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Abstract

Cop Robber game is a two player game played on an undirected graph.
In this game, the cops try to capture a robber moving on the vertices of
the graph. The cop number of a graph is the least number of cops needed
to guarantee the robber will be caught. The total graph T (G) of a graph
G has a vertex for each edge and vertex of G and an edge in T (G) for every
edge-edge, vertex-edge, and vertex-vertex adjacency in G. In this paper,
we play the game on the total graph T (G), showing in particular that for
planar graphs c(T (G)) ≤ 3.

AMS Subject Classification 05C57, 05C80,05C10.
Keywords. Cops and Robbers, vertex-pursuit games.

1 Introduction

The Game of Cops and Robbers is a vertex pursuit game played on a graph G
introduced by Nowakowski and Winkler [8]. In this game we consider two players,
a set of k cops (or searchers) C, where k > 0 is a fixed integer, and the robber
R. Cops initiate the game placing themselves on a set of k vertices and they
move in alternate rounds with the robber. A move is considered as placing itself
on adjacent vertex to currently occupied or staying in the same place. Many
cops are allowed to occupy a single vertex. The players know each others actual
position (that is, the game is played with complete information). The cops win
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and the game ends if one of the cop move to the vertex occupied by the robber;
if robber has a strategy to avoid cops, then R wins. The minimum number of
cops needed to catch the robber (regardless of robber’s strategy) is called the cop
number of G, and is denoted by c(G). This parameter is well studied in literature
(see [1, 5]).

Throughout this paper we consider only simple graphs that is graphs without
loops and parallel edges. For additional definitions on graphs we refer the book
[6] and for the game we refer the book [5].

The total graph T (G) of a graph G is the graph obtained by taking as the
vertex the set V (T (G)) = V (G) ∪ E(G) and two distinct vertices x and y are
adjacent in T (G) if x and y are adjacent vertices of G, adjacent edges of G,or an
incident vertex and edge of G (see [2, 3, 4]). In this paper, we play the game of
Cops and Robbers on the total graph T (G) of G. We define the total cop number
as ct(G) = c(T (G)).

The total graph can also be defined as follows: T (G) is the total graph of G
if it is obtained by taking a copy of G and a copy of its line graph L(G) and
one vertex in G is joined to one vertex in L(G) if the corresponding elements
are incident in the original graph. If G is a simple graph of order n, then the
following properties are immediate:

1. If each connected component of G is K2, then ct(G) = n/2.

2. If each connected component of G is K3, then ct(G) = 2n/3.

3. If G is the path Pn of order n ≥ 4, then ct(Pn) = 1.

4. If G is the cycle Cn of order n ≥ 3, then ct(Cn) = 2.

5. If G is the star K1,n , then ct(K1,n) = 1.

The edge cop number was defined by Dudek, Gordinowicz and Pra lat [7] as
c(G) = c(L(G)), where L(G) is the line graph of G. See their paper for more
results on this topic.

Theorem 1. Let G be any connected simple graph of order n. Then c(G) ≤
ct(G) ≤ c(G) + 1.

Proof. At first assume that the robber moves along graph T (G) only on the ver-
tices corresponding to V (G). Notice that if we put a cop at a vertex corresponding
to e ∈ E(G), then it is adjacent to exactly two vertices in V (G) part, which are
endpoints of the edge e. Thus if we move the cop from E(G) part of T (G) to
V (G) part of T (G), then the cop will cover more vertices in V (G) than before.
(Since in E(G) part each vertex is adjacent to exactly two vertices in V (G) part).
In addition notice that to attack the robber we can not make a shortcut using
vertices corresponding to E(G), i.e. reach a vertex u which is at distance k from
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the vertex occupied by the cop in a graph G is not less than k steps in the graph
T (G) (since in T (G) and in G dG(v, v) = dT (u, v) for any two arbitrary vertices
u and v in G, where dG(u, v)-denote the distance between the vertices u and v
in G). Therefore less than c(G) cops will never be suffice to catch the robber on
T (G). This follows the lower bound.

The strategy for catching the robber with c(G) + 1 is similar to the one
presented in [7]. Whenever the robber moves through the graph T (G) on vertices
corresponding to the V (G) we follow optimal strategy to catch the robber in
graph G. Whenever it moves to a vertex corresponding to the e ∈ E(G) we treat
it as if he would occupy one endpoint vertex of the edge e. The only thing we
have to keep trace of is that when robber moves to a vertex corresponding to the
edge e′ ∈ E(G) adjacent to e, then we continue the game as if it would move to
an adjacent vertex in G. At some point we reach the state in which we “catch”
the robber (meaning the vertex that we treat as the one occupied by robber is
surrounded by cops).

Let us show that despite the next move of the robber we can put one cop at a
vertex adjacent to the vertex occupied by the robber. First assume that robber
was at a vertex corresponding to V (G), then in the final state there has to be
a cop which is at a vertex adjacent to it. This cop can now follow the robber
staying always at vertex adjacent to his (and at the same time preventing robber
from getting back to the vertices from the V (G) part). In the other case we
assume that robber was at a vertex corresponding to E(G). In this case it might
happen that none of the cops stays at vertex adjacent to it. Robber has two
option, either in the next round he keep his position, which allows us to move a
cop onto a vertex adjacent to him, or he moves along the vertices corresponding
to E(G). He has to choose a vertex which is adjacent to some vertex from the
neighbourhood of the vertex that we focus on in the graph G. Since we assumed
that we reach the state in which robber lose the game, all such vertices have a
cop staying on them. Thus we can move a cop on a vertex adjacent to the one
that robber chose. Again this cop can now follow the robber staying always at
vertex adjacent to robber position. See Figure 1 for details.

Thus now robber can only move along vertices corresponding to E(G) having
a cop chasing him on adjacent vertex corresponding to one endpoint of e ∈ E(G).
We continue the game using optimal strategy for cop-robber game on graph G
assuming that robber occupy other vertex of e. At some point remaining c(G)
cops will catch robber in such game. At this point we would have cops occupying
both ends of the edge e, obtaining a state in which robber can not run away from
the cops and he lose the game.

�

Lemma 2. If c(G) < c(G), then ct(G) = c(G).

Proof. As showed in the proof of Theorem 1 with c(G) cops we can always force
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Figure 1: Figure present game on total graph T (G). Green vertices represent
vertices corresponding to V (G), orange vertices represent vertices corresponding
to E(G), blue vertices are position of the cops, red vertex is a robber position,
white vertex is a position which cops treats as robber position in their pursuit on
vertices of V (G). In the case a) cops caught robber on vertex of V (G), his only
option now is to move to vertex from part corresponding E(G), namely vertex
corresponding to e which is not adjacent to cops positions. This allows cop to
move to a vertex adjacent to robber position. In the case b) cops caught robber
on vertex of V (G), while he is moving along the part corresponding to E(G).
Again in the next move one cop can place himself at a vertex adjacent to robber
position. In both cases game can be continued as if robber was at the other
vertex adjacent to e.

the robber to move into the part of the graph corresponding to the E(G) and
place a cop on a vertex adjacent to the robber. This cop can prevent robber from
moving into the part of the graph corresponding to the V (G), as c(G) − 1 cops
are enough to catch robber on the line graph of G, they will eventually win the
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game. �

As proven in [7] Petersen graph has edge cop number equal to 2 having cop
number equal to 3. The line graph of the dodecahedron is the icosidodecahedral
graph. Again as proven in [7] dodecahedron has edge cop number equal to 2
having cop number equal to 3. In general it is not known for which graphs the
inequality c(G) < c(G) holds.

Corollary 3. If G is the Petersen graph or the dodecahedron graph, then c(G) =
ct(G) = 3.

A graph G is said to be cop win if c(G) = 1 and is said to be total cop win
if ct(G) = 1. For a vertex x in a graph G, the neighborhood of x is denoted by
N(x) and is defined as N(x) = {x ∈ V | (x, y) ∈ E}. The closed neighborhood
of x is defined as N [x] = {x}∪N(x). A vertex x is said to be the corner, if there
exist a vertex y such that N [x] ⊆ N [y]. Corner vertices plays an important role
in characterizing cop win graphs (see [5]). A graph G is dismantlable if we can
reduce G to a single vertex after the successive removal of all corner vertices. In
case of total graphs we can prove following statement.

Theorem 4. G is total cop win if and only if G is a tree.

Proof. Notice that vertices corresponding to vertices of degree one in G are cor-
ners in total graph. After deleting those vertices, vertices which correspond to
edges incident to them are corners. Thus we can successively remove vertices
of degree one and their neighbours until we get a single vertex, therefore total
graph of a tree is dismantlable. Assume that graph G is not a tree, as mentioned
above we can delete one by one all vertices corresponding to vertices of degree
one and to edges incident to them. What we are left with is a graph with minimal
degree two. We can show that none of its vertices is a corner. Vertices corre-
sponding to edges in G are not corners since two such vertices can not dominate
neighbourhood of one another as they are connected to different pairs of vertices.
Vertex which correspond to a vertex in G can not dominate the neighbourhood
of such vertex since it is not connected to all edges adjacent to given edge (as
minimal degree in a graph is two). On the other hand vertices corresponding
to vertices in G can not dominate each other as we always find an edge which
is incident with one of them and not incident with the other. It is clear that a
vertex corresponding to an edge can not dominate vertex coming from a vertex
of G. �

Corollary 5. If G is the complete graph Kn, then ct(Kn) =

{
1, if n = 1, 2

2, if n ≥ 3
.

The cop-win graphs was completely characterized by Nowakowski and Winkler
[8].
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Theorem 6 ([8]). A graph G is cop win if and only if it is dismantlable.

Based on the above results we have the following:

Corollary 7. Let G be a dismantlable graph which is not a tree, then ct(G) = 2.

Proof. Let G be a dismantlable graph which is not a tree. Since G is dismantlable,
we have c(G) = 1. Also G is not a tree, by Theorem 4 ct(G) 6= 1. This implies

ct(G) ≥ 2. (1)

Again, by Theorem 1 ct(G) ≤ c(G) + 1. This yields

ct(G) ≤ 2. (2)

From (1) and (2) the result follows �

Theorem 8. Let G be any connected planar graph. Then

ct(G) ≤ 3

Proof. By Theorem 1 there exist planar graphs for which total cop number is at
least 3. We now show that 3 cops are always enough to catch the robber. Proof
follows the strategy invented by Aigner and Fromme [1]. We say that a cop c
controls the Path if whenever the robber tries to cross P he is caught by c in the
next round. Crucial in the proof of Aigner and Fromme is the following lemma

Lemma 9 ([1]). Let G be any graph, u, v ∈ V (G) and P be the shortest path
between u and v. Then a single cop c on G can, after a finite number of moves,
prevent the robber from entering P . That is, R will be immediately caught if he
moves onto P .

We need a little bit different version of this lemma

Lemma 10. Let G be a graph and T (G) be its total graph, u, v ∈ V (G) and P
be the shortest path between u and v in G. Then a single cop c on T (G) can,
after a finite number of moves, prevent the robber from entering or crossing the
P . That is, given the embedding of P in the plane, R will be immediately caught
if he moves onto vertices corresponding to V (P ) or E(G) or cross the path.

Proof. We take any planar embedding of G and put vertices corresponding to
E(G) in the middle of the edges of this embedding. Denote such embedding of
T (G) as R. Denote by d(x, y) the distance (=lenght of a shortest path) between
x and y. In [1] Aigner and Fromme proved that cop c placed on path P once
obtained, can preserve a property

d(r, z) ≥ d(c, z) for all z ∈ V (P )
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where r stands for the position of the robber. This property is true due to
distance in a graph preserving the triangle inequality. Strategy is as follows: If
robber stays put, so does the cop. If robber moves toward the path P then cop
moves accordingly preserving the distances.

Notice that above property is true for any graph, in particular also for total
graph. It remains to prove that the stated lemma is true when robber moves onto
vertices corresponding to E(G).

First assume that robber moves onto v = (x, y) ∈ E(G) from vertices corre-
sponding to V (G). This can only happen if he was at either the vertex x or y, as
both of them are vertices of the path P he would be caught in the previous step.

In the second case robber moves onto v from a vertex corresponding to some
edge u adjacent to (x, y) in G. Without loss of generality we can assume that
vertex x is adjacent to v in G. In order to preserve the distance property when
robber moved onto u cop had to move onto vertex x. Thus if robber moves onto v
he will be caught by the cop in the next move. The only case for robber to cross
the path P in embedding R without moving onto vertices corresponding to V (P )
or E(G) is to move from u to another vertex corresponding to edge q = (x, p) in
G, such that p and y are on different sides of P in R. As in the previous case if
robber moves onto q he will be caught by the cop in the next move.

�

The idea of the proof of Theorem 10 is to secure by two cops two shortest
paths between two vertices u and v in G. Both those paths create a cycle and
robber is placed outside of it. Proof use the embedding of the planar graph G
and the property robber can not enter the area inside the circle between u and
v without being caught. Property that as we showed in lemma also holds in
the case of total graphs of planar graphs (once in embedding we put vertices
corresponding to edges on the edges of the graph G). Then in next rounds we
can extend the cycle by other vertices (using third cop) reducing the subgraph
outside of it. In general in stage i, we assign to the robber a certain subgraph
Gi, the robber’s territory, which contains all edges which r may still safely enter,
and we show that, after a finite number of moves, Gi is reduced to Gi+1 ⊂ Gi.
Game ends as eventually there is no safe place for the robber to move. See [1]
for the details of the proof.

�

2 Open Problems

There are graphs with ct(G) = c(L(G)), for example consider the paths, cycles,
trees and complete graphs. Characterization of all families of graphs with this
property is an open problem. Another challenging question which we left unsolved
is to characterize the graphs having c(G) = ct(G) + 1.
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