Erratum to

"Cauchy convergence in \mathcal{V} -normed categories" [Adv. Math. 470 (2025) 110247. https://doi.org/10.1016/j.aim.2025.110247]

Maria Manuel Clementino*1, Dirk Hofmann^{†2}, and Walter Tholen³

¹University of Coimbra, CMUC, Department of Mathematics, Portugal, mmc@mat.uc.pt ²University of Aveiro, CIDMA, Department of Mathematics, Portugal, dirk@ua.pt ³York University, Toronto, Canada, tholen@yorku.ca

August 24, 2025

We correct a faulty argument given in the justification of Corollary 7.5 of "Cauchy convergence in V-normed categories" and clarify that it does not have any impact on the validity of other results stated in the paper either.

Mathematics Subject Classification: 18A35, 46M99.

Keywords: Metric space, Normed category, Cauchy sequence, Cauchy cocomplete category.

Corollary 7.5 of [1] states that the category Met_∞ of all (Lawvere) metric spaces with arbitrary maps $f: X \to Y$ as morphisms, \mathcal{R}_+ -normed by $|f| = \sup_{x,x' \in X} \log^\circ(\frac{Y(fx,fx')}{X(x,x')})$, is Cauchy cocomplete. While this claim is correct, the arguments given involve the incorrect identity $\mathcal{B}_{\log^\circ}(\mathcal{R}_\times\text{-Lip}) = \mathsf{Met}_\infty$. Instead of \mathcal{R}_\times -Lip, one should consider the category \mathbb{M} whose objects are sets X equipped with a mere function $X \times X \to [0,\infty]$, and whose morphisms are arbitrary maps $f: X \to Y$, \mathcal{R}_\times -normed by their Lipschitz value $L(f) = \sup_{x,x'} \frac{Y(fx,fx')}{X(x,x')}$. The second part of the proof of Theorem 7.1 of [1] shows that \mathbb{M} is Cauchy cocomplete. Therefore, by Proposition 7.4 of [1], the \mathcal{R}_+ -normed category $\mathcal{B}_{\log^\circ}(\mathbb{M})$ is also Cauchy cocomplete, and it contains Met_∞ as a full subcategory, with the same norm.

It now suffices to show that Met_{∞} is closed in $\mathcal{B}_{\log^{\circ}}(\mathbb{M})$ under taking normed colimits of Cauchy sequences, and this follows with an adaptation of the first part of the proof of Theorem 7.1 of [1]. Indeed, for a Cauchy sequence $s = (X_m \xrightarrow{s_{m,n}} X_n)_{m \leq n}$ in Met_{∞} , one shows that its normed colimit $X \in \mathbb{M}$, structured by

^{*}Partially supported by UID /00324 Centro de Matemática da Universidade de Coimbra (CMUC), funded by the Portuguese Foundation for Science and Technology (FCT - Fundação para a Ciência e a Tecnologia).

[†]Partially supported by the Center for Research and Development in Mathematics and Applications (CIDMA) through the Portuguese Foundation for Science and Technology (FCT – Fundação para a Ciência e a Tecnologia), Multi-Annual Financing Program for R&D Units.

(7.ii) of [1], satisfies the triangle inequality, as follows. Given any $\varepsilon, \eta > 0$, one chooses $K \in \mathbb{N}$ such that $\varepsilon, \eta \geq \log^{\circ} L(s_{m,n})$ or, equivalently, $e^{\varepsilon}, e^{\eta} \geq L(s_{m,n})$, for all $n \geq m \geq K$. Then, following the same steps as in the proof of Theorem 7.1, one shows that $e^{\varepsilon}X(x,y) + e^{\eta}X(y,z) \geq X(x,z)$ holds for all $x, y, z \in X$, which implies the triangle inequality.

The incorrect identity $\mathcal{B}_{\log^{\circ}}(\mathcal{R}_{\times}\text{-Lip}) = \mathsf{Met}_{\infty}$ reappears in Facts 8.2 of [1] in preparation for Theorem 8.4, but its use can be avoided in the same way as in the justification of Corollary 7.5. Indeed, Facts 8.2 become correct when one replaces $\mathcal{R}_{\times}\text{-Lip}$ by the above $\mathcal{R}_{\times}\text{-normed}$ category \mathbb{M} and observes that in part (3) the thus ensuing functor $U:\mathsf{SNVec}_{\infty}\to\mathcal{B}_{\log^{\circ}}(\mathbb{M})$ actually takes values in Met_{∞} , so that U may be regarded as a functor $\mathsf{SNVec}_{\infty}\to\mathsf{Met}_{\infty}$ as stated. Therefore also the proof of Theorem 8.4 remains intact without change. However, we must retract the comments made in the first four lines of Remarks 8.5 of [1], which have no impact on other parts of [1].

References

[1] M.M. Clementino, D. Hofmann, W. Tholen. Cauchy convergence in \mathcal{V} -normed categories. Advances in Mathematics 470 (2025) 110247. https://doi.org/10.1016/j.aim.2025.110247.