◦
2)[B] =

(f◦ · g)[B] = f◦[g[B]], since 3 is a (weak) pullback. In particular, for every B ∈ B we obtain
(p1 · p◦

2)[B] ∈ A, since g[B] ∈ Mg(B) = Mf(A). Thus, as A is monotone, for every set
C ⊆ P such that p◦

2[B] ⊆ C, for some B ∈ B, p1[C] ∈ A. This means that, A ⊇ Mp1(E),
and, hence, Mp1(E) = A. By analogous reasoning we obtain Mp2(E) = B. Therefore,
the monotone neighborhoud functor weakly preserves 4/4-epi pullbacks. Now, suppose
that A and B are cliques. Let A ∈ A and B ∈ B, we show that p◦

1[A] ∩ p◦
2[B] ̸= ∅, the

other cases follow from this one or from the fact that A and B are cliques. Note that, as
f [A], g[B] ∈Mf(A) =Mg(B) which is a clique, we have f [A] ∩ g[B] ̸= ∅. Hence, there is
a ∈ A and b ∈ B such that f(a) = g(b) and, therefore, (a, b) ∈ p◦

1[A] ∩ p◦
2[B], by definition of

pullback.
To see that the functor F : Set→ Set that maps a set X to the free semigroup over X

quotiened by the equation xxx = xx does not preserve 4/4-epi pullbacks weakly, consider
the following pullback, where 2 = {a, b}.

P 2

2 1

⌟

p2

p1 !2

!2

Then, F!2(aba) = F!2(ab) but there is no element p in FP such that Fp1(p) = aba and
Fp2(p) = ab since the words have different lenght and do not contain the pattern xx.

A.4 Proof of Lemma 3.11

Note that g◦ · f ≥ g′◦ · f ′ means precisely that for all x ∈ X and y ∈ Y , if h · f(x) = f ′(x) =
g′(y) = h · g(y), then f(x) = g(y).

1. Suppose that g◦ · f ≥ g′◦ · f ′. Let a′ ∈ f ′[X] ∩ g′[Y ], that is, we have x ∈ X and
y ∈ Y such that h · f(x) = f ′(x) = g′(y) = h · g′(y). Then a := f(x) = g(y) ∈ f [X] ∩ g[Y ]
and h(a) = a′, so h′ is surjective. On the other hand, let a1, a2 ∈ f [X] ∩ g[Y ] such that
h′(a1) = h′(a2). Then there are x1, x2 ∈ X and y1, y2 ∈ Y such that a1 = f(x1) = g(y1),
a2 = f(x2) = g(y2) and, hence, in particular we obtain h · f(x1) = h · g(y2). Therefore,
a1 = f(x1) = g(y2) = a2.

2. Let a ∈ A with h(a) ∈ f ′[X] ∩ g′[Y ]. Then there are x ∈ X and y ∈ Y such that
h(a) = h · f(x) = h · g(y). Moreover, since the cospan X

f−−→ A
g←− Y

is epi, w.l.o.g, there is x′ ∈ X such that f(x′) = a. Hence, h · f(x′) = h(a) = h · g(y).
Therefore, as g◦ · f ≥ g′◦ · f ′, a = f(x′) = g(y) ∈ f [X] ∩ g[Y ].

3. Let x ∈ X and y ∈ Y such that f ′(x) = h · f(x) = h · g(y) = g′(y). Since (1) is a
pullback,

it follows that f(x), g(y) ∈ f [X]∩g[Y ], and since h′ is injective, we obtain f(x) = g(y). ◀
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A.5 Proof of Theorem 3.12
(i) ⇒ (ii). Let g◦ · f : X−7−→Y be a difunctional relation determined by a cospan

X
f−→ A

g←− Y . Consider the pushout X
p1−→ O

p2←−− Y of the pullback of the cospan
X

f−→ A
g←− Y . Note that every cospan that determines the relation g◦ · f gives rise to

the same pushout. Furthermore, by Lemma 2.1, p◦
2 · p1 = g◦ · f , and, hence, to show that

the claim holds it suffices to show (Fp2)◦ · Fp1 = (Fg)◦ · Ff . By the universal property
of (p1, p2) as a pushout, we have h such that h · p1 = f and h · p2 = g. The inequality
(Fp2)◦ · Fp1 ≤ (Fg)◦ · Ff is then immediate from Fh · Fp1 = Ff and Fh · Fp2 = Fg. To see the
inequality (Fp2)◦ · Fp1 ≥ (Fg)◦ · Ff we consider first the case where g◦ · f is non-empty. Note
that, as (p1, p2) is an epicocone, by Lemma 3.11 the inequality p◦

2 · p1 ≥ g◦ · f entails that
we have the following pullback square

p1[X] ∩ p2[Y ] f [X] ∩ g[Y ]

O A,

≃

iO iA

h

⌟

where iO and iA are the corresponding inclusions into O and A, respectively. Hence, since F
is 1/4-iso preserving, its image under F is also a pullback. Moreover, as Set-functors preserve
epimorphisms, by applying F to the commutative diagram

P Y

p1[X] ∩ p2[Y ] p2[Y ]

X p1[X] O

⌟

iO

⌟
p2

p1

we conclude that FiO : F(p1[X] ∩ p2[Y ]) → FO corestricts to Fp1[FX] ∩ Fp2[FY ]. And, as
p1[X] ∩ p2[Y ] is non-empty since the relation p2 · p◦

1 is non-empty, FiO is a mononormphism
because every Set-functor preserves monomorphisms with non-empty domain.

On the other hand, as p1[X] ∩ p2[Y ] in non-empty and every Set-functor preserves non-
empty intersections [41], we have F(p1[X]∩p2[Y ]) ≃ F(p1[X])∩F(p2[Y ]) ≃ Fp1[FX]∩Fp2[FY ],
with the second isomorphism holding due to the fact that for every function q : X → Y

with non-empty domain, the sets F(q[X]) and Fq[FX] are isomorphic because each of them
is the codomain of an epimorphism and the domain of a monomorphism of an epi-mono
factorizations of Fq. Hence, FiO : F(p1[X] ∩ p2[Y ]) → FO corestricts to an isomorphism
FiO : F(p1[X] ∩ p2[Y ])→ Fp1[FX] ∩ Fp2[FY ]. And, by analogous reasoning for the morphism
FiA : F(f [X] ∩ g[Y ])→ FA, we obtain the commutative diagram

F(p1[X] ∩ p2[Y ]) F(f [X] ∩ g[Y ])

Fp1[FX] ∩ Fp2[FY ] Ff [FX] ∩ Fg[FY ]

FO FA.

≃
Fh′

≃

FiO
FiA

≃

≃

Fh

Thus, as the outer square is a pullback, the square
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Fp1[FX] ∩ Fp2[FY ] Ff [FX] ∩ Fg[FY ]

FO FA

≃

Fh

⌟

is a pullback, where the top morphism is given by restricting Fh to Fp1[FX] ∩ Fp2[FY ].
Therefore, from Lemma 3.11(3), (Fp2)◦ · Fp1 ≥ (Fg)◦ · Ff . Now suppose that g◦ · f is empty.
Consider the functions f+1 : X + 1→ A + 1 and g+1 : Y + 1→ A + 1 that are defined as f

and g on X and Y , respectively, and send the element added to X and Y , respectively, to the
element added to A, and the functions p1,+1 : X +1→ O+1 and p2,+1 : Y +1→ O+1 defined
analogously. Then, p◦

2,+1 · p1,+1 = g◦
+1 · f+1 is non-empty. Hence, by the previous argument,

(Fp2,+1)◦ · Fp1,+1 = (Fg+1)◦ · Ff+1. Now, let x ∈ FX, y ∈ FY such that Ff(x) = Fg(y). Then,
as the diagram

X X + 1

A A + 1

Y Y + 1

iX

f f+1

g

iY

g+1

commutes (with the horizontal arrows denoting coprojections), Fp1,+1(FiX(x)) = Fp2,+1(FiY (y)).
Hence, as the diagram

X X + 1

O O + 1

Y Y + 1

iX

p1 p1,+1

iO

p2

iY

p2,+1

commutes (with the horizontal arrows denoting coprojections), FiO(Fp1(x)) = FiO(Fp2(y)).
Therefore, as F preserves monomorphisms Fp1(x) = Fp2(y) which entails (Fp2)◦ · Fp1 ≥
(Fg)◦ · Ff .

(ii)⇔ (iii) The implication (iii)⇒ (ii) is trivial. To show (ii)⇒ (iii), let g◦·f : X−7−→Y and
g′◦·f ′ : X−7−→Y be difunctional relations, given by cospans X

f−→ O
g←− Y and X

f ′

−→ A
g′

←− Y

respectively, such that g◦ · f ≤ g′◦ · f ′. Since F is well-defined on difunctional relations, by
Lemma 2.1 we can assume that the cospan X

f−→ O
g←− Y is the pushout of its pullback

X
π1−→ R

π2←−− Y . Then, the condition g◦ · f ≤ g′◦ · f ′ entails f ′ · π1 = g′ · π2. Hence, by the
pushout property, there is a map h : O → A such that f ′ = h · f and g′ = h · g. Therefore,
(Fg)◦ · Ff ≤ (Fg)◦ · (Fh)◦ · Fh · Ff = (Fg′)◦ · Fg′.

(ii) ⇒ (iv). Consider a pullback square of the form

P Y

X Z.

⌟
≃
j

i l

f
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Then, i ·j−1 = i ·j◦ = f◦ · l, so 1◦
X · (i ·j−1) = f◦ · l. Hence, as F is well-defined on difunctional

relations, (F1X)◦ ·F(i ·j−1) = (Ff)◦ ·Fl. Thus, Fi · (Fj)◦ = Fi · (Fj)−1 = F(i ·j−1) = (Ff)◦ ·Fl,
i.e, (Fi, Fj) is a weak-pullback of (Ff, Fl).

(iv) ⇒ (i) trivial. ◀

A.6 Proof of Proposition 4.1
We begin by showing that, given a relax extension R of F, R• : Rel→ Rel is a lax extension of
F.

2 Trivial.
2 Let r : X−7−→Y and s : Y−7−→X be relations. Moreover, suppose that r1, . . . , rm and

s1, . . . , sn are finite sequences of relations such that r1 · . . . · rm ≤ r and s1 · . . . · sn ≤ s. Then,
s1, . . . , sn, r1, . . . , rm is a finite sequence of relations such that sn · . . . · s1 · rm · . . . · r1 ≤ s · r.
Therefore, as relational composition preserves suprema in each variable,

R•s · R•r =
∨

s1,...,sn:
sn·...·s1≤s

∨
r1,...,rm:

rm·...·r1≤r

Rsn · . . . · Rs1 · Rrm · . . . · Rr1

≤
∨

t1,...,tk:
tk·...·t1≤s·r

Rtk · . . . · Rt1 = R•(s · r).

2 Trivial.

Now, it is clear that (−)• : ReLax(F)→ Lax(F) is a monotone map and that the laxification
of a relax extension produces a relax extension that is greater or equal than the starting
one, and that, since lax extensions preserve composition laxly, equality is attained precisely
when the starting relax extension is a lax extension. Furthermore, suppose that R preserves
converses. Let r : X−7−→Y be a relation. Then, since r1, . . . , rn is a composable sequence of
relations such that rn · · · r1 ≤ r iff s1 = r◦

n, . . . , sn = r◦
1 is a composable sequence of relations

such that sn · · · s1 ≤ r◦ and R preserves converses, we obtain:

(R•r)◦ =
∨

r1,...,rn:
rn·...·r1≤r

(Rrn · . . . · Rr1)◦

=
∨

r1,...,rn:
rn·...·r1≤r

Rr◦
1 · . . . · Rr◦

n

=
∨

s1,...,sn:
sn···...·s1≤r◦

Rsn · . . . · Rs1

= R•(r◦) ◀

A.7 Proof of Lemma 4.3
Let r : X0−7−→Xn be a relation, and let r1, . . . , rn be a composable sequence of relations such
that rn · . . . · r1 ≤ r. For i = 1, . . . , n, let Xi−1

πi←−− Ri
ρi−→ Xi be a span in Set such that

ri = ρi · π◦
i and let X0

πr←−− R
ρr−→ Xn be a span in Set such that r = ρr · π◦

r . We construct
a sequence r′

1, . . . , r′
n with the desired properties as follows.

If n = 1, we just take r′
1 = r, otherwise, with [f, g] : X + Y → Z denoting the copairing

of f : X → Z and g : Y → Z,

r′
1 is given by the span X0

[π1,πr]←−−−−− R1 + R
ρ1+1R−−−−→ X1 + R;

for i = 2, . . . , n− 1, r′
i is given by the span Xi−1 + R

πi+1R←−−−−− Ri + R
ρi+1R−−−−→ Xi + R;

rn : (Xn−1 + R)−7−→Xn is given by the span Xn−1
πn+1R←−−−−− Rn + R

[ρn,ρr]−−−−→ Xn.
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Then it is clear that by construction we have r′
n · . . . · r′

1 = r and, hence, the claim follows
from the fact that the diagram below commutes

X0 R1 X1 . . . Xn−1 Rn Xn,

R1 + R X1 + R . . . Xn−1 + R Rn + R

π1 ρ1 πn ρn

[π1,πr]

ρ1+1R πn+1R

[ρn,ρr]

where the vertical arrows denote the corresponding coprojections. ◀

A.8 Proof of Proposition 4.8

Note that for all relations r1 : X−7−→Y and r2 : Y−7−→X such that r1 = ρ1 · π◦
1 and r2 = ρ2 · π◦

2 ,
for spans X

π1←−− R1
ρ1−→ Y and Y

π2←−− R2
ρ2−→ X in Set, r2 · r1 ≤ 1X ⇐⇒ π◦

2 ·ρ1 ≤ ρ◦
2 ·π1.

Therefore, the equivalence between (i) and (ii) follows from the fact that preserving 1/4-iso
pullbacks is equivalent to being monotone on difunctional relations ( Theorem 3.12). The
equivalence between (ii) and (iii) is an immediate consenquence of Lemma 4.3. ◀

A.9 Proof of Lemma 4.9

Let X1
π′

2−→ P
ρ′

2←−− be the pushout of the cospan (p1, p2). So, r̂2 = ρ′
2 · π◦

2 and, as F is
monotone and p1 ·π′

2 = p2 ·ρ′
2, Fr3 ·Fr2 ·Fr1 ≤ Fr3 ·Fr̂2 ·Fr1 ≤ Fr3 ·(Fp2)◦ ·Fp1 ·Fr1 = Fr′

3 ·Fr′
1.

A.10 Proof of Lemma 4.10

For i = 1, 2, 3, let ρi · πi
◦ be the canonical factorization of ri. We will show that “splitting

the elements” of the domain of r2 that do not belong to the codomain of r1 and the elements
of the codomain of r2 that do not belong to the domain of r3 yields a sequence of relations
with the desired properties. W.l.o.g. assume that Y ∩R2 = ∅ and Z ∩R2 = ∅, and consider
Y ′ = X1 ∪ (R2 \ π−1

2 [ρ1[R1]]), Z ′ = X2 ∪ (R2 \ ρ−1
2 [π3[R3]]), which are then disjoint unions.

Consider the functions f : Y ′ → Y and g : Z ′ → Z that act identically on Y and Z and as π2
and ρ2 on R2 \ π−1

2 [ρ1[R1]] and R2 \ ρ−1
2 [π3[R3]] respectively. Moreover, let p : R2 → Y ′ be

the function that sends (y, z) ∈ R2 to y ∈ Y if y ∈ cod(r1) and acts identically otherwise,
and let q : R2 → Z ′ be the function that sends (y, z) ∈ R2 to z ∈ Z if z ∈ dom(r3) and acts
identically otherwise. Then, we have the following commutative diagram

X R1 Y Y ′ R2 Z ′ Z R3 W

X R1 Y R2 Z R3 W,

π1 ρ1

ρ′
1

⌟
f

⌞
p q

π1 ρ1 π2 ρ2

g

π3 ρ3

π3

π′
3

ρ3

where the arrows Y ↣ Y ′ and Z ↣ Z ′ denote inclusions. Since the second and the fourth
squares are pullbacks, we obtain equations ρ′

1 = f◦ · ρ1 and π′◦
3 = π◦

3 · g. Hence,

ρ3 · π◦
3 · ρ2 · π◦

2 · ρ1 · π◦
1 = ρ3 · π◦

3 · g · q · p◦ · f◦ · ρ1 · π◦
1

= ρ3 · π′◦
3 · q · p◦ · ρ′

1 · π◦
1 .
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Moreover, as F is 1/4-iso pullback preserving, by applying F to the commutative diagram
above and reasoning analogously, we have

Fr3 · Fr2 · Fr1 = Fρ3 · (Fπ3)◦ · Fρ2 · (Fπ2)◦ · Fρ1 · (Fρ1)◦

= Fρ3 · (Fπ′
3)◦ · Fq · (Fp)◦ · Fρ1 · (Fπ1)◦.

Therefore, with r′
1 = ρ′

1 · π◦
1 , r′

2 = q · p◦ and r′
3 = ρ3 · π′

3,

Fr3 · Fr2 · Fr1 = Fr′
3 · Fr′

2 · Fr1.

Note that as cod(r′
1) = cod(r1) and dom(r′

3) = dom(r3), by construction, for all y, y′ ∈ X1
and z, z′ ∈ X2:

1. if y ̸= y′, y r′
2 z and y′ r′

2 z, then z ∈ dom(r′
3), and

2. if z ̸= z′, y r′
2 z and y r′

2 z′, then y ∈ cod(r′
1).

◀

A.11 Proof of Theorem 4.11
(i)⇒ (ii) Let r1 : X−7−→Y , r2 : Y−7−→Z and r3 : Z−7−→X be relations such that r3 ·r2 ·r1 ≤ 1X .

By Lemma 4.10 we can assume w.l.o.g that for all y, y′ in X1 and z, z′ ∈ X2:

1. if y ̸= y′, y r2 z and y′ r2 z, then z ∈ dom(r3), and
2. if z ̸= z′, y r2 z and y r2 z′, then y ∈ cod(r1).

Let r̂2 : X1−7−→X2 denote the difunctional closure of r2. We claim that r3 · r̂2 · r1 ≤ 1X . Let
x r1 y0 r2 z1 r◦

2 y1 r2 z2 . . . r◦
2 yn−1 r2 zn r3 x′, with n ≥ 1; we have to show that x = x′. We

assume w.l.og that for i = 0, . . . , n− 2, yi ̸= yi+1, and for j = 1, . . . , n− 1, zj ̸= zj+1. The
reason is that whenever yi = yi+1, correspondingly zj = zj+1, we can remove yi r2 zi+1 and
zi+1 r◦

2 yi+1 from the chain of related elements and still obtain a chain of related elements
from x to x′.

We proceed by induction on n, with the base case n = 1 holding because r3 · r2 · r1 ≤ 1X ,
by hypothesis. Let x r1 y0 r2 z1 r◦

2 y1 r2 z2 . . . r◦
2 yn−1 r2 zn r3 x′. Since n ≥ 2, we

have y0 ≠ y1 by assumption, and y0 r2 z1 and y1 z1. Hence, by item 1 and the fact that
r3 · r2 · r1 ≤ 1X , we obtain z1 r3 x. This entails, by analogous reasoning using item 2, that
x r1 y1. Thus, we obtain a chain of related elements x r1 y1 r2 z2 . . . r◦

2 yn−1 r2 zn r3 x′; so
x = x′ by the inductive hypothesis. Therefore, by Lemma 4.9 and Proposition 4.8 we obtain
Fr3 · Fr2 · Fr1 ≤ 1FX .

(ii) ⇒ (iii) Immediate consequence of Lemma 4.3.
(iii) ⇒ (i) Immediate consequence of Proposition 4.8 since F is normal. ◀

A.12 Details of Example 4.12
The symmetric-reflexive closure of ∼ is already transitive. The property that F preserves
1/4-iso pullbacks can be equivalently formulated as follows: for every rank-1 term t,
t[x/x1, . . . , x/xn] ∼ t[x/x1, . . . , x/xn, z1/y1, . . . , zm/ym] implies t ∼ t[z1/y1, . . . , zm/ym]
where {x1, . . . , xn, y1, . . . , ym} are all the variables of t, and t being rank-1 means that
it contains precisely one occurrence either of f or of g. Preservation of 1/4-iso pullbacks then
follows by case-by-case analysis.

That Fr4 · Fr3 · Fr2 · Fr1 ̸≤ 1X follows from the fact that we can define h(x, y) =
f(x, x, x, y, y), u(x, y) = g(x, x, y, y, y), and then h(x, y) ≁ u(x, y), which easily follows by
inspecting the above clauses that define ∼. ◀
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A.13 Proof of Lemma 4.13

Clearly, the condition is necessary due to Corollary 4.5 and to see that is also sufficient
first we note that by Theorem 4.11 it suffices to consider composable sequences of four or
more relations. Now, let r1, . . . , rn be a composable sequence of relations such that n ≥ 4,
rn · . . . · r1 = 1X , and ri = Xi−1−7−→Xi for i = 1, . . . , n and X0 = Xn = X. We show that this
sequence admits a Barr upper bound such that all relations other than the first and the last
are total and surjective. Then, the claim follows by Corollary 4.5.

For simplicity of notation let us assume that 0, 1 /∈ Xi, for i = 2, . . . , n − 1, and let
X ′

i = Xi ∪ {0, 1} for i = 2, . . . , n− 1. Consider the sequence of relations r′
1, . . . , r′

n defined as
follows:

The elements related by r′
1 : X−7−→X ′

1 and r′
n : X ′

n−1−7−→X are precisely the ones related
by r1 and rn, respectively.

For i = 2, . . . , n− 1, r′
i : X ′

i−1−7−→X ′
i consist of the following pairs

(0, x) if x = 0 or x ∈ Xi \ cod(ri);
(x, 1) if x = 1 or x ∈ Xi−1 \ dom(ri);
(x, y) if x ri y.

Then, by construction, for i = 2, . . . , n− 1, r′
i is total and surjective and, with ρi · π◦

i and
ρ′

i · π′◦
i denoting the canonical factorizations of ri and r′

i, respectively, the following diagram
where the vertical arrows denote inclusions commutes

X R′
1 X ′

1 R′
2 X ′

2 . . . X ′
n−2 R′

n−1 X ′
n−1 R′

n X

X R1 X1 R2 X2 . . . Xn−2 Rn−1 Xn−1 Rn X

π′
1 ρ′

1 π′
2 ρ′

2

π2 ρ2π1 ρ1 πn ρn

π′
n ρ′

n
π′

n−1 ρ′
n−1

πn−1 ρn−1

This entails that rn · . . . · r1 ≤ r′
n · . . . · r′

1 and by applying F to the diagram we conclude
that Frn · . . . · Fr1 ≤ Fr′

n · . . . · Fr′
1. To see that rn · . . . · r1 ≥ r′

n · . . . · r′
1 first note that by

construction for i = 2, . . . , n− 1, x (r′
i · . . . · r′

2) 0 iff x = 0 and 1 (r′
n−1 · . . . · r′

i) x iff x = 1.
Now, suppose that x r′

1 x1 r′
2 x2 . . . r′

n−1 xn−1 r′
n y, then, as 0 /∈ cod(r′

1) and 1 /∈ dom(r′
n),

for i = 1, . . . , n− 1, xi ∈ Xi. Therefore, x (rn · . . . · r1) y. ◀

A.14 Proof of Proposition 4.15

Note that a relation s : Y−7−→Z is total iff it can be factorized as f · e◦, for some function
f : A→ Z and some surjective map e : A→ Y . And, dually, a relation r : X−7−→Y is surjective
iff it can be factorized as h · g◦, for some function g : A → X and some surjective map
h : A→ Z.

A.15 Proof of Proposition 4.18

Note that a relation s : Y−7−→Z is a partial function iff it can be factorized as f · i◦, for some
function f : A→ Z and some injective map i : A→ Y . And, dually, a relation r : X−7−→Y is
the converse of partial function iff it can be factorized as j · g◦, for some function A→ X

and some injective map j : A→ Z. ◀
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A.16 Proof of Lemma 4.19
▶ Lemma A.1. Let r1, . . . , rn be a composable sequence of relations. Consider the following
composable sequences of relations:

1. s1, . . . , sn defined by sn = rn, and si = ⌈dom si+1⌉ · ri, for i = 1, . . . , n− 1;
2. t1, . . . , tn defined by t1 = s1, and ti = si · ⌈cod ti−1⌉, for i = 2, . . . , n.

Then, tn · · · t1 = sn · · · s1 = rn · · · r1 and for every i = 2, . . . , n, cod(ti−1) = dom(ti).

Proof. Clearly, tn · · · t1 = sn · · · s1 = rn · · · r1. Moreover, note that dom(ti) = dom(si) ∩
cod(ti−1), and cod(ti−1) = si−1[cod(ti−2)] if i > 2 and cod(ti−1) = cod(s1) if i = 2. Thus, we
have cod(ti−1) ≤ cod(si−1) for i = 2, . . . , n, and since cod(si−1) ≤ dom(si) for i = 2, . . . , n,
it follows that dom(ti) = dom(si) ∩ cod(ti−1) = cod(ti−1). ◀

Let r1, . . . , rn be a composable sequence of relations such that rn · . . . · r1 = 1X , for some
set X. We will show that there is a Barr upper bound t′

1, . . . , t′
n of r1, . . . , rn consisting

only of total and surjective relations. Then, the claim follows immediately by Corollary 4.5.
By Lemma A.1, we obtain sequences s1, . . . , sn and t1, . . . , tn such that tn · · · t1 = 1X and
for i = 2, . . . , n, cod(ti−1) = dom(ti). Therefore, since F preserves 1/4-mono pullbacks, by
Proposition 4.18,

Frn · · ·Fr1

= Fsn · F⌈dom sn⌉ · Frn−1 · · ·Fr1

= Fsn · F(⌈dom sn⌉ · rn−1) · · ·Fr1

= Fsn · Fsn−1 · · ·Fr1

= Fsn · Fsn−1 · F⌈dom sn−1⌉ · Frn−2 · · ·Fr1

...
= Fsn · · ·Fs1

= Fsn · · ·Fs2 · F⌈cod t1⌉ · Ft1

= Fsn · . . . F(s2 · ⌈cod t1⌉) · Ft1

= Fsn · . . . Ft2 · Ft1

= Fsn · · ·Fs3 · F⌈cod t2⌉ · Ft2 · Ft1

...
= Ftn · · ·Ft1.

Furthermore, given spans X
f←− R

g−→ Y , Y
f ′

←−− R
g′

−→ Z and a monomorphism i : Y ↣ A,
we have g′ · f ′◦ · i◦ · i · g · f◦ = g′ · f ′◦ · g · f◦. Therefore, as F preserves monomorphisms,
we obtain a Barr upper bound t′

1, . . . , t′
n of r1, . . . , rn consisting only of total and surjective

relations by (co)restricting ti to its (co)domain (Note that as tn · . . . · t1 = 1X , t1 is total and
tn is surjective). ◀

A.17 Proof of Lemma 4.20
First note that r3 · r2 ≤ r◦

1 and r2 · r1 ≤ r◦
3 since 1X1 ≤ r1 · r◦

1 and 1X2 ≤ r◦
3 · r3. Since

r2 ≤ r̂2 =
∨

n∈N r2 · (r◦
2 · r2)n, we show that r3 · r2 · (r◦

2 · r2)n · r1 ≤ 1X , for all n ∈ N. We
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proceed by induction on n, with the base case n = 0 being the hypothesis of the lemma.
Assuming that the assertion is true for n ∈ N, we calculate

r3 · r2 · (r◦
2 · r2)n · r◦

2 · r2 · r1 ≤ r◦
1 · (r◦

2 · r2)n · r◦
2 · r◦

3 = (r3 · r2 · (r◦
2 · r2)n · r1)◦ ≤ 1◦

X = 1X .

◀
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