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Abstract. Compact metric spaces form an important class of metric spaces,
but the category that they define lacks many important properties such as
completeness and cocompleteness. In recent studies of “metric domain the-
ory” and Stone-type dualities, the more general notion of a (separated) metric
compact Hausdorff space emerged as a metric counterpart of Nachbin’s com-
pact ordered spaces. Roughly speaking, a metric compact Hausdorff space is a
metric space equipped with a compatible compact Hausdorff topology (which
does not need to be the induced topology). These spaces maintain many im-
portant features of compact metric spaces, and, notably, the resulting category
is much better behaved. Moreover, one can use inspiration from the theory of
Nachbin’s compact ordered spaces to solve problems for metric structures.

In this paper we continue this line of research: in the category of separated
metric compact Hausdorff spaces we characterise the regular monomorphisms
as the embeddings and the epimorphisms as the surjective morphisms. More-
over, we show that epimorphisms out of an object X can be encoded internally
on X by their kernel metrics, which are characterised as the continuous met-
rics below the metric on X; this gives a convenient way to represent quotient
objects. Finally, as the main result, we prove that its dual category has an
algebraic flavour: it is Barr-exact. While we show that it cannot be a variety
of finitary algebras, it remains open whether it is an infinitary variety.
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1. Introduction

Since the early work of Pontrjagin [Pon34] and Stone [Sto36], it is known that
the dual of many categories of topology have an algebraic flavour: the category of
compact Hausdorff Abelian groups is dually equivalent to the category of Abelian
groups, and the category of Boolean spaces (particular compact Hausdorff spaces)
is dually equivalent to the category of Boolean algebras. Extending the latter fact,
Duskin [Dus69] observed that the dual of the category CH of compact Hausdorff
spaces and continuous maps is algebraic over Set. From a more concrete perspec-
tive, it is essentially shown in [Gel41] that CHop is equivalent to the category of
commutative C∗-algebras and homomorphisms, and this category is indeed alge-
braic over Set with respect to the unit ball functor, as shown in [Neg71]. We also
recall that, by the work of Stone [Sto38] and Priestley [Pri70, Pri72], the category
of Priestley spaces (Boolean spaces with a compatible partial order) and contin-
uous monotone maps is dually equivalent to the category of distributive lattices
and homomorphisms and therefore its dual category is also a variety. Somewhat
surprisingly, a similar investigation for related structures such as Nacbin’s compact
ordered spaces [Nac65] was carried out only recently. In [HNN18] it is shown that
the dual of the category PosCH of compact ordered spaces and continuous mono-
tone maps is a quasivariety over Set, and in [Abb19, AR20] it is finally shown that
PosCHop is also exact, and hence a variety. In this paper we extend this line of
research to include also metric structures.

With no doubt, the class of compact metric spaces (those metric spaces whose in-
duced topology is compact) is an important class of metric spaces; however, together
with non-expansive maps, this class forms a poorly behaved category. Firstly, we
cannot even form the coproduct of two singleton spaces, a shortcoming we can easily
overcome by allowing the distance ∞. This modification allows us also to consider
the sup-metric on an infinite product, which is indeed the product metric. However,
in general, the product metric does not induce the product topology and is therefore
not necessarily compact. For instance, for the two-element space 2 = {0, 1} with
distance 1 between 0 and 1, in 2N the distance between two different points is also
1 and therefore, while the topological power 2N is compact, the topology induced
by the metric is discrete and hence non-compact. We take this discrepancy as a
motivation to consider not only metric spaces with an induced compact (Hausdorff)
topology but rather equipped with a compatible compact Hausdorff topology.

This notion is also inspired by Nachbin’s definition of a compact ordered space
(see [Nac65] and also [Tho09]), where a compact Hausdorff space is equipped with
a compatible order relation. In fact, ordered sets can be seen as a special case of
metric structures by just dropping the symmetry axiom from the definition of a
metric space. Accordingly, to include also the ordered case in our investigation, we
consider here metric spaces in a more general sense: a metric d on a set X is a map
d : X ×X → [0,∞] which is only required to satisfy

d(x, x) = 0 and d(x, z) ≤ d(x, y) + d(y, z)

for all x, y, z ∈ X. These two axioms are analogous to the reflexivity and the
transitivity conditions of a preorder. Under this analogy, the metric counterpart of
anti-symmetry requires that, for all x, y ∈ X, d(x, y) = 0 = d(y, x) implies x = y; a
metric space (X, d) where d has this property is called separated. Let us note that
the analogy between metric and order structures can be made more precise in the
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setting of enriched categories. For instance, the transitivity condition of a preorder
and the triangular inequality of a metric space can be both seen as an instance of the
composition law of a category; similarly, reflexivity and the condition d(x, x) = 0
correspond to the identity law of a category; see [Law73] for details.

In this paper we are interested in the category of compact Hausdorff spaces
equipped with a compatible separated metric (called separated metric compact
Hausdorff spaces here, see Section 2 for details) and continuous non-expansive maps.
This category constitutes a natural common roof for the category of compact or-
dered spaces and continuous monotone maps as well as the category of compact
metric spaces and non-expansive maps. Moreover, it has more pleasant properties
than the latter one as it is, for instance, complete and cocomplete (see [Tho09]).
Various properties and constructions of compact metric spaces and of compact or-
dered spaces can be naturally extended to this category. For instance, every metric
compatible with some compact Hausdorff topology is Cauchy complete (see [HR18]),
and [HN20] introduces a Hausdorff functor on this category combing naturally the
Hausdorff metric and the Vietoris topology. We also point out that this type of
spaces proved to be useful in an extension of Stone-type dualities and of the notion
of continuous lattice to metric structures (see [GH13, HN18, HN23]).

Motivated by the corresponding results for compact Hausdorff spaces and com-
pact ordered spaces, in this note we investigate the algebraic character of the dual
of the category of separated metric compact Hausdorff spaces and continuous non-
expansive maps. Our main result shows that this category is Barr-exact. To achieve
this, in Section 3 we characterise surjective morphisms with domain X in terms of a
certain metric on X, which should be seen as a metric counterpart to the fact that
surjective maps with domain X are essentially in bijection with equivalence rela-
tions on X. In order to prove (co)regularity, in Section 4 we investigate pushouts of
embeddings and also show that the embeddings are precisely the regular monomor-
phism and that the epimorphisms are precisely the surjective morphisms. Finally,
in Section 5 we prove that equivalence (co)relations are effective.

2. Separated metric compact Hausdorff spaces

We start by recalling that in this paper the designation “metric” has a quite
inclusive meaning.

Definition 2.1. A metric is a map d : X ×X → [0,∞] which is only required to
satisfy

d(x, x) = 0 and d(x, z) ≤ d(x, y) + d(y, z),
for all x, y, z ∈ X. Furthermore, we say that d is separated whenever d(x, y) = 0 =
d(y, x) implies x = y, for all x, y ∈ X.

Without further ado, let us introduce the main objects of interest: separated
metric compact Hausdorff spaces.

Definition 2.2 ([HR18]). A (separated) metric compact Hausdorff space X is a
compact Hausdorff space X together with a (separated) metric d : X ×X → [0,∞]
that is continuous with respect to the upper topology of [0,∞].

We recall that the open subsets of the upper topology on [0,∞] are generated by
the sets ]u,∞]; hence, the non-empty closed subsets of [0,∞] are of the form [0, u],
with u ∈ [0,∞]. Throughout this paper we will often make use of the fact that,
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with respect to the upper topology, every non-empty compact subset of [0,∞] has
a smallest element. The space [0,∞] with the upper topology should be seen as the
metric counterpart of the Sierpiński space {0, 1} with {1} closed. Accordingly, the
notion of a separated metric compact Hausdorff space is the metric counterpart of
Nachbin’s compact ordered spaces. A more general approach to ordered and metric
(and other) topological structures is given in [Tho09], see Remark 2.8.

The continuity with respect to the upper topology of [0,∞] of a function f : X →
[0,∞], with X a topological space, is also known as lower semicontinuity of f
(for instance, see [Bou98, IV.6.2]), and is equivalently described by the pointwise
formula (for x0 ∈ X)

f(x0) ≤ lim inf
x→x0

f(x)

(or, equivalently, f(x0) = lim infx→x0 f(x)). Therefore, the compatibility between
the metric and the topology in Definition 2.2 amounts to the requirement that for
all x0, y0 ∈ X we have

d(x0, y0) ≤ lim inf
x→x0
y→y0

d(x, y).

Example 2.3. Every classical metric space whose induced topology is compact
can be viewed as a separated metric compact Hausdorff space. More generally,
every separated metric space whose induced symmetric topology is compact can be
viewed as a separated metric compact Hausdorff space (see [HR18]). Here we recall
from [Fla97] that the topology symmetrically induced by a metric d : X×X → [0,∞]
is generated by the right and left open balls (with x0 ∈ X and u ∈ [0,∞])

Br(x0, u) := {x ∈ X | d(x0, x) < u} and Bl(x0, u) := {x ∈ X | d(x, x0) < u}.

This topology is also generated by the symmetric open balls

B(x0, u) := Br(x0, u) ∩Bl(x0, u) = {x ∈ X | d(x0, x) < u and d(x, x0) < u},

with x0 ∈ X and u ∈ [0,∞] (see [Fla97, Theorem 4.8]).

Next, we provide an example of a metric space whose induced topology is not
compact, but which admits a natural compatible compact Hausdorff topology.

Example 2.4. The interval [0,∞] becomes a separated metric space with the
metric d defined by

d(u, v) =


|v − u| if u, v <∞,

0 if u = v =∞,

∞ otherwise.

This metric induces the topology on [0,∞] generated by the symmetric open balls
(with u ∈ [0,∞] and ε > 0)

{v ∈ [0,∞] | d(u, v) < ε}.

We emphasise that this topology on [0,∞] is not compact: for instance, the sequence
(n)n∈N does not have a convergent subsequence. However, we may consider the
Lawson topology [GHK+03] on [0,∞] which is generated by the basic open subsets
[0, u[ and ]u,∞], with u ∈ [0,∞]. With respect to this topology, the interval [0,∞]
is a compact Hausdorff space, and together with the metric d it becomes a separated
metric compact Hausdorff space.
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In a metric compact Hausdorff space, the compatibility between the metric and
the topology is weaker than the one when considering the topology induced by the
metric. Roughly speaking, in the latter case open balls are open and, consequently,
closed balls are closed, whereby in a metric compact Hausdorff space closed balls are
closed, but open balls need not be open. For example, take any compact Hausdorff
space with the discrete metric, which assigns distance 1 to each pair of distinct
points. Every singleton is an “open ball” of radius 1

2 , but it might fail to be open.
The following result makes this relationship more precise.

Proposition 2.5. Let X be a compact Hausdorff space and d be a separated metric
on X. Then d symmetrically induces the topology of X if and only if the map

d : X ×X −→ [0,∞]

is continuous with respect to the lower topology on [0,∞].

Proof. If the topology on X is symmetrically induced by the metric d, then, for
every u ∈ [0,∞], the set

{(x, y) ∈ X ×X | d(x, y) < u} =
⋃

z, u1+u2≤u

Bl(z, u1)×Br(z, u2)

is open in X × X. Hence, d : X × X → [0,∞] is continuous with respect to the
lower topology on [0,∞]. Conversely, assume now that the metric is continuous
with respect to the lower topology on [0,∞]. Since d is separated, the topology
induced by d is Hausdorff. Moreover, by continuity of d, the sets

{y ∈ X | d(x, y) < u} and {y ∈ X | d(y, x) < u}

are open also in the given compact Hausdorff topology, and hence both topologies
coincide. □

Corollary 2.6. Let X be a compact Hausdorff space and d be a separated metric
on X that does not attain the value ∞. Then d symmetrically induces the topology
of X if and only if the map

d : X ×X −→ [0,∞[

is continuous with respect to the Euclidean topology on [0,∞[.

Proof. If d symmetrically induces the topology on X, then by Proposition 2.5
and Example 2.3, d : X × X → [0,∞[ is continuous with respect to the lower
and the upper topology on [0,∞[, and hence also with respect to the Euclidean
topology. On the other hand, if d : X ×X → [0,∞[ is continuous with respect to
the Euclidean topology, then d is also continuous with respect to the lower topology
on [0,∞[ and therefore, by Proposition 2.5, it symmetrically induces the topology
on X. □

Remark 2.7. Proposition 2.5 is a generalisation of the following well-known fact
for partially ordered topological spaces. Let X be a compact Hausdorff space and
E ⊆ X×X a partial order on X. If E is open in X×X, then E is also closed and,
moreover, the topology of X is generated by the sets ↓x and ↑x, with x ∈ X (see
also [Nac65, Theorem 5]).
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Remark 2.8. The definition of a metric compact Hausdorff space was pulled out
of the hat in Definition 2.2. However, it is not an arbitrary condition, but rather
the specialisation to the metric setting of a more general notion. To explain the
rationale behind it, the starting point is the observation made in [Tho09] that the
ultrafilter monad on Set can be naturally extended to a monad on the category of
preordered sets and monotone maps and on the category of (Lawvere) metric spaces
and non-expansive maps, respectively. In the preordered case, the algebras for this
monad are precisely Nachbin’s preordered compact Hausdorff spaces [Nac65], and
therefore the algebras in the metric case constitute a natural metric counterpart
to preordered compact Hausdorff spaces. It is shown in [HR18] that this algebraic
description is equivalent to the condition in Definition 2.2.

A map f : X → X ′ between metric spaces (X, d) and (X ′, d′) is non-expansive
whenever d′(f(x), f(y)) ≤ d(x, y), for all x, y ∈ X. A morphism of metric compact
Hausdorff spaces is a map that is both non-expansive and continuous.

Definition 2.9. We denote the category of separated metric compact Hausdorff
spaces and morphisms by MetCHsep.

Below we collect some important properties of MetCHsep; for more details we
refer to [Tho09, GH13, HR18, HN20].

Theorem 2.10. The category MetCHsep is complete and cocomplete. In particular:
(1) The limit of a diagram D : I → MetCHsep is given by the limit (pi : X →

D(i))i∈I in CH equipped with the sup-metric

d(x, y) = sup
i∈I

di(pi(x), pi(y)), (x, y ∈ X),

where di denotes the metric of the space D(i).
(2) The coproduct X = X1 + X2 of metric compact Hausdorff spaces X1 and

X2 with metrics d1 and d2, respectively, is given by their disjoint union
equipped with the coproduct topology and the coproduct metric, that is, the
metric d defined by

d(x, y) =


d1(x, y) if x, y ∈ X1,

d2(x, y) if x, y ∈ X2,

∞ otherwise.

Theorem 2.11. The category MetCHsep has (surjection,embedding)-factorisations,
that is, every morphism f : X → Y in MetCHsep can be factorised as f = e ·g where
g is a surjective morphism and e is an embedding. Here, an embedding in MetCHsep
is an injective morphism such that the metric on the domain is the restriction of
the metric on the codomain.

In Section 4 we show that in MetCHsep the surjective morphisms are precisely
the epimorphisms and the embeddings are precisely the regular monomorphisms
(see Propositions 4.7 and 4.8).

Remark 2.12 (Compact ordered spaces as separated metric compact Hausdorff
spaces). We recall from [Nac65] that a compact ordered space (also called compact
pospace or Nachbin space) consists of a compact space X together with a partial
order ≤ on X so that the set {(x, y) ∈ X ×X | x ≤ y} is closed in X ×X; such a
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space X is automatically Hausdorff. The category of compact ordered spaces and
monotone and continuous maps is denoted by PosCH.

Every compact ordered space X can be thought of as a separated metric compact
Hausdorff space with the same compact Hausdorff space and the metric d defined
by

d(x, y) =
{

0 if x ≤ y,

∞ otherwise.

In fact, compact ordered spaces can be identified with the separated metric compact
Hausdorff spaces whose metric takes values in {0,∞}. Since every map between
compact ordered spaces is monotone if and only if it is non-expansive with respect
to the corresponding metrics, we obtain a fully faithful functor

PosCH −→ MetCHsep.

This functor has a right adjoint which leaves maps unchanged and sends a separated
metric compact Hausdorff space X (with metric d) to the compact ordered space
X with the same topology and the partial order given by

x ≤ y whenever d(x, y) = 0.

In particular, we conclude that PosCH is closed in MetCHsep under colimits, and
it is easy to see that PosCH is also closed in MetCHsep under limits. The unit
interval [0, 1] is a cogenerator in PosCH and PosCH is well-powered; therefore, the
Special Adjoint Functor Theorem guarantees that PosCH → MetCHsep has also a
left adjoint.

PosCH MetCHsep
⊥

⊥

Remark 2.13 (Symmetrisation). Every metric space X with metric d can be
symmetrised by putting ds(x, y) = max{d(x, y), d(y, x)} (see [Law73]). This metric
is compatible with the topology: if d : X × X → [0,∞] is continuous, then so is
ds : X ×X → [0,∞], since the map

max: [0,∞]× [0,∞] −→ [0,∞]
is continuous with respect to the upper topology. In fact, this construction defines
a right adjoint to the full embedding

MetCHsep,sym −→ MetCHsep

of the category MetCHsep,sym of symmetric separated metric compact Hausdorff
spaces and continuous non-expansive maps into MetCHsep. Similarly to Remark 2.12,
we conclude that the category MetCHsep,sym is closed under limits and colimits in
MetCHsep. Therefore the inclusion functor MetCHsep,sym → MetCHsep has also a left
adjoint by the Adjoint Functor Theorem (the solution set condition is trivial).

Below we briefly indicate an example where metric compact Hausdorff spaces
played a crucial role.

Example 2.14. It is well-known that every classical metric space with compact
induced topology is Cauchy complete. However, to infer Cauchy completeness of
a metric space it suffices to show that there is a compatible compact Hausdorff
topology, that is, the metric space is part of a metric compact Hausdorff space.
To give a trivial example, consider an arbitrary product of classical metric spaces
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with compact induced topology. The product metric does not in general induce a
compact topology; however, this metric is Cauchy complete because the product
topology is compact Hausdorff and compatible. Less trivially, for every metric space
(X, d), the space UX of all ultrafilters on X equipped with the metric

h(U ,V) = sup
(A∈U, B∈V)

inf
(x∈A, y∈B)

d(x, y)

is Cauchy complete because the Zariski topology on UX (which is independent of
d) is compatible with the metric h (see [HR18]).

The rest of the paper is devoted to assessing a further feature of MetCHsep, which
exposes an algebraic flavour of the dual category MetCHop

sep. We recall (see [Bor94],
for instance) that a category C is regular whenever C is finitely complete, has
pushouts of kernel pairs and regular epimorphisms are pullback-stable. Moreover,
C is Barr-exact whenever it is regular and every internal equivalence relation is
effective, i.e., a kernel pair. Being Barr-exact expresses an algebraic trait: for
example, every variety of (possibly infinitary) algebras is Barr-exact; on the other
hand, the category of topological spaces and continuous maps is not. Barr-exactness
distinguishes varieties from quasivarieties and can be seen as a categorical way to
express the property of being “closed under quotients of congruences”. The main
result of this paper states that the category MetCHsep is Barr-coexact, that is,
MetCHop

sep is Barr-exact. Since MetCHsep is complete and cocomplete, to obtain this
result we show that

• the regular monomorphisms and the epimorphisms in MetCHsep are pre-
cisely the embeddings and the surjective morphisms, respectively,

• embeddings are stable under pushouts, and
• equivalence corelations are effective.

3. Quotient objects and continuous submetrics

In this paper we will study equivalence relations in MetCHop
sep by looking at

their dual in MetCHsep, which are particular epimorphisms. In this section we
prepare the ground by giving a description of surjective morphisms in MetCHsep
(= epimorphisms by Proposition 4.8 below) which is similar to the presentation of
surjections out of a set by equivalence relations.

Definition 3.1 (Quotient object). We let Q(X) denote the class of surjective mor-
phisms of separated metric compact Hausdorff spaces with domain X. We consider
Q(X) as the full subcategory of the coslice category X ↓ MetCHsep of MetCHsep over
X, which is the category whose objects are the morphisms in MetCHsep with domain
X and whose morphisms from an object f : X → Y to an object g : X → Z are the
morphisms h : Y → Z in MetCHsep such that the following triangle commutes.

X Y

Z

f

g
h
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Since surjective morphisms are epimorphisms in MetCHsep, the category Q(X) is
actually a preordered class:

f ≤ g ⇐⇒
X Y

Z.

f

g ∃h

Roughly speaking, thinking of a quotient object as a partition, the preorder on
Q(X) is the “finer than” preorder.

There is a standard way in which a partially ordered set is obtained from a
preordered set, i.e. by identifying elements of an equivalence class. In the same
fashion, from Q(X) we obtain a partially ordered class (in fact, a set) Q̃(X),
whose elements we call quotient objects of X. Explicitly, a quotient object is an
equivalence class of surjective morphisms of separated metric compact Hausdorff
spaces with domain X, where two surjective morphisms f : X ↠ Y and g : X ↠ Z
are equivalent if and only if there is an isomorphism h : Y → Z such that hf = g;
moreover, the equivalence class of f : X ↠ Y is below the equivalence class of
g : X ↠ Z if and only if there is a morphism h : Y → Z such that hf = g. With
a little abuse of notation, we take the liberty to refer to an element of Q̃(X) just
with one of its representatives.

Our next goal is to encode quotient objects of X internally on X. To make a par-
allelism: by [Eng89, The Alexandroff Theorem 3.2.11]1, in the category CH of com-
pact Hausdorff spaces and continuous functions, a surjective morphism f : X ↠ Y
is encoded by the equivalence relation ∼f := {(x, y) ∈ X × X | f(x) = f(y)};
the equivalence relation ∼f is closed, and, in fact, there is a bijection between
equivalence classes of surjective morphisms of compact Hausdorff spaces with do-
main X and closed equivalence relations on X. There are also analogous versions
for Boolean spaces, namely Boolean relations2 [GH09, Lemma 1, Chapter 37], for
Priestley spaces, namely lattice preorders [CLP91, Definition 2.3]3, and for Nach-
bin’s compact ordered spaces [AR20, Lemma 11].

In the case of separated metric compact Hausdorff spaces, we encode a quotient
object f : X ↠ Y of X via a certain (possibly non-separated) metric κf on X, as
follows.

Definition 3.2 (Kernel metric). Given a morphism f : X → Y in MetCHsep, we
set, for x1, x2 ∈ X,

κf (x1, x2) := dY (f(x1), f(x2)).
We call the function κf : X ×X → [0,∞] the kernel metric of f .

We will prove that κf is indeed a (not necessarily separated) metric on X, which
justifies the nomenclature kernel metric (Lemma 3.5).

Example 3.3. If Y is a compact Hausdorff space equipped with the metric as-
signing distance ∞ to any pair of distinct points, and f : X → Y is a morphism of

1The reader is warned that, in [Eng89], by ‘compact space’ is meant what we here call a
compact Hausdorff space.

2Sometimes called Boolean equivalences.
3Lattice preorders are also called Priestley quasiorders ([Sch02, Definition 3.5]), or compatible

quasiorders.
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separated metric compact Hausdorff spaces, then

κf (x, y) =
{
∞ if f(x) ̸= f(y),
0 if f(x) = f(y).

Therefore we may identify κf with the closed equivalence relation
∼f = {(x, y) ∈ X ×X | f(x) = f(y)} = {(x, y) ∈ X ×X | κf (x, y) = 0},

that is, the specialisation to compact Hausdorff spaces of this approach is precisely
the one discussed before Definition 3.2.

Definition 3.2 will be relevant especially for f a surjective morphism. The idea
is that a surjective morphism f can be completely recovered from κf (up to an
isomorphism). In order to establish an inverse for the assignment that maps f
to its kernel metric κf , we investigate the properties satisfied by kernel metrics:
these properties are precisely being a continuous metric below the given metric
(Theorem 3.14).

Definition 3.4 (Continuous submetric). Let X be a separated metric compact
Hausdorff space with metric d. A continuous submetric γ on X is a (not necessarily
separated) continuous metric γ : X×X → [0,∞] with respect to the upper topology
of [0,∞] which is below the given metric d, i.e., for all x, y ∈ X, γ(x, y) ≤ d(x, y).

Lemma 3.5. The kernel metric κf : X ×X → [0,∞] of a morphism f : X → Y in
MetCHsep is a continuous submetric on X.

Proof. For all x ∈ X we have κf (x, x) = dY (f(x), f(x)) = 0. Moreover, for all
x, y, z ∈ X we have
κf (x, y) = dY (f(x), f(y)) ≤ dY (f(x), f(z)) + dY (f(z), f(y)) = κf (x, y) + κf (y, z).
Therefore, κf is a (possibly non-separated) metric. The function κf : X × X →
[0,∞] is continuous (with respect to the upper topology) because it is the composite
of the two continuous functions

X ×X
f×f−−−→ Y × Y

dY−−→ [0,∞].
Since f is non-expansive, for all x, y ∈ X we have κf (x, y) = dY (f(x), f(y)) ≤
dX(x, y), and therefore κf is below dX . □

Remark 3.6. We shall now see how one recovers a surjective morphism f from its
kernel metric κf . Let (X, d) be a separated metric compact Hausdorff space and let
γ be a continuous submetric on X. Then take the separation-reflection X/∼γ of X
with respect to γ (for instance, see [HN20]). We recall that X/∼γ is the quotient
of X with respect to the equivalence relation ∼γ defined by

x ∼γ y ⇐⇒ γ(x, y) = γ(y, x) = 0;
the topology is the quotient topology, and the metric is dX/∼γ

([x], [y]) = γ(x, y).
Since γ is below d, the function X ↠ X/∼γ is non-expansive: dX/∼γ

([x], [y]) =
γ(x, y) ≤ d(x, y). Moreover, it is continuous because X/∼γ is equipped with the
quotient topology. Thus, the function X ↠ X/∼γ is a surjective morphism in
MetCHsep.

Definition 3.7. For X a separated metric compact Hausdorff space, we let S(X)
denote the set of continuous submetrics on X. We equip S(X) with the pointwise
partial order, i.e. γ1 ≤ γ2 whenever, for all x, y ∈ X, γ1(x, y) ≤ γ2(x, y).
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Our goal, met in Theorem 3.14, is to prove that the assignments

Q̃(X) −→ S(X) S(X) −→ Q̃(X)(
f : X ↠ Y

)
7−→ κf γ 7−→

(
X ↠ X/∼γ

)
establish a dual isomorphism between the partially ordered sets of quotient objects
of X and of continuous submetrics on X. This will allow us to work with S(X)
instead of Q̃(X).

3.0.1. The dual adjunction between the coslice category over X and S(X). For the
rest of this section, we fix a separated metric compact Hausdorff space X. In
Theorem 3.14 below, we will prove the correspondence between quotient objects
on X and continuous submetrics on X. To do so, we start by establishing in
Lemma 3.10 below a dual adjunction between the coslice category X ↓ MetCHsep
and the poset S(X) regarded as a category. From this dual adjunction, we will
obtain a dual equivalence between Q(X) and S(X) by restricting to the fixed
objects, and then an isomorphism between Q̃(X) and S(X) via a certain quotient.

Notation 3.8. We let
G : (X ↓ MetCHsep) −→ S(X)(

f : X → Y
)
7−→ κf

denote the assignment sending f to its kernel metric κf as described in Defini-
tion 3.2. Note that κf belongs to S(X) by Lemma 3.5. This assignment can be
extended to morphisms so that G becomes a contravariant functor: given f : X → Y
and g : X → Z in X ↓ MetCHsep, and given h : Y → Z such that g = hf , we set
G(h) as the unique morphism in S(X) from κg to κf .

We let
F : S(X) −→ (X ↓ MetCHsep)

γ 7−→
(
X ↠ X/∼γ

)
denote the assignment described in Remark 3.6. This assignment can be extended
to morphisms so that F becomes a contravariant functor: given γ1, γ2 ∈ S(X) such
that γ2 ≤ γ1, F maps the unique morphism from γ2 to γ1 to the morphism of
separated metric compact Hausdorff spaces

X/∼γ1 −→ X/∼γ2

[x]∼γ1
7−→ [x]∼γ2

.

It is easily seen that the functor GF : S(X)→ S(X) is the identity functor. We let
η denote the identity natural transformation from the identity functor 1S on S to
itself.

For every morphism f : X → Y in MetCHsep, we have a morphism in Q(X)

εf : X/∼κf
−→ Y

[x] 7−→ f(x)

from FG(f) to f .

Claim 3.9. ε is a natural transformation.
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Proof of claim. Let f : X → Y and g : X → Z be elements of X ↓ MetCHsep, and
let h : Y → Z be such that g = hf . We shall prove that the following diagram
commutes.

(X π−→ X/∼κf
) (X f−→ Y )

(X π−→ X/∼κg
) (X g−→ Z)

εf

F G(h) h

εg

The commutativity of the diagram above amounts to the commutativity of the
following one.

X/∼κf
Y

X/∼κg
Z

εf

F G(h) h

εg

For every x ∈ X we have
h(εf ([x]∼κf

)) = h(f(x)) = g(x) = εg([x]∼κg
) = εg(FG(h)(x)).

This proves our claim. □

Lemma 3.10. The functor
F : S(X)op −→ (X ↓ MetCHsep)

is left adjoint to the functor
G : (X ↓ MetCHsep) −→ S(X)op,

with unit η and counit ε.

Proof. It remains to prove that the triangle identities hold. One triangle identity
is trivial because every diagram in a category arising from a partially ordered set
commutes. We now set the remaining triangle identity. Let γ ∈ S(X). We shall
prove that the following diagram commutes.

F (γ) FGF (γ)

F (γ)

F (ηγ )

1F (γ)
εF (γ)

Since GF is the identity functor, and η is the identity natural transformation, the
commutativity of the diagram amounts to the fact that εF (γ) is the identity on
F (γ), which is not hard to see. □

We recall that a morphism in a coslice category X ↓ C is an isomorphism in
X ↓ C if and only if it is an isomorphism in C. Then, we have the following.

Lemma 3.11. Given an object f : X → Y of X ↓ MetCHsep, the component of the
counit ε at f is an isomorphism if and only if f is surjective.

Proof. For every f : X → Y , the function εf : X/∼γ → Y is an embedding because,
for all x, y ∈ X, we have

d([x], [y]) = κf (x, y) = dY (f(x), f(y)) = dY (εf ([x]), εf ([y])).
Therefore, εf is an isomorphism if and only if it is surjective. □
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We state the following for future reference.
Lemma 3.12. Let f : X → Y and g : X → Z be morphisms of separated metric
compact Hausdorff spaces, and suppose that f is surjective. Then, the condition
κg ≤ κf holds if and only if there is a continuous non-expansive map h : Y → Z
such that the following diagram commutes.

X Y

Z

f

g
h

Proof. By Lemmas 3.10 and 3.11. □

We recall that the preordered class Q(X) of surjective morphisms with domain
X is a full subcategory of X ↓ MetCHsep.
Lemma 3.13. The restrictions of the functors F and G to S(X) and Q(X) are
dual quasi-inverses.
Proof. By Lemma 3.10, the functor F : S(X) → (X ↓ MetCHsep) is left adjoint to
G : (X ↓ MetCHsep) → S(X). For every γ ∈ S(X), the component of the unit η
at γ is the identity morphism; in particular, it is an isomorphism. As observed
in Lemma 3.11, the component of the counit ε at an element f : X → Y of X ↓
MetCHsep is an isomorphism if and only if f : X → Y is surjective (Lemma 3.11). □

We obtain now the main result of this section: for any separated metric com-
pact Hausdorff space X, quotient objects of X bijectively correspond to continuous
submetrics on X.
Theorem 3.14. For every separated metric compact Hausdorff space X, the as-
signments

Q̃(X) −→ S(X) S(X) −→ Q̃(X)(
f : X ↠ Y

)
7−→ κf γ 7−→

(
X ↠ X/∼γ

)
establish a dual isomorphism between the posets of quotient objects of X and of
continuous submetrics on X.
Proof. By Lemma 3.13. □

4. Coregularity for separated metric compact Hausdorff spaces

The purpose of this section is to prove that the category MetCHsep is coregular,
i.e., that MetCHop

sep is regular. Recall from Section 2 that one of the conditions of
coregularity is that regular monomorphisms are preserved under pushouts. For this
reason, we start by investigating pushouts of embeddings, which will be proved to
characterise regular monomorphisms. We start with a technical lemma, which will
be useful in our description of pushouts of embeddings (Proposition 4.2 and Corol-
lary 4.3).
Lemma 4.1. Let i : A ↪→ X be an embedding and f : A → B a morphism in
MetCHsep. Let ιB : B ↪→ B + X and ιX : X ↪→ B + X denote the coproduct maps.
The following describes a continuous submetric γ on B + X:

(1) For b, b′ ∈ B,
γ(ιB(b), ιB(b′)) = dB(b, b′).
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(2) For x, x′ ∈ X,

γ(ιX(x), ιX(x′))

= min
{

dX(x, x′), inf
a,a′∈A

(
dX(x, i(a)) + dB(f(a), f(a′)) + dX(i(a′), x′)

)}
.

(3) For b ∈ B and x ∈ X,

γ(ιB(b), ιX(x)) = inf
a∈A

(
dB(b, f(a)) + dX(i(a), x)

)
,

γ(ιX(x), ιX(x)) = inf
a∈A

(
dX(x, i(a)) + dB(f(a), b)

)
.

Moreover, for all a ∈ A, we have

γ(ιBf(a), ιX i(a)) = γ(ιX i(a), ιBf(a)) = 0.

Before starting the proof, we mention that the interest for the metric γ in
Lemma 4.1 comes from the fact that it describes the pushout of the diagram
B

f←− A
i

↪−→ X (see Corollary 4.3 below).

Proof of Lemma 4.1. For x ∈ X, b ∈ B and a ∈ A, we write x for ιX(x), b for
ιB(b), and a for i(a) and ιX(i(a)).

From (3) in Lemma 4.1, it is clear that, for all a ∈ A,

γ(f(a), a) = γ(a, f(a)) = 0.

Case analysis shows immediately that γ is below dB+X . To prove continuity of
γ : (B + X)× (B + X)→ [0,∞] with respect to the upper topology of [0,∞], it is
enough to prove that it is continuous over each of its four pieces B × B, B × X,
X×B and X×X. It is clear that γ is continuous over B×B. We show continuity
of B ×X; the other cases are similar. The function

B ×X −→ [0,∞]
(b, x) 7−→ inf

a∈A

(
dB(b, f(a)) + dX(a, x)

)
can be written as the composite of the following two functions

B ×X −→ [0,∞]A inf : [0,∞]A −→ [0,∞]
(b, x) 7−→

(
a 7→ dB(b, f(a)) + dX(a, x)

)
f 7−→ inf

a∈A
f(a),

where [0,∞]A is the exponential in the category of topological spaces, which is
the set of continuous functions from A to [0,∞] equipped with the compact-open
topology, and which exists because A is a compact Hausdorff space (see [EH01],
for instance). The first function is continuous because it is the transpose of the
function

A×B ×X −→ [0,∞]
(a, b, x) 7−→ dB(b, f(a)) + dX(a, x),

which is continuous because dB , dX , f , and +: [0,∞]2 → [0,∞] are continuous.
The function inf : [0,∞]A → [0,∞] is continuous because, for every u ∈ [0,∞], we
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have

inf−1(]u,∞]) = {φ ∈ [0,∞]A | inf φ > u} by definition of inf
= {φ ∈ [0,∞]A | ∃v > u s.t. inf φ ≥ v} since φ[A] is compact

=
⋃

v>u

{φ ∈ [0,∞]A | φ[A] ⊆ ]v,∞]},

and this set is open in [0,∞]A. Hence, their composite B×X → [0,∞] is continuous,
as desired.

Let us now prove that γ is a metric.
It is immediate that for all z ∈ B + X we have γ(z, z) = 0.
We now prove by cases that γ satisfies the triangle inequality.
Clearly, for all b, b′, b′′ ∈ B, we have

γ(b, b′′) = dB(b, b′′) ≤ dB(b, b′) + dB(b′, b′′) = γ(b, b′) + γ(b′, b′′),

proving a case of the triangle inequality.
Let x, x′, x′′ ∈ X, and let us prove γ(x, x′′) ≤ γ(x, x′) + γ(x′, x′′). We have

γ(x, x′′) = min
{

dX(x, x′), inf
a,a′∈A

(
dX(x, a) + dB(f(a), f(a′)) + dX(a′, x′′)

)}
≤ dX(x, x′′)
≤ dX(x, x′) + dX(x′, x′′).

Moreover, for all a0, a′
0 ∈ A, we have

γ(x, x′′) = min
{

dX(x, x′), inf
a,a′∈A

(
dX(x, a) + dB(f(a), f(a′)) + dX(a′, x′′)

)}
≤ dX(x, a0) + dB(f(a0), f(a′

0)) + dX(a′
0, x′′)

≤ dX(x, a0) + dB(f(a0), f(a′
0)) + dX(a′

0, x′) + dX(x′, x′′).

Moreover, for all a1, a′
1 ∈ A, we have

γ(x, x′′) = min
{

dX(x, x′), inf
a,a′∈A

(
dX(x, a) + dB(f(a), f(a′)) + dX(a′, x′′)

)}
≤ dX(x, a1) + dB(f(a1), f(a′

1)) + dX(a′
1, x′′)

≤ dX(x, x′) + dX(x′, a1) + dB(f(a1), f(a′
1)) + dX(a′

1, x′′).

Moreover, for all a0, a′
0, a1, a′

1 ∈ A we have

γ(x, x′′)

= min
{

dX(x, x′), inf
a,a′∈A

(
dX(x, a) + dB(f(a), f(a′)) + dX(a′, x′′)

)}
≤ dX(x, a0) + dB(f(a0), f(a′

1)) + dX(a′
1, x′′)

≤ dX(x, a0) + dB(f(a0), f(a′
0)) + dB(f(a′

0), f(a1)) + dB(f(a1), f(a′
1)) + dX(a′

1, x′′)
≤ dX(x, a0) + dB(f(a0), f(a′

0)) + dX(a′
0, a1) + dB(f(a1), f(a′

1)) + dX(a′
1, x′′)

≤ dX(x, a0) + dB(f(a0), f(a′
0)) + dX(a′

0, x′) + dX(x′, a1) + dB(f(a1), f(a′
1)) + dX(a′

1, x′′).
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Therefore, putting the four previous displays together, we obtain

γ(x, x′′)

≤ min
{

dX(x, x′) + dX(x′, x′′),

inf
a0,a′

0∈A

(
dX(x, a0) + dB(f(a0), f(a′

0)) + dX(a′
0, x′) + dX(x′, x′′)

)
,

inf
a1,a′

1∈A

(
dX(x, x′) + dX(x′, a1) + dB(f(a1), f(a′

1)) + dX(a′
1, x′′)

)
,

inf
a0,a′

0,a1,a′
1∈A

(
dX(x, a0) + dB(f(a0), f(a′

0)) + dX(a′
0, x′) + dX(x′, a1)+

dB(f(a1), f(a′
1)) + dX(a′

1, x′′)
)}

= min
{

dX(x, x′), inf
a0,a′

0∈A

(
dX(x, a0) + dB(f(a0), f(a′

0)) + dX(a′
0, x′)

)}
+ min

{
dX(x′, x′′), inf

a1,a′
1∈A

(
dX(x′, a1) + dB(f(a1), f(a′

1)) + dX(a′
1, x′′)

)}
= γ(x, x′) + γ(x′, x′′).

This proves another case of the triangle inequality.
Let x ∈ X and b, b′ ∈ B, and let us prove γ(x, b′) ≤ γ(x, b) + γ(b, b′). We have

γ(x, b′) = inf
a∈A

(
dX(x, a) + dB(f(a), b′)

)
≤ inf

a∈A

(
dX(x, a) + dB(f(a), b) + dB(b, b′)

)
=

(
inf
a∈A

(
dX(x, a) + dB(f(a), b)

))
+ dB(b, b′)

= γ(x, b) + γ(b, b′).

This proves another case of the triangle inequality. Similarly, one proves γ(b′, x) ≤
γ(b′, b) + γ(b, x).

Now, let x, x′ ∈ X and b ∈ B, and let us prove γ(x, b) ≤ γ(x, x′) + γ(x′, b). For
all a1 ∈ A we have

γ(x, b) = inf
a∈A

(
dX(x, a) + dB(f(a), b)

)
≤ dX(x, a1) + dB(f(a1), b)
≤ dX(x, x′) + dX(x′, a1) + dB(f(a), b).

Moreover, for all a0, a′
0, a1 ∈ A, we have

γ(x, b) = inf
a∈A

(
dX(x, a) + dB(f(a), b)

)
≤ dX(x, a0) + dB(f(a0), b)
≤ dX(x, a0) + dB(f(a0), f(a′

0)) + dB(f(a′
0), f(a1)) + dB(f(a1), b)

≤ dX(x, a0) + dB(f(a0), f(a′
0)) + dA(a′

0, a1) + dB(f(a1), b)
= dX(x, a0) + dB(f(a0), f(a′

0)) + dX(a′
0, a1) + dB(f(a1), b)

≤ dX(x, a0) + dB(f(a0), f(a′
0)) + dX(a′

0, x′) + dX(x′, a1) + dB(f(a1), b).
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By combining the two displayed inequalities above, we get
γ(x, b)

≤ min
{

inf
a1∈A

(
dX(x, x′) + dX(x′, a1) + dB(f(a1), b)

)
,

inf
a0,a′

0,a1∈A

(
dX(x, a0) + dB(f(a0), f(a′

0)) + dX(a′
0, x′) + dX(x′, a1) + dB(f(a1), b)

)}
= min

{
dX(x, x′), inf

a0,a′
0∈A

(
dX(x, a0) + dB(f(a0), f(a′

0)) + dX(a′
0, x′)

)}
+ inf

a1∈A

(
dX(x′, a1) + dB(f(a1), b)

)
= γ(x, x′) + γ(x′, b).

This proves another case of the triangle inequality. Similarly, one proves γ(b, x) ≤
γ(b, x′) + γ(x′, x).

Now, let x, x′ ∈ X and b ∈ B, and let us prove γ(x, x′) ≤ γ(x, b) + γ(b, x′). For
all a0, a′

0 ∈ A we have

γ(x, x′) = min
{

dX(x, x′), inf
a,a′∈A

(
dX(x, a) + dB(f(a), f(a′)) + dX(a′, x′)

)}
≤ dX(x, a0) + dB(f(a0), f(a′

0)) + dX(a′
0, x′)

≤ dX(x, a0) + dB(f(a0), b) + dB(b, f(a′
0)) + dX(a′

0, x′).
Therefore,

γ(x, x′) ≤ inf
a0,a′

0∈A

(
dX(x, a0) + dB(f(a0), b) + dB(b, f(a′

0)) + dX(a′
0, x′)

)
= inf

a0∈A

(
dX(x, a0) + dB(f(a0), b)

)
+ inf

a′
0∈A

(
dB(b, f(a′

0)) + dX(a′
0, x′)

)
= γ(x, b) + γ(b, x′).

This proves another case of the triangle inequality.
Finally, let x ∈ X and b, b′ ∈ B, and let us prove γ(b, b′) ≤ γ(b, x) + γ(x, b′). For

all a0, a′
0 ∈ A we have

γ(b, b′) = dB(b, b′)
≤ dB(b, f(a0)) + dB(f(a0), f(a′

0)) + dB(f(a′
0), b′)

≤ dB(b, f(a0)) + dA(a0, a′
0) + dB(f(a′

0), b′)
= dB(b, f(a0)) + dX(a0, a′

0) + dB(f(a′
0), b′)

≤ dB(b, f(a0)) + dX(a0, x) + dX(x, a′
0) + dB(f(a′

0), b′).
Therefore,

γ(b, b′) ≤ inf
a0,a′

0∈A

(
dB(b, f(a0)) + dX(a0, x) + dX(x, a′

0) + dB(f(a′
0), b′)

)
= inf

a0∈A
(dB(b, f(a0)) + dX(a0, x)) + inf

a′
0∈A

(
dX(x, a′

0) + dB(f(a0), b′)
)

= γ(b, x) + γ(x, b′).
This proves the last case of the triangle inequality. □

The following result, together with the corollary that follows it, describes pushouts
along embeddings in MetCHsep.
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Proposition 4.2 (Description of a pushout along an embedding). Consider an
embedding i : A ↪→ X and a morphism f : X → B in MetCHsep, and their pushout
as displayed below.

A X

B P

i

f g

j

⌟

(1) For b, b′ ∈ B,
dP (j(b), j(b′)) = dB(b, b′).

(2) For x, x′ ∈ X,

dP (g(x), g(x′))

= min
{

dX(x, x′), inf
a,a′∈A

(
dX(x, i(a)) + dB(f(a), f(a′)) + dX(i(a′), x′)

)}
.

(3) For b ∈ B and x ∈ X,

dP (j(b), g(x)) = inf
a∈A

(
dB(b, f(a)) + dX(i(a), x)

)
,

dP (g(x), j(b)) = inf
a∈A

(
dX(x, i(a)) + dB(f(a), b)

)
.

Proof. For a ∈ A we write a for i(a). We start by proving the inequality ≤ for all
the equations in the statement.

(1, ≤). Since j is non-expansive, for all b, b′ ∈ B we have

dP (j(b), j(b′)) ≤ dB(b, b′).

(2, ≤). Let x, x′ ∈ X. Since g is non-expansive, we have

dP (g(x), g(x′)) ≤ dX(x, x′).

Moreover, for all a, a′ ∈ A, we have

dP (g(x), g(x′))
≤ dP (g(x), jf(a)) + dP (jf(a), jf(a′)) + dP (jf(a′), g(x′)) (by the triangle ineq.)
= dP (g(x), g(a)) + dP (jf(a), jf(a′)) + dP (g(a′), g(x′)) (since j ◦ f = g ◦ i)
≤ dX(x, a) + dB(f(a), f(b)) + dX(a′, x′),

where the last inequality follows from the fact that g and j are non-expansive. We
conclude

dP (g(x), g(x′))

≤ min
{

dX(x, x′), inf
a,a′∈A

(
dX(x, a) + dB(f(a), f(a′)) + dX(a′, x′)

)}
.

(3, ≤). Let b ∈ B and x ∈ X. For all a ∈ A we have

dP (j(b), g(x))
≤ dP (j(b), jf(a)) + dP (g(a), g(x)) (by triangle ineq. and since j ◦ f = g ◦ i)
≤ dB(b, f(a)) + dX(a, x),
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and, similarly,

dP (g(x), j(b))
≤ dP (g(x), g(a)) + dP (jf(a), j(b)) (by triangle ineq. and since g ◦ i = j ◦ f)
≤ dX(x, (a)) + dB(f(a), b),

Therefore,

dP (j(b), g(x)) = inf
a∈A

(
dB(b, f(a)) + dX(a, x)

)
,

dP (g(x), j(b)) = inf
a∈A

(
dX(x, a) + dB(f(a), b)

)
.

This proves the inequality ≤ for all the equations in the statement.
We next prove the converse inequalities (≥). Let ιB : B ↪→ B + X and ιX : X ↪→

B + X denote the coproduct injections. Let q : B + X ↠ P ′ be the quotient object
of B + X associated (under the correspondence in Theorem 3.14) to the continuous
submetric γ on B + X described in Lemma 4.1. Set j′ := q ◦ ιB and g′ := q ◦ ιX .

B B + X X

P ′

ιB

j′
q

ιX

g′

By the last part of Lemma 4.1, for all a ∈ A we have

γ(ιBf(a), ιX(a)) = γ(ιX(a), ιBf(a)) = 0,

and thus
dP ′(j′f(a), g′(a)) = dP ′(qιBf(a), qιX(a)) = 0

and
dP ′(g′(a), j′f(a)) = dP ′(qιX(a), qιBf(a)) = 0.

Since P is separated, from these two inequalities it follows that

j′f(a) = g′(a).

Therefore, the following diagram commutes.

A X

B P ′

i

f g′

j′

Therefore, by the universal property of the pushout P , there is a unique morphism
k : P → P ′ making the following diagram commute.

A X

B P

P ′

i

f
g′

g

j′

j

k
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Since k is non-expansive, we have, for example, for all b, b′,

dP (j(b), j(b′)) ≥ dP ′(kj(b), kj(b′)) (since k is non-expansive)
= dP ′(j′(b), j′(b′)) (since kj = j′)
= dP ′(qιB(b), qιB(b′)) (since j′ = qιB)
= γ(ιB(b), ιB(b′)) (by the definition of q in terms of γ)
= dB(b, b′) (by the definition of γ).

This proves one of the four inequalities to be proven. The other three are similar.
□

We rewrite Proposition 4.2 in terms of a kernel metric, which should make clearer
why these results describe pushouts of embeddings along arbitrary morphisms.

Corollary 4.3. Consider an embedding i : A ↪→ X and a morphism f : X → B in
MetCHsep, and their pushout as displayed below.

A X

B P

i

f g

j

⌟

Let q : B +X → P be the unique morphism making the following diagram commute.

B B + X X

P

ιB

j
q

ιX

g

Then q is surjective, and the kernel metric κq on B + X associated with q is as
follows.

(1) For b, b′ ∈ B,
κq(ιB(b), ιB(b′)) = dB(b, b′).

(2) For x, x′ ∈ X,

κq(ιX(x), ιX(x′))

= min
{

dX(x, x′), inf
a,a′∈A

(
dX(x, a) + dB(f(a), f(a′)) + dX(a′, x′)

)}
.

(3) For b ∈ B and x ∈ X,

κq(ιB(b), ιX(x)) = inf
a∈A

(
dB(b, f(a)) + dX(a, x)

)
.

κq(ιX(x), ιX(x)) = inf
a∈A

(
dX(x, a) + dB(f(a), b)

)
.

Proof. By the (surjective, embedding)-factorisation in MetCHsep (see Section 2),
every coequaliser is surjective, and hence q is surjective. Everything else follows
from Proposition 4.2. □

Corollary 4.4 (of Proposition 4.2). In MetCHsep, the pushout of an embedding
along any morphism is an embedding.

We specialise Proposition 4.2 to the case of a pushout of two embeddings.
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Corollary 4.5 (of Proposition 4.2). Consider embeddings f0 : X ↪→ Y0 and f1 : X ↪→
Y1 in MetCHsep and their pushout as displayed below.

X Y1

Y0 P

f1

f0 λ1

λ0

⌟

The maps λ0 and λ1 are embeddings. Moreover, for all i, j ∈ {0, 1}, u ∈ Yi and
v ∈ Yj,

dP (λi(u), λj(v)) =
{

dYi(u, v) if i = j,

infx∈X

(
dYi(u, fi(x)) + dYj (fj(x), v)

)
if i ̸= j.

It is known that, in a regular category, any pullback square consisting entirely
of regular epimorphisms is also a pushout square. This follows from (the dual
of) the main result of [Rin72] (cf. also [FS90, §1.565] or [CKP93, Remark 5.3]).
Since we are aiming to prove that the category MetCHsep is coregular (and that the
embeddings are precisely the regular monomorphisms), the following result should
not come as a surprise.

Lemma 4.6. A pushout square in MetCHsep consisting entirely of embeddings is
also a pullback.

Proof. Let us give names to the morphisms in the pushout square.

X Y1

Y0 P

f1

f0 λ1

λ0

⌟

Assume that we have y0 ∈ Y0 and y1 ∈ Y1 with λ0(y0) = λ1(y1), and let us prove
that there is (a necessarily unique) x ∈ X such that y0 = f0(x) and y1 = f1(x). By
Corollary 4.5, we have

0 = dP (λ0(y0), λ1(y1)) = inf
x∈X

(
dY0(y0, f0(x)) + dY1(f1(x), y1)

)
.

The set
C := {dY0(y0, f0(x)) + dY1(f1(x), y1) | x ∈ X}

is compact in [0,∞] with respect to the upper topology because it is the image of
the compact space X under the continuous function

X −→ [0,∞]
x 7−→ dY0(y0, f0(x)) + dY1(f1(x), y1).

Since C is compact and inf C = 0, we have 0 ∈ C, and therefore there is x ∈ X such
that dY0(y0, f0(x))+dY1(f1(x), y1) = 0, and hence dY0(y0, f0(x)) = dY1(f1(x), y1) =
0. Similarly, there is x′ ∈ X such that dY1(y1, f1(x′)) = dY0(f0(x′), y0) = 0. There-
fore,

dY0(f0(x′), f0(x)) ≤ dY0(f0(x′), y0) + dY0(y0, f0(x)) = 0,

and hence dX(x′, x) = 0 since f0 is an embedding. Similarly, one shows dX(x, x′) =
0. Therefore, since X is separated, x = x′. Consequently, we have also dY1(y1, f1(x)) =
0 and dY0(f0(x), y0) = 0, and by separation we get y0 = f0(x) and y1 = f1(x).
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This proves that the pushout is a pullback in Set. Since all involved maps are
embeddings, it is also a pullback in MetCHsep. □

Proposition 4.7. In MetCHsep, regular monomorphisms = embeddings.
Proof. A regular mono in MetCHsep is in particular a regular mono of compact
Hausdorff spaces and of metric spaces (since the forgetful functors are right adjoint
and hence preserve limits), which implies that it is an embedding.

Conversely, let i : X ↪→ Y be an embedding. By Corollary 4.4, the pushout of i
along itself consists entirely of embeddings.

X Y1

Y0 P

i

i λ1

λ0

⌟

Hence, by Lemma 4.6 it is also a pullback. Therefore, i is the equaliser of λ0 and
λ1. □

Proposition 4.8. In MetCHsep, epimorphisms = surjective morphisms.
Proof. Clearly, every surjection is an epimorphism. For the converse direction,
let f be an epimorphism, and consider its (surjection, embedding)-factorisation
(Theorem 2.11):

X Y

Z
i

By Proposition 4.7, i is a regular mono. Since f is an epimorphism, i is also an
epimorphism, and therefore an isomorphism. Consequently, f is surjective. □

The following is an immediate consequence of Corollary 4.4 and Proposition 4.7.

Corollary 4.9. In MetCHsep, the pushout of a regular monomorphism along any
morphism is a regular monomorphism.

We are finally able to prove the main result of the section.
Theorem 4.10. MetCHop

sep is a regular category.
Proof. By Theorems 2.10 and 2.11, MetCHsep is complete and cocomplete and has
(surjections, embeddings)-factorisation. By Propositions 4.7 and 4.8, surjections =
epimorphisms, and embeddings = regular monos. Therefore, MetCHsep has (epi-
morphisms, regular monomorphisms)-factorisation. Finally, by Corollary 4.9, in
MetCHsep the pushout of a regular monomorphism along any morphism is a regular
monomorphism. □

5. Barr-coexactness for separated metric compact Hausdorff spaces

In this section we show that the dual of the category MetCHsep is Barr-exact.
Notation 5.1. Given morphisms f0 : X → Y0 and f1 : X → Y1, the unique mor-
phism induced by the universal property of the product is denoted by ⟨f0, f1⟩ : X →
Y0 × Y1. Similarly, given morphisms f0 : X0 → Y and f1 : X1 → Y , the coproduct
map is denoted by

(
g0
g1

)
: X0 + X1 → Y .



BARR-COEXACTNESS FOR METRIC COMPACT HAUSDORFF SPACES 23

Let C be a category with finite limits, and A an object of C. An (internal) binary
relation on A is a subobject ⟨p0, p1⟩ : R ↣ A×A, (or, equivalently, a pair of jointly
monic maps p0, p1 : R ⇒ A). A binary relation ⟨p0, p1⟩ : R ↣ A×A on A is called

reflexive: provided that there is a morphism d : A→ R such that the following
diagram commutes;

A R

A×A
⟨1A,1A⟩

d

⟨p0,p1⟩

symmetric: provided that there is a morphism s : R→ R such that the follow-
ing diagram commutes;

R R

A×A

s

⟨p1,p0⟩ ⟨p0,p1⟩

transitive: provided that, if the left-hand diagram below is a pullback square,
then there is a morphism t : P → R such that the right-hand diagram commutes.

P R

R A

π1

π0
⌜

p0

p1

P R

A×A
⟨p0◦π0,p1◦π1⟩

t

⟨p0,p1⟩

An (internal) equivalence relation on A is a reflexive symmetric transitive binary
relation on A.

Definition 5.2. An equivalence relation R ⇒ A is effective if it is a kernel pair.

Remark 5.3. In a regular category with coequalisers, an equivalence relation is
effective if and only if it is the kernel pair of its coequaliser.

We recall that a Barr-exact category is a regular category where every equivalence
relation is effective. In this section we provide a description of equivalence relations
in the category MetCHop

sep, and we exploit it to prove that equivalence relations in
MetCHop

sep are effective.
Recall that a binary relation on an object A of a category C is a subobject of

A×A. Dualising this definition, given a separated metric compact Hausdorff space
X, we call a binary corelation on X a quotient object

(
q0
q1

)
: X + X ↠ S of the

separated metric compact Hausdorff space X + X. We recall from Theorem 2.10
that X + X is the disjoint union of two copies of X equipped with the coproduct
topology and the coproduct metric. A binary corelation on X is called respectively
reflexive, symmetric, transitive provided it satisfies the properties:

X + X

S X

(q0
q1) (1X

1X
)

d

reflexivity

X + X

S S

(q0
q1) (q1

q0)

s

symmetry
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X S

S P

q1

q0 λ1

λ0

⌟
=⇒

X + X

S P

(q0
q1) (λ0◦q0

λ1◦q1)

t

transitivity

An equivalence corelation on X is a reflexive symmetric transitive binary core-
lation on X. The key observation is that, since quotient objects of X + X are in
bijection with certain metrics on X + X, equivalence corelations are more manage-
able than their duals.

Definition 5.4. We call binary continuous submetric on a separated metric com-
pact Hausdorff space X an element of S(X +X), i.e. a continuous metric on X +X
which is below the coproduct metric on X + X.

Theorem 3.14 establishes a bijective correspondence between binary continuous
submetrics on X (i.e., elements of S(X + X)) and binary corelations on X (i.e.,
elements of Q̃(X + X)).

Definition 5.5. A binary continuous submetric on a separated metric compact
Hausdorff space X is called a reflexive (resp. symmetric, transitive, equivalence)
continuous submetric if the corresponding binary corelation on X is reflexive (resp.
symmetric, transitive, equivalence).

Notation 5.6. We denote the elements of X + X by (x, i), where x varies in X
and i varies in {0, 1}. Furthermore, i∗ stands for 1− i; for example, (x, 1∗) = (x, 0).

As we will prove, every equivalence continuous submetric γ on a separated metric
compact Hausdorff space X is obtained as follows: consider a closed subset Y of X
and let γ be the greatest metric on X + X that extends the coproduct metric of
X + X and that satisfies d((y, 0), (y, 1)) = γ((y, 1), (y, 0)) = 0 for every y ∈ Y .

Lemma 5.7. A binary continuous submetric γ on a separated metric compact
Hausdorff space X is reflexive if and only if, for all x, y ∈ X and i, j ∈ {0, 1},

dX(x, y) ≤ γ((x, i), (y, j)).

Proof. Let
(

q0
q1

)
: X + X ↠ S be the binary corelation associated with γ. By the

definition of a reflexive continuous submetric, γ is reflexive if and only if
(

q0
q1

)
: X +

X ↠ S is below
(1X

1X

)
: X + X ↠ X in the poset Q̃(X + X). By Theorem 3.14, this

is equivalent to κ(1X
1X

) ≤ γ. Given (x, i), (y, j) ∈ X + X, we have

κ(1X
1X

)((x, i), (y, j)) = d(x, y).

It follows that the binary continuous submetric γ is reflexive if and only if, for all
x, y ∈ X and i, j ∈ {0, 1}, dX(x, y) ≤ γ((x, i), (y, j)). □

Remark 5.8. Note that any reflexive continuous submetric γ on X satisfies, for
all x, y ∈ X and i ∈ {0, 1},

γ((x, i), (y, i)) = d(x, y).
Indeed, the inequality ≥ follows from Lemma 5.7, while the inequality ≤ holds
because γ is below the coproduct metric of X + X.
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Lemma 5.9. A binary continuous submetric γ on a separated metric compact
Hausdorff space X is symmetric if and only if, for all x, y ∈ X and i, j ∈ {0, 1},
we have

γ((x, i), (y, j)) = γ((x, i∗), (y, j∗)).

Proof. Let
(

q0
q1

)
: X + X ↠ S be the binary corelation associated with γ. By

the definition of a symmetric continuous submetric, γ is symmetric if and only
if

(
q0
q1

)
: X + X ↠ S is below

(
q1
q0

)
: X + X ↠ S in Q̃(X + X). By Theorem 3.14,

this happens exactly when κ(q1
q0) ≤ γ. For all (x, i), (y, j) ∈ X + X, we have

κ(q1
q0)((x, i), (y, j)) = γ((x, i∗), (y, j∗)).

Therefore, the binary continuous submetric γ is symmetric if and only if, for all
x, y ∈ X and i, j ∈ {0, 1}, γ((x, i), (y, j)) ≤ γ((x, i∗), (y, j∗)). Now use the fact that
the statement with ≤ is equivalent to the statement with = (since i∗∗ = i). □

Remark 5.10. MetCHop
sep is not a Mal’cev category (i.e., a finitely complete cat-

egory where every reflexive relation is an equivalence relation), because not every
reflexive relation is an equivalence relation. Indeed, the following provides an ex-
ample of a reflexive non-symmetric continuous submetric on a one-point space {∗}
(with d(∗, ∗) = 0):

γ((∗, 0), (∗, 0)) = γ((∗, 0), (∗, 1)) = γ((∗, 1), (∗, 1)) = 0

and
γ((∗, 1), (∗, 0)) =∞.

This corresponds to the surjection {(∗, 0), (∗, 1)} → {a1, a2}, (∗, i) 7→ ai, where
d(ai, aj) is ∞ if i = 1 and j = 0, and 0 otherwise.

Lemma 5.11. A reflexive continuous submetric γ on a separated metric compact
Hausdorff space X is transitive if and only if, for all x, y ∈ X and all i ∈ {0, 1},
we have

γ((x, i), (y, i∗)) = inf
z∈X

(
γ((x, i), (z, i∗)) + γ((z, i), (y, i∗))

)
.

Proof. Let
(

q0
q1

)
: X +X ↠ S be the binary corelation associated with γ. To improve

readability, we write [x, i] instead of
(

q0
q1

)
(x, i). By definition of transitivity, the

binary continuous submetric γ is transitive if and only if, given a pushout square
in MetCHsep as in the left-hand diagram below, there is a morphism t : S → P such
that the right-hand diagram commutes.

X S

S P

q1

q0

λ1

λ0

⌟

X + X

S P

(q0
q1) (λ0◦q0

λ1◦q1)

t

By Lemma 3.12, such a t exists precisely when

κ(λ0◦q0
λ1◦q1) ≤ κ(q0

q1),

i.e., when, for every (x, i), (y, j) ∈ X + X,

dP

((
λ0 ◦ q0

λ1 ◦ q1

)
(x, i),

(
λ0 ◦ q0

λ1 ◦ q1

)
(y, j)

)
≤ γ((x, i), (y, j)).
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The former equals dP (λi([x, i]), λj([y, j])). Recall that γ is reflexive provided q0
and q1 are both sections of a morphism d : S → X. In particular, q0 and q1 are
regular monomorphisms in MetCHsep. Thus, by Corollary 4.5,

dP (λi([x, i]), λj([y, j])) =
{

γ(x, y) if i = j,

infz∈X

(
γ((x, i), (z, j)) + γ((z, i), (y, j))

)
if i ̸= j.

This finishes the proof. □

All told, we obtain a characterisation of equivalence continuous submetrics.

Theorem 5.12. A binary continuous submetric γ on a separated metric compact
Hausdorff space X is an equivalence continuous submetric if and only if for all
x, y ∈ X and all i, j ∈ {0, 1} we have

dX(x, y) ≤ γ((x, i), (y, j)) = γ((x, i∗), (y, j∗))
and

γ((x, i), (y, i∗)) = inf
z∈X

(
γ((x, i), (z, i∗)) + γ((z, i), (y, i∗))

)
.

Proof. By Lemmas 5.7, 5.9 and 5.11. □

Remark 5.13. The category CH of compact Hausdorff spaces, which can be iden-
tified with the full subcategory of PosCH defined by the symmetric objects, is co-
Mal’cev. One might then suspect that MetCHsep,sym is coMal’cev too. However,
this is not the case: MetCHop

sep,sym is not a Mal’cev category, as there are reflexive
internal relations in MetCHop

sep,sym that are neither symmetric nor transitive. An
example is the following: let {a, b} be a two-element discrete space, with metric
d(a, b) = d(b, a) = 0 (and self-distances equal to 0). Consider the following binary
continuous submetric γ on X (i.e. a continuous metric below dX+X): self-distances
are 0, and all other distances are ∞, except for the distances from (a, 0) to (b, 1)
and from (b, 1) to (a, 0) which are 1. Comparing this to the “ordered” case, it
seems that what breaks being Mal’cev is the possibility of having more than just
two possible values for the distances.

Dualising Definition 5.2, we say that an equivalence corelation
(

q0
q1

)
: X + X ↠

S on a separated metric compact Hausdorff space X (and so the corresponding
equivalence continuous submetric) is effective provided it coincides with the cokernel
pair of its equaliser. That is, provided that the following is a pushout square in
MetCHsep,

A X

X S

i

i q1

q0

where i : A ↪→ X is the equaliser of q0, q1 : X ⇒ S in MetCHsep.

Notation 5.14. Given a separated metric compact Hausdorff space X and a closed
subspace Y of X, we define the function γA : (X +X)×(X×X)→ [0,∞] as follows:
for all x, y ∈ X and i ∈ {0, 1} we set

γA((x, i), (y, i)) := d(x, y),
and

γA((x, i), (y, i∗)) := inf
a∈A

(
d(x, a) + d(a, y)

)
.
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Lemma 5.15. Let X be a separated metric compact Hausdorff space, let A be a
closed subspace of X, equipped with the induced topology and metric. The binary
continuous submetric on X associated with the pushout in MetCHsep of the inclusion
A ↪→ X along itself is γA.

Proof. This is an immediate consequence of Corollary 4.5. □

Lemma 5.16. Let γ be an equivalence continuous submetric on a separated metric
compact Hausdorff space X, and set

A := {a ∈ X | γ((a, 0), (a, 1)) = 0} = {a ∈ X | γ((a, 1), (a, 0)) = 0}.

Then γ is effective if and only if for all x, y ∈ X and i ∈ {0, 1}, we have

γ((x, i), (y, i∗)) = inf
a∈A

(
dX(x, a) + dX(a, y)

)
.

Proof. Let us endow A with the induced topology and induced metric. Denoting
by

(
q0
q1

)
: X + X ↠ S the binary corelation on X associated with γ, we have

A = {a ∈ X | d(q0(a), q1(a)) = 0 = d(q1(a), q0(a))} = {a ∈ X | q0(a) = q1(a)}.

Therefore, the embedding A ↪→ X is the equaliser of q0, q1 : X ⇒ S in MetCHsep.
Therefore, the binary continuous submetric γ is effective if and only if the following
diagram is a pushout in MetCHsep.

A X

X S

q1

q0

In turn, by Lemma 5.15, this is equivalent to saying that γ = γA. By definition of
γA, for all x, y ∈ X and i ∈ {0, 1} we have

γA((x, i), (y, i)) = d(x, y),

and
γA((x, i), (y, i∗)) = inf

a∈A

(
d(x, a) + d(a, y)

)
.

By Remark 5.8, γ((x, i), (y, i)) = d(x, y). Therefore, γ is effective if and only if for
all x, y ∈ X and i ∈ {0, 1}, we have

γ((x, i), (y, i∗)) = inf
a∈A

(
d(x, a) + d(a, y)

)
,

as desired. □

Lemma 5.17. Let X be a compact Hausdorff space. Let ρ : X ×X → [0,∞] be a
continuous function with respect to the upper topology of [0,∞], and suppose that
for all x, y ∈ X we have

ρ(x, y) = inf
z∈X

(
ρ(x, z) + ρ(z, y)

)
.

Then, setting A := {x ∈ X | ρ(x, x) = 0}, we have

ρ(x, y) = inf
a∈A

(
ρ(x, a) + ρ(a, y)

)
.
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Proof. By the triangle inequality, it is enough to prove the inequality ≥.
Fix x, y ∈ X, and let us prove ρ(x, y) ≥ infa∈A

(
ρ(x, a) + ρ(a, y)

)
.

If ρ(x, y) =∞, the inequality is trivial. Let us then assume that ρ(x, y) <∞. It
is enough to show that the set

{a ∈ A | ρ(x, y) = ρ(x, a) + ρ(a, y)}

is nonempty; for this, it is enough to prove that this set is a codirected intersection
of closed nonempty sets.

Let V be the set of closed subsets of X, and, for each λ ∈ (0,∞], set

Wλ := {K ∈ V | ∃u, v ∈ K. ρ(u, v) ≤ λ, ρ(x, u) + ρ(u, v) + ρ(v, y) = ρ(x, y)}.

Let F be the set of finite closed covers of X, i.e. the set of finite subsets A of V
such that

⋃
A = X. For every A ∈ F and λ ∈ (0,∞], we set

DA
λ :=

⋃
K∈A∩Wλ

K.

We will prove that the set {DA
λ | A ∈ F , λ ∈ (0,∞]} is a codirected set of closed

nonempty sets with intersection

{a ∈ A | ρ(x, y) = ρ(x, a) + ρ(a, y)};

an application of compactness will then give the desired result.
For all A ∈ F and λ ∈ (0,∞], the set DA

λ is closed because it is a finite union of
closed sets.

The set {DA
λ | A ∈ F , λ ∈ (0,∞]} is codirected because D

{X}
∞ belongs to it and,

for all A,A′ ∈ F and λ, λ′ ∈ (0,∞],

D
{K∩K′|K∈A, K′∈A′}
min{λ, λ′} ⊆ DA

λ ∩DA′

λ′ .

We show that, for all A ∈ F and λ ∈ (0,∞], the set DA
λ is nonempty. We denote

with ♯S the cardinality of a set S. Pick any natural number l such that l
♯A > 1 and

ρ(x,y)
l

♯A −1 ≤ λ. Note that, having fixed x, y ∈ X, we can use nonemptiness of X, and so
for all u, v ∈ X there is z ∈ X such that ρ(u, v) = ρ(u, z) + ρ(z, v), i.e. the infimum
in the hypothesis of the lemma is a minimum. Thus, there are z1, . . . , zl ∈ X such
that

ρ(x, y) = ρ(x, z1) + ρ(z1, z2) + · · ·+ ρ(zl−1, zl) + ρ(zl, y).
Since every zi belongs to some K ∈ A, we have

∑
K∈A ♯(K ∩ {z1, . . . , zl}) ≥ l.

Therefore, the average of ♯(K ∩ {z1, . . . , zl}) for K ranging in A is greater than or
equal to l

♯A . (The average makes sense because, by nonemptiness of X, ♯A ≠ 0.)
Therefore, there is K ∈ A with ♯(K ∩ {z1, . . . , zl}) ≥ l

♯A . Let zi1 , . . . , zin
(with

i1 < · · · < in) be an enumeration of the elements of K ∩ {z1, . . . , zl}. Note that
n ≥ l

♯A > 1 and so n ≥ 2. We have

ρ(x, y) = ρ(x, z1) + ρ(z1, z2) + · · ·+ ρ(zl−1, zl) + ρ(zl, y)
≥ ρ(zi1 , zi2) + · · ·+ ρ(zin−1 , zin).

Therefore, the average of ρ(zij , zij ) for j ranging in {1, . . . , n − 1} is less than or
equal to ρ(x,y)

n−1 . (The average makes sense since n ≥ 2 and so n−1 ≥ 1.) Therefore,
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there is j ∈ {1, . . . , n− 1} such that

ρ(zij
, zij+1) ≤ ρ(x, y)

n− 1 ,

and so
ρ(zij , zij+1) ≤ ρ(x, y)

n− 1 ≤
ρ(x, y)

l
♯A − 1

≤ λ.

We have
ρ(x, y) ≤ ρ(x, zij ) + ρ(zij , zij+1) + ρ(zij+1 , y) by triangle inequality

≤ ρ(x, z1) + ρ(z1, z2) + · · ·+ ρ(zl−1, zl) + ρ(zl, y) by triangle inequality
= ρ(x, y),

and hence
ρ(x, y) = ρ(x, zij ) + ρ(zij , zij+1) + ρ(zij+1 , y).

Therefore, K ∈ Wλ. Thus, ∅ ̸= K ⊆ DA
λ , and hence DA

λ ̸= ∅.
We now prove

(1)
⋂

A∈F, λ∈(0,∞]

DA
λ = {a ∈ A | ρ(x, y) = ρ(x, a) + ρ(a, y)}.

The inclusion ⊇ is immediate.
Let us prove the converse inclusion, i.e. ⊆. Let z ∈

⋂
A∈F, λ∈(0,∞] DA

λ .
We first prove that ρ(x, y) = ρ(x, z) + ρ(z, y). By way of contradiction, suppose

this is not the case. Then, ρ(x, y) < ρ(x, z) + ρ(z, y) (since the inequality ≥ holds
by the triangle inequality). The function

f : X ×X −→ [0,∞]
(u, v) 7−→ ρ(x, u) + ρ(v, y)

is continuous with respect to the upper topology of [0,∞] because ρ is such. Since
f(z, z) = ρ(x, z) + ρ(z, y) > ρ(x, y), there is an open neighbourhood U of z such
that, for all u, v ∈ U , f(u, v) > ρ(x, y). Then, since X is a compact Hausdorff
space, there are closed subsets K and L of X such that z ∈ K ⊆ U , z /∈ L and
K ∪L = X. We have K /∈ W∞ because for all u, v ∈ K we have ρ(x, u) + ρ(u, v) +
ρ(v, y) = f(u, v) + ρ(u, v) ≥ f(u, v) > ρ(x, y). From K /∈ W∞ and z /∈ L we deduce
z /∈ D

{K,L}
∞ , a contradiction. Thus, ρ(x, y) = ρ(x, z) + ρ(z, y).

We now prove z ∈ A, i.e. ρ(z, z) = 0. By way of contradiction, suppose this is
not the case. Choose λ such that 0 < λ < ρ(z, z). Then, since ρ is continuous, there
is an open neighbourhood U of z such that for all u, v ∈ U we have ρ(u, v) > λ.
Then, since X is a compact Hausdorff space, there are closed subsets K and L of
X such that z ∈ K ⊆ U , z /∈ L and K ∪ L = X. We have K /∈ Wλ because for all
u, v ∈ X we have ρ(u, v) > λ. From K /∈ Wλ and z /∈ L we deduce z /∈ D

{K,L}
λ , a

contradiction. This proves ρ(z, z) = 0.
By compactness,

⋂
A∈F, λ∈(0,∞] DA

λ is nonempty and thus, by (1), there is a ∈ A

such that ρ(x, y) = ρ(x, a) + ρ(a, y). □

Remark 5.18. Lemma 5.17 has the following corollary: given a closed idempotent
endorelation ≺ on a compact Hausdorff space X, for every x, y ∈ X with x ≺ y
there is a ∈ X such that x ≺ a ≺ a ≺ y.

Theorem 5.19. Every equivalence corelation in MetCHsep is effective.
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Proof. Let γ be an equivalence continuous submetric on a separated metric compact
Hausdorff space X. For x, y ∈ X, set ρ(x, y) := γ((x, 0), (y, 1)) (= γ((x, 1), (y, 0)),
by Lemma 5.9). Set

A := {a ∈ X | ρ(a, a) = 0}.
In view of Lemma 5.16, we shall show that, for all x, y ∈ X,

ρ(x, y) = inf
a∈A

(
dX(x, a) + dX(a, y)

)
.

Here are some properties of ρ.
(1) For all x, y ∈ X, d(x, y) ≤ ρ(x, y).
(2) For all x, y, z ∈ X, ρ(x, y) ≤ d(x, z) + ρ(z, y).
(3) For all x, y, z ∈ X, ρ(x, y) ≤ ρ(x, z) + d(z, y).
(4) The function ρ : X × X → [0,∞] is continuous with respect to the upper

topology of [0,∞].
(5) For all x, y ∈ X, ρ(x, y) = infz∈X

(
ρ(x, z) + ρ(z, y)

)
.

Indeed, (1) follows from Lemma 5.7, (2) and (3) follow from the triangle inequality of
γ and the fact that γ is below the coproduct metric, (4) follows from the continuity
of γ, and (5) follows from Lemma 5.11 and the transitivity of γ.

Therefore, we can apply Lemma 5.17 to ρ and obtain
ρ(x, y) = inf

a∈A

(
ρ(x, a) + ρ(a, y)

)
.

Moreover, for all x ∈ X and a ∈ A, we have
ρ(x, a) ≤ d(x, a) + ρ(a, a) = d(x, a) ≤ ρ(x, a),

and hence ρ(x, a) = d(x, a); similarly, ρ(a, x) = d(a, x).
Therefore, for all x, y ∈ X,

ρ(x, y) = inf
a∈A

(
ρ(x, a) + ρ(a, y)

)
= inf

a∈A

(
d(x, a) + d(a, y)

)
,

as desired. □

We finally reached the main result:

Theorem 5.20. MetCHsep is Barr-coexact.

Proof. By Theorem 4.10, MetCHop
sep is a regular category. By Theorem 5.19, every

equivalence relation in MetCHop
sep is effective. □

Let us quickly point out that there is no hope of such a result without separation,
as it is already visible in the preordered case.

Example 5.21 (Preorders are not Barr-exact). Preorders do not have effective
equivalence relations. Indeed, the two maps from a singleton {∗} to a two-element
set {a, b} with a ≤ b and b ≤ a form an equivalence corelation on {∗} which is not
effective.

Theorem 5.20 shows an algebraic trait of the dual of MetCHsep. As a negative
result, we note that MetCHsep cannot be dually equivalent to a variety of finitary
algebras, since, by [HN23, Corollary 4.30], every finitely copresentable object in
MetCHsep is finite. However, the following remains open to us:

Question 5.22. Is the category MetCHsep dually equivalent to a (possibly many-
sorted) variety of (possibly infinitary) algebras?
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Having shown that the complete category MetCHsep is coexact, this problem
amounts now (see [Bor94, AR94]) to the question of whether MetCHsep has a regular
cogenerating set formed by regular injective objects.

6. The symmetric and the ordered cases

Let us end this paper with a few remarks about symmetric metrics and com-
pact ordered spaces. Recall from Remark 2.13 that MetCHsep,sym denotes the full
subcategory of MetCHsep defined by the symmetric objects (i.e. those satisfying
d(x, y) = d(y, x)), and that the inclusion functor MetCHsep,sym → MetCHsep has
a right adjoint and a left adjoint. This, together with the fact that MetCHsep is
Barr-coexact (Theorem 5.20), implies immediately the following result.

Theorem 6.1. The category MetCHsep,sym is Barr-coexact.

Remark 6.2. Building on the results of Section 3, it is easy to see that, in the
symmetric case, the class of equivalence classes of surjections going out from (X, dX)
is in bijection with the continuous symmetric submetrics on X.

Recall also from Remark 2.12 that the inclusion of the category PosCH into
MetCHsep has a right adjoint and a left adjoint. This, together with the fact that
MetCHsep is Barr-coexact (Theorem 5.20), implies immediately the main result of
[AR20]:

Theorem 6.3. The category PosCH is Barr-coexact.

The proof in [AR20] of the result above involves an application of Zorn’s lemma.
In this paper we have illustrated a choice-free proof of this result, thanks to a choice-
free proof of the fact that a closed idempotent relation on a compact Hausdorff space
has enough reflexive elements (Remark 5.18).
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