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çã

o
C

M
0
6
/
I-

2
0

In
st

it
u
t
io

n
:

U
n
iv

er
si

ty
o
f
A

ve
ir
o

(s
u
b
m

it
t
e
d

M
a
y

2
6
,
2
0
0
6
)

http://pam.pisharp.org/handle/2052/137

Second Order Conditions on the Overflow Traffic from

the Erlang-B System
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Abstract. This paper presents in a unified manner mathematical properties of the second order derivatives of the overflow

traffic from an Erlang loss system, assuming the number of circuits to be a nonnegative real value. It is shown that the overflow

traffic function Â(a, x) is strictly convex with respect to x (number of circuits), with x ≥ 0, taking the offered traffic, a, as a

positive real parameter. The convexity (in the wider sense) has been proved by A.A. Jagers and Erik A. Van Doorn [8]. Using

a similar procedure to the one used by those authors it is shown that Â(a, x) is a strictly convex function with respect to a, for

all (a, x) ∈ IR+ × IR+ — a well known result for the case of x being a positive integer, due to C. Palm [10, pp.180–181]. These

two results are obtained by determining the sign of the second order derivatives Â′′
aa(a, x) and Â′′

xx(a, x) for (a, x) ∈ IR+× IR+.

In the same manner it is proved that the rectangular derivatives Â′′
ax(a, x) and Â′′

xa(a, x) are negative for all (a, x) ∈ IR+× IR+
0 .

Finally, a first approach to the analysis of the strict joint convexity of Â(a, x) in some open convex subdomain of IR+ × IR+,

is discussed. Finally, based on some particular cases and extensive computational results it is conjectured that the function

Â(a, x) is strictly jointly convex in areas of low blocking where the standard offered traffic is less than −1.

Key words. Erlang Loss System, Convexity Proprieties, Derivatives of the Overflow Traffic, Optimization Techniques.

AMS subject classifications. 33-04, 60K30, 90B22, 65G99.

1 Introduction and Main Results

The classical Erlang loss system, firstly studied by A.K. Erlang in 1917, has been subject to extensive studies
regarding its mathematical properties, as a result of its importance in Teletraffic Theory and its applications.
The blocking probability of the M/M/n loss system in statistical equilibrium, denoted by B(a, n):

B(a, n) =
an/n!∑n
j=0 aj/j!

, (1)

is the well known Erlang-B formula or Erlang loss formula. The positive real variable a is the offered traffic
(in Erlangs), while the nonnegative integer variable n represents the number of servers.

Considering the usual analytic extension of B(a, n), ascribed to R.Fortet [14, pag.602]:

B(a, x) =
{

a

∫ +∞

0

e−az (1 + z)x dz

}−1

, (2)

the variable representing the number of servers (or circuits), x, can be taken to be real. The proof that (1)
and (2) define the same function for x ∈ IN0, may be found in [6, pp.531–532].

Note that the function defined by (2) is infinitely differentiable for any (a, x) ∈ IR+ × IR, and also the
integral in (2) is uniformly convergent.
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A major known result (see e.g. [7]) is the following recursion obtained by partial integration of (2):

B(a, x)−1 =
x

a
B(a, x− 1)−1 + 1, ∀(a, x) ∈ IR+ × IR . (3)

Since B(a, 0) = 1, ∀a ∈ IR+, B(a, x) may be calculated by (3) for any positive integer x.
In the following the argument (a, x) is omitted whenever there is no place of misinterpretation. The first

order derivatives of B(a, x) may be found in [6] and they are given by:

B′
a =

( x

a
− 1 + B

)
B , (4)

B′
x = −aB2

∫ +∞

0

e−az (1 + z)x ln(1 + z) dz . (5)

While B′
x(a, x) is strictly negative for any (a, x) ∈ IR+ × IR, B′

a(a, x) is strictly positive if x > 0, and it
vanishes if x = 0 (see [7, pag.1289]).

The second order derivatives of B(a, x) may be obtained from the following relations:

B′′
aa =

(
B′

a −
x

a2

)
B +

(B′
a)2

B
, (6)

=
(

3
x

a
− 3 + 2 B

)
B2 +

[
(x− a)2 − x

] B

a2
, (7)

B′′
xx = 2 a2 B3

[ ∫ +∞

0

e−az (1 + z)x ln(1 + z) dz

]2

−

− aB2

∫ +∞

0

e−az (1 + z)x [ln(1 + z)]2 dz ,

B′′
ax =

( x

a
− 1 + 2 B

)
B′

x +
B

a
. (8)

Note that by the Schwarz theorem the rectangular derivatives are equal, that is B′′
ax(a, x) = B′′

xa(a, x).
Now, we review two functions that play important roles in the Erlang-B system:

Ã(a, x) = a [1−B(a, x)] , (9)

Â(a, x) = aB(a, x) =
{ ∫ +∞

0

e−az (1 + z)x dz

}−1

. (10)

The first one, Ã, is called the carried traffic and gives the expected number of calls in progress. The second
function , Â, is called the lost traffic or overflow traffic and gives the expected number of lost calls during
the mean holding time.

In this paper the signs of the second order partial derivatives of the overflow traffic function, are derived.
The first order partial derivatives of Â(a, x) may be obtained by differentiation of (10):

Â′
a = B + aB′

a = aB2 + (x− a + 1 )B , (11)

Â′
x = aB′

x = −
[
Â(a, x)

]2
∫ +∞

0

e−az (1 + z)x ln(1 + z) dz . (12)

After some algebraic manipulation, differentiation of (11) and (12) leads to the second order partial deriva-
tives of Â(a, x):

Â′′
xx = aB′′

xx , (13)

Â′′
aa = 2 aB3 + [ 3 (x− a) + 2 ] B2 +

[
(x− a)2

a
+

x

a
− 2

]
B , (14)

Â′′
ax = (x− a + 2 aB + 1 ) B′

x + B . (15)

Again, applying Schwarz theorem we have the identity Â′′
ax(a, x) = Â′′

xa(a, x).
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The analysis of the sign of the derivatives Â′′

xx, Â′′
aa and Â′′

ax is useful in the optimal design of queueing
systems. Examples are some optimization problems of circuit-switched teletraffic networks (see [5]), and
certain load sharing and server allocation problems (some formulations may be found in [12]). In fact, a
fundamental task in order to approach the resolution of those problems is the establishment of convexity
conditions of the objective functions. Indeed, the dificulties encountered in recognizing these properties are
well known in nonlinear programming practice and they are an important part of problem solving.

The main result of this work is the following theorem.

Theorem 1 For all (a, x) ∈ IR+ × IR+
0 , the following statements hold:

1) Â′′
xx(a, x) > 0;

2) Â′′
aa(a, x) ≥ 0 ∧ [Â′′

aa(a, x) = 0 iff x = 0];
3) Â′′

ax(a, x) = Â′′
xa(a, x) < 0.

Taking a general view on the related literature, one can make the following remarks concerning the results
in Theorem 1:

1. The proof of statement 1) was established in [9], for x considered a positive integer. Later, A.A. Jagers
and Erik A. Van Doorn [8] have shown that B′′

xx(a, x) ≥ 0 for (a, x) ∈ IR+ × IR+
0 (which implies that

Â′′
xx(a, x) ≥ 0). More recently it has been proved that Â′′

xx(a, x) > 0, for real x ≥ 1 (see [3]).

2. The proof of statement 2) is well know in the case of positive integers x, and is due to C. Palm [10,
pp.180–181].

3. As far as we know, statement 3) is a new result.

Other results related to the convexity of the Erlang-B function were studied in [1]. However, that work
is confined to the case where x is a positive integer. Noting that the analytic extension of the Erlang-B
function, for x ∈ IR+

0 , becomes indispensable in many problems of analysis and optimization of teletraffic
systems (see e.g. [11] and [15]), Theorem 1 has not only a theorical interest but also becomes relevant with
respect to many applications.

As far as optimization problems are concerned, statements 1) and 2) of the previous theorem are specially
important, since they are establish strict convexity conditions of Â(a, x) with respect to the variables x and
a. In addition, statement 3) reveals its importance in the study of the joint convexity of Â(a, x). We give a
first, although incomplete, approach to this question in Section 3, where a conjecture concerning a region of
strict joint convexity of function Â is proposed. The proof of Theorem 1 appears in Section 2.

2 Proof of Theorem 1

The proof of the three statements of Theorem 1 will be presented in separate subsections. The proof of
statement 1) is done using redutio ab absurdum. The proof of statements 2) and 3) follows a similar procedure
to the one presented in [8, Theorem 1]. The essential observation in that procedure is the following: in order
to prove the complete monotonicity of a function, it suffices to show that its Laplace transform exists and is
a nonnegative function in IR+ (see for example [4, pag.439]).

2.1 Proof of Statement 1)

Here the objective is to prove that Â′′
xx(a, x) > 0, ∀(a, x) ∈ IR+ × IR+

0 .
Since Â′′

xx = aB′′
xx, this is equivalent to prove that B′′

xx(a, x) > 0, ∀(a, x) ∈ IR+× IR+
0 . This result implies

convexity conditions of B(a, x) with respect to x. The strict convexity of B(a, x) with respect to x was
established by E.J. Messerli [9] in 1972 for the case where x is a nonnegative integer. In the case where x is
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considered to be a nonnegative real value, the convexity (in the wider sense) was established by A.A. Jagers
and E. Van Doorn [8] in 1986:

B′′
xx(a, x) ≥ 0, ∀(a, x) ∈ IR+ × IR+

0 . (16)

In [3] the authors have shown that B′′
xx > 0, for all real x ≥ 1 and for all a > 0. In the sequel we present a

non-constructive proof for the strictness of inequality (16) in the general case.
First, let us prove the following auxiliary proposition:

B′
x(a, x) +

1
a

> 0, for all (a, x) ∈ IR+ × IR+
0 . (17)

Note that, if x ≥ 0 and a > 0 then we may use the proposition (16) in order to conclude that B′
x is a non

decreasing function with respect to x. Therefore:

B′
x(a, x) ≥ B′

x(a, 0), ∀ (a, x) ∈ IR+ × IR+
0 .

Using expression (5), we have:

B′
x(a, x) ≥ B′

x(a, 0) = −a

∫ ∞

0

e−az ln(1 + z) dz .

Taking into account the well known inequality ln(1 + z) < z, ∀ z ∈ IR+, we obtain:

B′
x(a, x) ≥ B′

x(a, 0) > −a

∫ ∞

0

e−az z dz = − 1
a

.

So, the proposition (17) is proved.
As for the third derivatives B′′′

axx and B′′′
xxa, sucessive differentiation of (4) in order to x, leads to:

B′′
ax =

(x

a
− 1 + B

)
B′

x +
(

B′
x +

1
a

)
B,

B′′′
axx = 2B′

x

(
B′

x +
1
a

)
+

(x

a
− 1 + 2B

)
B′′

xx. (18)

Since B(a, x) is an infinitely differentiable function in IR+ × IR, by the Schwarz theorem we have:

∂

∂ a
B′′

xx = B′′′
xxa = B′′′

axx . (19)

Now, statement 1) of Theorem 1 can be proved. Let us consider an arbitrary nonnegative real value, x0,
and define the function:

ϕ : IR+ −→ IR

a 7−→ ϕ(a) = B′′
xx(a, x0) .

From proposition (16), it remains to prove that ϕ has no zeros in IR+. Let us suppose, on the contrary, that
there exists a0 ∈ IR+ such that ϕ(a0) = 0.

By proposition (16), if ϕ reaches its minimum in IR+, then a0 is a critical point of ϕ:

ϕ′(a0) = B′′′
xxa(a0, x0) = 0 .

Taking into account equality (19), the value of ϕ′(a0) is given by equation (18). Since B′′
xx(a0, x0) = 0, then:

ϕ′(a0) = 2B′
x(a0, x0)

[
B′

x(a0, x0) +
1
a

]
.

Now using the proposition (17) and the fact that B′
x(a0, x0) is strictly negative, we conclude that ϕ′(a0) < 0,

which is a contradiction since a0 is a critical point of ϕ. Therefore:

ϕ(a) > 0, ∀ a ∈ IR+ ,

which completes the proof.
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2.2 Proof of Statement 2)

Here the task is to prove the proposition Â′′
aa(a, x) > 0, ∀(a, x) ∈ IR+ × IR+ and Â′′

aa(a, 0) = 0, ∀a ∈ IR+. If
one restricts the domain of x to the positive integers, this is a very well known result due to C. Palm [10,
pp.180–181]. In order to generalize this result to the case where x ∈ IR+

0 , we will use the main argument
of the proof presented by A.A. Jagers and Erik A. Van Doorn in [8, Theorem 1] for establishing that
B′′

xx(a, x) ≥ 0, ∀(a, x) ∈ IR+ × IR+
0 .

Let us define the functions:

f(a, x) =
∫ +∞

0

e−at (1 + t)x dt , (20)

Φ(a, x) = 2 [f ′a(a, x)]2 − f(a, x) f ′′aa(a, x) .

From (10), we have:

Â(a, x) =
1

f(a, x)
,

Â′
a(a, x) = − f ′a(a, x)

[f(a, x)]2
, (21)

Â′′
aa(a, x) =

2 [f ′a(a, x)]2 − f(a, x) f ′′aa(a, x)
[f(a, x)]3

=
Φ(a, x)

[f(a, x)]3
. (22)

Note that f(a, x) is a strictly positive function. Consequently, from equation (22) the functions Â′′
aa(a, x)

and Φ(a, x) have the same sign.
It remains to show the following proposition:{

Φ(a, 0) = 0, ∀ a ∈ IR+ ,

Φ(a, x) > 0, ∀ (a, x) ∈ IR+ × IR+ .

Suppose that Φ(a, x) is the Laplace transform of some function g(t, x) (such function g(t, x) exists as shown
later on):

Φ(a, x) =
∫ +∞

0

e−at g(t, x) dt , (23)

g(t, x) = L−1 {Φ(a, x)} ,

g(t, x) = 2L−1 {f ′a(a, x) f ′a(a, x)} − L−1 {f(a, x) f ′′aa(a, x)} . (24)

On the other hand, from (20):

f ′a(a, x) = −
∫ +∞

0

e−at (1 + t)x t dt ,

f ′′aa(a, x) =
∫ +∞

0

e−at (1 + t)x t2 dt .

Therefore:

L−1 {f(a, x)} = (1 + t)x , (25)

L−1 {f ′a(a, x)} = −(1 + t)x t , (26)

L−1 {f ′′aa(a, x)} = (1 + t)x t2 . (27)

Applying the convolution theorem for Laplace transforms:

L−1 {f ′a(a, x) f ′a(a, x)} =
∫ t

0

[ (1 + u)x u ] [ (1 + t− u)x (t− u) ] du , (28)

L−1 {f(a, x) f ′′aa(a, x)} =
∫ t

0

[ (1 + u)x u2 ] [ (1 + t− u)x ] du . (29)
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From equations (24), (28) and (29), we may now obtain the analytic expression for g(t, x):

g(t, x) =
∫ t

0

[
2(1 + u)x u (1 + t− u)x (t− u) − (1 + u)x u2 (1 + t− u)x

]
du ,

g(t, x) =
∫ t

0

[3u2 − 2ut] [−(1 + t− u)x (1 + u)x] du .

By symmetry arguments1:

g(t, x) =
∫ t/2

0

[6u2 − 6ut + t2]︸ ︷︷ ︸
q(u)

[−(1 + t− u)x (1 + u)x]︸ ︷︷ ︸
p(u)

du =
∫ t/2

0

q(u) p(u) du .

Note that if x = 0, then p(u) = −1, ∀u ∈ [0, t/2]. It follows that:

g(t, 0) = −
∫ t/2

0

q(u) du = −
[
2u3 − 3u2t + t2u

]t/2

0
= −

[
1
4
t3 − 3

4
t3 +

1
2
t3

]
= 0 . (30)

It remains to analyse the case x > 0. Firstly, note that q(0) = t2 > 0 and q(t/2) = −t2/2 < 0. Furthermore,
q(u) is a strictly decreasing function in the interval [0, t/2]:

q′(u) = 12u− 6t < 0 , ∀u ∈ [0, t/2[ .

Thence there exists a value u∗ ∈]0, t/2[ such that:

q(u) > 0,∀u ∈ ]0, u∗[ ∧ q(u) < 0,∀u ∈ ]u∗, t/2[ . (31)

On the other hand, it is easy to show that p(u) is a strictly decreasing function in [0, t/2]:

x > 0 =⇒ p′(u) = x(1 + t− u)x−1 (1 + u)x−1 (2u− t) < 0, ∀u ∈ [0, t/2[ . (32)

We may now use Lemma 1 (see Appendix A). In fact, propositions (30), (31) and (32) allows us to apply
the condition i) of Lemma 1. Therefore, if t ∈ IR+ and x > 0, it may be concluded that:∫ t/2

0

q(u) du = 0 =⇒ g(t, x) =
∫ t/2

0

q(u)p(u) > 0.

Therefore we may state:

x = 0 =⇒ g(t, x) = 0, ∀t ∈ IR+
0 ,

x > 0 =⇒ g(t, x) > 0, ∀t ∈ IR+ .

Finally, from these propositions and relations (23) and (22), the intended result is obtained:

Φ(a, 0) = 0, ∀a ∈ IR+ =⇒ Â′′
aa(a, 0) = 0, ∀a ∈ IR+ ,

Φ(a, x) > 0, ∀(a, x) ∈ IR+ × IR+ =⇒ Â′′
aa(a, x) > 0, ∀(a, x) ∈ IR+ × IR+ .

1Let us define the function p(u) = −(1+t−u)x(1+u)x. Introducing the change of variable v = t−u:
∫ t

t/2
(3u2−2ut) p(u) du =

−
∫ 0

t/2
[3(t− v)2 − 2(t− v)t]p(v) dv =

∫ t/2

0
(3v2 − 4vt + t2) p(v) dv. The previous equality leads to:

g(t, x) =

∫ t/2

0

(3u2 − 2ut)p(u) du +

∫ t/2

0

(3u2 − 4ut + t2) p(u) du =

∫ t/2

0

(6u2 − 6ut + t2) p(u) du .
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2.3 Proof of Statement 3)

In order to complete the proof of Theorem 1, it remains to show that Â′′
ax(a, x) = Â′′

xa(a, x) < 0, ∀(a, x) ∈
IR+ × IR+

0 . The general idea of the proof is the same one that we have used in the previous subsection.
However, the technical details are different and some tedious manipulation of the analytic expressions is
needed.

As before, let us consider the function f(a, x) defined by (20). Introducing the function:

Ψ(a, x) = 2f ′x(a, x)f ′a(a, x)− f(a, x) f ′′ax(a, x) ,

from expression (21) we obtain:

Â′′
ax(a, x) =

2 f ′x(a, x) f ′a(a, x)− f(a, x) f ′′ax(a, x)
[f(a, x)]3

=
Ψ(a, x)

[f(a, x)]3
. (33)

Then the proof is equivalent to show the following proposition:

Ψ(a, x) < 0, ∀(a, x) ∈ IR+ × IR+
0 .

Assume that Ψ(a, x) is the Laplace transform of a function denoted by h(t, x), that is:

Ψ(a, x) =
∫ +∞

0

e−at h(t, x) dt , (34)

h(t, x) = L−1 {Ψ(a, x)} ,

h(t, x) = 2L−1 {f ′x(a, x) f ′a(a, x)} − L−1 {f(a, x) f ′′ax(a, x)} . (35)

From (20) and (26) we have:

f ′x(a, x) =
∫ +∞

0

e−at (1 + t)x ln(1 + t) dt ,

f ′′ax(a, x) = −
∫ +∞

0

e−at (1 + t)x t ln(1 + t) dt .

Therefore:

L−1 {f ′x(a, x)} = (1 + t)x ln(1 + t) ,

L−1 {f ′′ax(a, x)} = −(1 + t)x t ln(1 + t) .

From (25), (26) and applying the convolution theorem for Laplace transforms, it may be written:

L−1 {f ′x(a, x) f ′a(a, x)} =
∫ t

0

[ (1 + u)x ln(1 + u) ] [−(1 + t− u)x (t− u) ] du , (36)

L−1 {f ′′ax(a, x) f(a, x)} =
∫ t

0

[−(1 + u)x u ln(1 + u) ] [ (1 + t− u)x ] du . (37)

Direct substitution of (36) and (37) into (35), leads to the analytic expression of the function h(t, x):

h(t, x) = −
∫ t

0

[u ln(1 + u)− 2(t− u) ln(1 + u)] [−(1 + t− u)x (1 + u)x] du ,

h(t, x) = −
∫ t

0

[(3u− 2t) ln(1 + u)] [−(1 + t− u)x (1 + u)x] du .

In order to establish the sign of the function h(t, x), firstly we will analyse the case x = 0. To conclude
that h(t, 0) < 0, ∀t ∈ IR+ some tedious manipulation is needed. Using a symbolic programming language
(Mathematica), it was found:

h(t, 0) =
∫ t

0

(3u− 2t) ln(1 + u) du ,

h(t, 0) =
(
− t2

2
− 2t− 3

2

)
ln(1 + t) + 5

t2

4
+ 3

t

2
. (38)
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Next we will use the inequality:

ln(1 + t) >
6t + 3t2

6 + 6t + t2
, ∀t ∈ IR+ .

This inequality is cited in [13, pag.124] and has been established by using Padé approximation method.
Direct substitution into expression (38), leads to the following inequalities (which are true for t > 0):

h(t, 0) <

(
− t2

2
− 2t− 3

2

)
6t + 3t2

6 + 6t + t2
+ 5

t2

4
+ 3

t

2
,

h(t, 0) < − t4

4t2 + 24t + 24
< 0, ∀ t ∈ IR+ . (39)

Again, to obtain (39) we used the Mathematica program.
The following remark concludes the analysis of the case x = 0. Indeed, if x = 0, then from (39) and (34),

we have Ψ(a, 0) < 0 and consequently Â′′
ax(a, 0) < 0 for all a ∈ IR+.

It remains to analyse the sign of the function h(t, x) in the case x > 0. Firstly, by symmetry arguments2,
the following expression is obtained:

h(t, x) = −
∫ t/2

0

[(3u− 2t) ln(1 + u) + (t− 3u) ln(1 + t− u)]︸ ︷︷ ︸
r(u)

[−(1 + t− u)x (1 + u)x]︸ ︷︷ ︸
p(u)

du . (40)

From (32) p(u) is a strictly decreasing function in [0, t/2], for x > 0. Let us now analyse the sign of r′(u),
in [0, t/2]:

r′(u) = 3 ln(1 + u) +
3u− 2t

1 + u
− 3 ln(1 + t− u)− t− 3u

1 + t− u
,

r′(u) = −3 [ln(1 + t− u)− ln(1 + u)] +
6u + 4ut− 2t2 − 3t

(1 + u)(1 + t− u)
. (41)

Since, for t > 0:

ln(1 + u) < ln(1 + t− u), ∀u ∈ [0, t/2[ ,

6u + 4ut− 2t2 − 3t < 0, ∀u ∈ [0, t/2[ ,

it follows from (41):

r′(u) < 0, ∀u ∈ [0, t/2[ ,

that is, r(u) is a strictly decreasing function in [0, t/2].
Additionnaly, for t > 0:

r(0) = t ln(1 + t) > 0 ∧ r(t/2) = −t ln(1 + t/2) < 0 .

2Denoting p(u) = −(1 + t− u)x(1 + u)x, and after change of variable (v = t− u), it may be written:∫ t

t/2

(3u− 2t) ln(1 + u) p(u) du = −
∫ 0

t/2

[3(t− v)− 2t] ln(1 + t− v) p(v) dv =

∫ t/2

0

(t− 3v) ln(1 + t− v) p(v) dv .

Consequently we have:

h(t, x) = −
∫ t/2

0

(3u− 2t) ln(1 + u) p(u) du−
∫ t/2

0

(t− 3u) ln(1 + t− u) p(u) du ,

h(t, x) = −
∫ t/2

0

[(3u− 2t) ln(1 + u) + (t− 3u) ln(1 + t− u)] p(u) du .
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Therefore it exists a real value u∗ ∈ ]0, t/2[, such that:

r(u) > 0, ∀u ∈ ]0, u∗[ ∧ r(u) < 0, ∀u ∈ ]0, u∗[ .

Taking (32) into account, the condition iii) of Lemma 1 (see Appendix A) may be applyed, and:

h(t, 0) =
∫ t/2

0

r(u) du < 0 =⇒
∫ t/2

0

r(u) p(u) du > 0 .

From (40) it is immediate that:

h(t, x) = −
∫ t/2

0

r(u) p(u) du < 0, ∀t ∈ IR+, ∀x ∈ IR+ . (42)

Finally, using the inequality (42) and equation (34) it is straightforward that Ψ(a, x) < 0, ∀(a, x) ∈ IR+ ×
IR+. Since it has been shown that Ψ(a, 0) < 0, ∀a ∈ IR+, the proof is complete.

3 Joint Convexity Analysis

In this section the joint convexity of Â(a, x) in the two variables, in some open convex subdomain of IR+×IR+
0

is discussed. Indeed, it may be questioned if there exists an open convex subdomain of IR+ × IR+
0 where

Â(a, x) is convex (or strictly convex). This question raises several difficulties and the present (incomplete)
discussion finishes with a conjecture.

Firtly, let us calculate the Hessian matrix of Â(a, x):

∇2Â(a, x) =

[
Â′′

aa(a, x) Â′′
ax(a, x)

Â′′
xa(a, x) Â′′

xx(a, x)

]
.

Note that by Schwarz theorem Â′′
ax(a, x) = Â′′

xa(a, x), ∀ (a, x) ∈ IR+ × IR+
0 , consequently ∇2Â(a, x) is a

symmetric matrix. The analytic expressions for the second order partial derivatives of Â(a, x) were presented
in (13), (14) and (15).

In order to establish the strict joint convexity of Â(a, x) in some open convex subdomain of IR+ × IR+,
it suffices to show that ∇2Â(a, x) is a positive definite matrix in that subdomain. To obtain an equivalent
condition, we apply the Sylvester criterion. Therefore, if the two following inequalities hold,

Â′′
aa > 0 , (43)∣∣∣∇2Â(a, x)

∣∣∣ = Â′′
aaÂ′′

xx− [Â′′
ax]

2 > 0 , (44)

then ∇2Â(a, x) is a positive definite matrix. As for inequality (43) it results directly from statement 2) of
Theorem 1, in IR+ × IR+.

Introducting the function:

∆(a, x) =
∣∣∣∇2Â(a, x)

∣∣∣ = Â′′
aa(a, x) Â′′

xx(a, x)− [Â′′
ax(a, x)]2 , (45)

the problem reduces to find an open convex subdomain D ⊂ IR+ × IR+ such that ∆(a, x) > 0.

3.1 A Counterexample

In this subsection we present a counterexample showing that Â(a, x) is not a convex function in IR+ × IR+.
Firstly note that by direct application of statement 2) of Theorem 1, if x = 0 then Â′′

aa(a, x) = 0. Using (45)
it is concluded that ∆(a, x) < 0. Consequently, Â(a, x) is not a convex function in the domain IR+ × IR+

0 .
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Now let us apply the classical recursion for calculating the Erlang-B formula:

B(a, 0) = 1 =⇒ Â(a, 0) = a ,

B(a, 1) =
a

a + 1
=⇒ Â(a + 1, 1) =

(a + 1)2

a + 2
,

B(a, 2) =
a2

a2 + 2a + 2
=⇒ Â(a + 2, 2) =

(a + 2)3

(a + 2)2 + 2(a + 2) + 2
,

B(a, 3) =
a3

a3 + 3a2 + 6a + 6
=⇒ Â(a + 3, 3) =

(a + 3)4

(a + 3)3 + 3(a + 3)2 + 6(a + 3) + 6
,

and consider a (fixed) arbitrary a ∈ IR+. Let us consider the point (a + 2, 2) ∈ IR2 which is the medium
point of the segment whose extreme points are (a + 1, 1) and (a + 3, 3):

(a + 2, 2) =
1
2

(a + 1, 1) +
1
2

(a + 3, 3) .

Suppose, by hypothesis, that Â(a, x) is a convex function in the domain IR+ × IR+. Applying the definition
of convex function, the following inequality holds:

Â(a + 2, 2) ≤ 1
2

Â(a + 1, 1) +
1
2

Â(a + 3, 3) .

This condition is equivalent to the following ones:

(a + 2)3

(a + 2)2 + 2(a + 2) + 2
− 1

2

[
(a + 1)2

a + 2
+

(a + 3)4

(a + 3)3 + 3(a + 3)2 + 6(a + 3) + 6

]
≤ 0 ,

D(a) =
(a + 2)3

(a + 2)2 + 2(a + 2) + 2
− (a + 1)2

2(a + 2)
− (a + 3)4

2(a + 3)3 + 6(a + 3)2 + 12(a + 3) + 12
≤ 0 . (46)

After some tedious algebric manipulation (with the aid of Mathematica), the analytic expression of D(a)
may be simplified:

D(a) =
2a3 + 24a2 + 72a + 48

a6 + 20a5 + 169a4 + 770a3 + 1986a2 + 2736a + 1560
. (47)

Finally, it is immediate from (47) that D(a) > 0, ∀ a ∈ IR+, which contradicts the condition (46). It follows
that it is absurd to consider Â(a, x) as a convex function in IR+ × IR+.

From the presented counterexample it is easy to conclude that Â(a, x) is not a convex function in the
following subdomain:

G =
{

(a, x) ∈ IR+ × IR+ : a > x
}

.

Consequently, let us focuss our atention on the following open convex subdomain of IR+ × IR+:

H =
{

(a, x) ∈ IR+ × IR+ : a < x
}

.

It may be questioned if Â(a, x) is a convex (or strictly convex ) function in H (or, alternativelly, in some
subdomain of H). Note that the set H defines a subdomain of low blocking. In other words, it may be
questioned if Â(a, x) is a joint convex (or even stictly convex) function in areas of low blocking (which are
specialy important in teletraffic applications).

3.2 Computational Experiments and Conjectures

The numerical values of the function ∆(a, x), defined by (45), may be calculated using the analytical expres-
sions of the second order partial derivatives Â′′

xx, Â′′
aa and Â′′

ax given, respectively, by the relations (13), (14)
and (15). In this context for calculating the Erlang-B function and its derivatives we have implemented the
algorithms proposed in [2] e [3].
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x a x a x a x a

1.5 30.4856 15.00 16.78463 70.0 69.8533 600.0 593.637
1.75 17.9625 20.0 21.47984 75.0 74.7377 700.0 692.885
2.0 13.2023 25.0 26.2363 80.0 79.626 800.0 792.185
3.0 8.46005 30.0 31.0270 85.0 84.518 900.0 891.528
4.0 8.01297 35.0 35.8417 90.0 89.4139 1E3 990.906
5.0 8.35763 40.0 40.6723 95.0 94.3124 1E4 9964.73
6.0 8.97296 45.0 45.5156 100.0 99.213 1E5 99882.0
7.0 9.71151 50.0 50.3689 200.0 197.611 1E6 999620.
8.0 10.5165 55.0 55.2304 300.0 296.389 1E7 9998793.
9.0 11.3695 60.0 60.99019 400.0 395.361 1E8 99996180.
10.0 12.2328 65.0 64.9735 500.0 494.455

Table 1: Aproximations for the solutions of ∆(a, x) = 0.

For a fixed value x > 1, the performed computational experiments seem to sugest that ∆(a, x) is positive
for some value a sufficiently small, and negative for a sufficiently high. Additionaly, they sugests that
probably the equation ∆(a, x) = 0 has unique solution (for x > 1). Subsequently by fixing different values of
x, we have solved the equation ∆(a, x) = 0. The solutions were obtained by an iterative numerical method
(secant method) and the results are shown in Table 1. Anyway it must be stressed that we have no proof
that equation ∆(a, x) = 0 has unique solution.

However, the numerical experiments presented and the discussion made in this section led us to propose
a conjecture concerning a region of strict joint convexity of the function Â(a, x). The proposed region is
defined by:

S =
{

(a, x) ∈ IR+ × IR+ : a < x−
√

x
}

.

In [6], a standard offered traffic parameter is defined by:

c =
a− x√

x
.

Then the points of the set S are caracterized by the condition c < −1.
Finally, let us discuss a question related to the one analysed in this section: the joint convexity of the

Erlang-B function itself. In fact, fixing x, for a sufficiently low we have B′′
aa > 0 (see [1]). Therefore the

question about the existence of some region of joint convexity of B(a, x) may be posed. A priori it seems
to be possible the existence of regions of joint convexity for both the functions B(a, x) and Â(a, x).

4 Concluding Remarks

With Theorem 1 the signs of the second order derivatives of the overflow traffic function Â(a, x) from the
Erlang-B system were established, thence completing and proving known results. From these results, some
conditions arise on the strict convexity of Â(a, x) with respect to the variables a and x. These convexity
properties have potential interest in applications, mainly concerning optimization techniques (e.g. load
sharing and server allocation problems and optimal design of certain teletraffic networks). Also a new result
concerning the sign of the rectangular second order derivatives of Â(a, x) is proved. Finally, the question of
the strict convexity of Â(a, x) in some open convex subdomain of IR+ × IR+ was discussed. This question
was approached by considering some particular cases. Making use of extensive computational results, a
conjecture was proposed according to which the function Â(a, x) is strictly convex in areas of low blocking,
where the standard offered traffic is less than −1.
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Appendix A Auxiliary Lemma

Lemma 1 Let g(z) and h(z) be real-valued functions defined in [α, β[⊂ IR satisfying:

{ g(z) > 0 ∧ h(z) > κ, ∀ z ∈ ]α, z∗[ }
∧

{ g(z) < 0 ∧ h(z) < κ, ∀ z ∈ ]z∗, β[ } , (48)

for fixed values z∗ ∈ ]α, β[ and k ∈ IR. If U =
∫ β

α
g(z) dz and V =

∫ β

α
g(z)h(z) dz exist and are finite for

some β ∈ ]α, +∞], then V > 0 whenever one of the following conditions holds:

i) U = 0 , ii) k > 0 ∧ U ≥ 0 , iii) k < 0 ∧ U ≤ 0 , iv) k = 0 . (49)

Proof. Let us consider the following decompositions:

V =
∫ z∗

α

g(z)h(z) dz︸ ︷︷ ︸
V1

+
∫ β

z∗
g(z)h(z) dz︸ ︷︷ ︸

V2

e U =
∫ z∗

α

g(z) dz︸ ︷︷ ︸
U1

+
∫ β

z∗
g(z) dz︸ ︷︷ ︸
U2

.

It is clear that V1, V2, U1 and U2 exist and are finite. From condition (48) it is true that U1 > 0 and U2 < 0;
therefore these integrals are nonzero. Consequently, there are real numbers κ1 and κ2 such that κ1 = V1/U1

and κ2 = V2/U2. Therefore, we may write V = κ1U1 + κ2U2 and state the following:

g(z)h(z) > g(z)κ, ∀z ∈ ]α, z∗[ =⇒ V1 >

∫ z∗

α

g(z)κ dz =⇒ κ1U1 > κU1 =⇒ κ1 > κ , (50)

g(z)h(z) > g(z)κ, ∀z ∈ ]z∗, β[ =⇒ V2 >

∫ β

z∗
g(z)κ dz =⇒ κ2U2 > κU2 =⇒ κ2 < κ . (51)

From (50) and (51) it follows that κ1 > κ2. Finally, let us prove that each of the four conditions in (49)
implies that V > 0:

(i) If U = 0, then U2 = −U1. Thus: V = κ1 U1 + κ2 U2 = κ1 U1 − κ2 U1 = U1[κ1 − κ2] > 0 .

(ii) If U ≥ 0, then U1 ≥ −U2. Since κ > 0, then g(z)h(z) > g(z)κ > 0, ∀z ∈ ]α, z∗[, and V1 > 0. Further
U1 > 0, thus κ1 = V1/U1 > 0. Since κ1 > 0, then κ1U1 ≥ −κ1U2. Adding κ2U2 to both sides of the
previous inequality we have V ≥ −κ1U2 + κ2U2 = U2[κ2 − κ1] > 0.

(iii) If U ≤ 0, then U2 ≤ −U1. Since κ < 0, then g(z)h(z) > g(z)κ > 0, ∀z ∈ ]z∗, β[, and V2 > 0.
Furthermore U2 < 0, thus κ2 = V2/U2 < 0. Since κ2 < 0, then κ2U2 ≥ −κ2U1. Adding κ1U1 to both
sides of the previous inequality we have V ≥ −κ2U1 + κ1U1 = U1[κ1 − κ2] > 0.

(iv) If k = 0, then g(z)h(z) > 0,∀z ∈ ]α, z∗[∪ ]z∗, β[. Clearly V is positive.
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