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ABSTRACT. In this paper we describe a real application project concerned with
the implementation of optimization algorithms to solve a car industry problem
known, in the literature, as the Optimal Diversity Management Problem. The
minimum weight spanning star forest model for this problem is introduced, its
complexity is analyzed, the implemented optimization techniques are presented
and the computational results for real data instances are reported. Since the
practical problem particularities had strongly conditioned the implemented
optimization algorithms, these practical specifications are explored in the pa-
per. Based on the results of this project, the manufacturer currently solves
instances that are more than twenty times larger than the largest instances

reported for this problem.
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1. INTRODUCTION

This paper reports a practical implementation of optimization techniques to
solve a particular problem of car industry. This problem is known as the Opti-
mal Diversity Management Problem (ODMP). Although the project was developed
without the knowledge of previous work, both the problem formulation and the
optimization techniques implemented are much similar to those already presented
in previous papers about the subject. The problem was first introduced in [3] and
[4]. A more recent paper on the subject with similarities with our work is [1] (see
also [2]).

Despite the previous contributions for this problem we believe this paper still
has two major contributions:

i) We present a different proof of NP-hardness for the optimal diversity man-
agement problem (ODMP) that, in particular, proves the stronger result that the
ODMP with constant option costs and constant demands is NP-hard. This also
motivates the introduction of a new model for the ODMP: the minimum weight

spanning star forest problem.
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ii) This paper focus on a real application and intends to a) tackle very large
real instances (we run instances whose dimensions are greater than twenty times
de greatest dimensions previously reported); b) provide real problem specifications
which may motivate researchers to study different approaches to this problem; c)
report preliminar results on real data which also may influence research for new
optimization techniques.

In Section 2 we describe the practical problem and we also point out particular
specifications of the problem. In section 3 we revisit the standard mathematical
model for the ODMP, introduce the minimum weight spanning star forest model for
this problem and present a new proof of its NP-hardness. In Section 4 we describe
the implemented optimization techniques. The practical computational results are
presented in Section 5. Finally, in Section 6, we make some final remarks and

summarize the main questions raised in the paper.

2. PROBLEM DESCRIPTION

Cars are purchased with a set of active options (airbags, air conditioned, radio
car, etc). Active option means that the car is prepared with the connections neces-
sary to include such option (that is, the car has all the necessary material for that
connection). A set of active options is called a configuration. For technical reasons,
it is not possible to produce a large variety of different configurations. Therefore,
in general, cars are produced with more active options than the ones asked by the
clients. Since the global cost of option connections is very high in automobile indus-
try, it is essential to choose a set of, say p, different configurations to be produced

in order to minimize the total cost of the unnecessary option connections.

Problem particularities. Next we describe the particularities of this real ap-
plication problem which have great influence on the choice of the optimization

techniques and may motivate the study of alternative models.

(1) Some pairs of different configurations associated with certain special options
are incompatible, such as the configurations related with left-hand side
and right-hand side wheel. This incompatibility relation produce classes
of compatible configurations. For large instances the number of classes of
compatible configurations can be greater than twenty.

(2) Each class of compatible configurations consider a set of options and in
each of these classes, the configuration with all options (considered in that
class) active should be produced.

(3) There are two type of instances: instances with real data, where the demand
for each configuration is known in advance, and forecasted instances were
the demand is estimated. This last case occurs, for instance, when a new
car model is to be produced. In the first case the number of different
configurations is small even when the total demand is very large. The
reason is that the clients usually choose the same type of options. In the
second case however the number of configurations can be very large (more

than two million). This follows from the fact that the company doesn’t
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consider the possibility of dropping any feasible configuration, and therefore
every configuration has a strictly positive (although sometimes very small)
probability of being produced.

(4) The maximum number of configurations to be produced (value of p) is small
(usually, at most sixty).

(5) Tt is desirable to provide estimative costs for several values of p.

(6) Car manufacture companies (clients of the cable manufactures) usually pay

a percentage of the additional cost. The measure of this cost is called the

additional cost

ideal cost x

give-away percentage. This is computed as % give—away =
100, where the ideal cost is the cost of the demanded configurations and

the additional cost is the total cost of solution minus the ideal cost.

3. MATHEMATICAL MODEL AND COMPLEXITY

Consider the inclusion relation configurations digraph G = (V, A) where the
vertices are configurations (that is, sets of active option connections) and an arc
(i,7) € A means that the configuration ¢ includes configuration j (each active option
in configuration j is also active in configuration i). Note that this digraph has no
direct cycles (that is, it is acyclic) and it is arc transitive (that is, if (¢,7), (j, k) € A,
then (i,k) € A). A spanning star forest (SSF) of G is spanning subdigraph where
each component is a star. Here, we consider that a star has a center, which is a
vertex with zero in-degree, and all other vertices, if any, have zero out-degree and
one in-degree. Given any acyclic arc transitive digraph (in particular, an inclusion
relation configurations digraph), to determine a SSF of minimum cardinality is
very easy. In fact, since every acyclic arc transitive digraph G = (V, A) is the
comparability digraph of the partially ordered relation set (poset), P = (V,>),
such that x = y iff z =y or (x,y) € A, the following proposition holds.

Proposition 3.1. Let G = (V, A) be an acyclic arc transitive digraph. Then there
is a SSF of G where each star center is a maximal element for the poset defined by
G. Furthermore, there is no other SSF of G with less number of stars.

Proof. Since it is immediate to conclude that from the maximal elements of the
poset defined by G = (V, A) we may construct a SSF with these maximal ele-
ments as star centers, we just prove the second part of the theorem. Let M =
{vj,...,vj,} €V be the set of maximal elements of the poset defined by G and
let C' = {vj,,...v;,} €V be the set of centers of a SSF of . Since there is no arc
(z,y) € A with x € C and y € M, it follows that M C C and then |M| <|C|. O

A SSF with minimum number of stars is designated minimum size SSF. Let
¢y be the unit production cost of configuration v (i.e, the sum of the costs of all
active options in configuration v) and let n, denote the expected number of cars
with configuration v that will be sell. To each each arc (i,j) of G we assign the
weight w;; = n;(¢; — ¢;). Note that w;; > 0 since every active option has a
positive cost, configuration 7 strictly contains configuration j, and it is assumed

that n; > 0, otherwise configuration ¢ would not be considered. The weight of a
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SSF is the sum of the weights of its arcs. The p-ODMP is to choose a SSF with p
centers (configurations) of minimum weight. This is usually seen as a version of the
p—median problem and, unlike minimum size SSF problem, it is NP-hard. The first
proof of NP-hardness of the ODMP was given in [3]. Here we present a different
proof for a model of p-ODMP where the weight of each arc of the inclusion relation
configurations digraph is the difference between the cardinality of the configurations
represented by the vertices connected by the arc. This particular model is called
the minimum weight spanning star forest with p stars (minimum weight p-SSF) of
an acyclic arc transitive digraph, and consists on the determination of a minimum
weight arc sum spanning star forest with p stars. Let us consider this problem in
the following a different perspective (covering sets by sets):

Let N = {1,2,...,n} (corresponding to the set of options) and F C 2V a
collection of subsets of N (corresponding to the set of configurations, that is, the set
of vertices of G). A spanning star forest of F is a partition { Fy, Fa, ..., Fi} (Fj # 0)
of F such that in each F}; there exists an element X; containing all other elements
X € F; (configuration with all active options included in the configurations of Fy).
We call X; the center of the star F;. Each arc in the star F} is defined by the
ordered pair of sets (X;,X) and has weight |X,;| — | X/, for all X € F; \ X;.

Note that every maximal (with respect to inclusion) element of F must be the
center of some star.

Theorem 3.2. Deciding whether a collection F of subsets of N = {1,2,...,n} has
a p-SSF of weight not greater than L is NP-complete.

Proof. The problem is clearly in NP. We transform the 3-minimum cover problem
which is NP-complete (see [5]) to the minimum weight p-SSF decision problem.
Note that the 3-minimum cover asks whether a collection C of subsets with cardi-
nality 3 of N = {1,2,...,n} contains a cover of size p or less, i.e., a subset C’ of
C with |C'| < p such that every element of N occurs in at least one member of C’.
Then, given an instance C C 2V (with |N| = n > 5) of the 3-minimum cover of N of
size at most p, let us define F := {N,{1},...,{n}}UC and L := 2n+(|C|—p)(n—3).
We show that C contains a cover of N of size at most p iff F has a (p + 1)-SSF of
weight arc sum not greater than L.

If C’ is a cover of size p of C, then it is possible to assign to each singleton {j},
j=1,...,n, of F a unique member of C’. This defines a set of k pairwise disjoint
stars of F with total weight equal to 2n. The remaining star of F has center N and
includes all the |C| — p sets of C\ C’. The weight of this star is (|C| — p)(n — 3), and
thus the SSF consisting of these p + 1 stars has weight equal to L (see Figure 1).
Suppose C has no cover of size p. Any choice of p elements of C to became the
centers of stars will leave at least one singleton {j} of F out from those stars. The
weight of any such (p + 1)-SSF is at least 3(n — 1) + (|C| — p)(n — 3) > L.

We complete the proof noting that the weight of every (p 4+ 1)-SSF that uses an
arbitrary singleton {j} to be the center of any star is no less than 2n — 2 + (|C| —

p)(n — 3) +n — 3, and therefore is greater than L. O
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FiGURE 1. Comparability diagram

In real world applications, the inclusion relation configurations digraph has sev-
eral connected components. Let us assume that the inclusion relation configura-
tions digraph G = (V, A) has t components, Gy,...,G:, and also that for each
component Gy, the minimum weight spanning star forest with s stars has weight
W, for s = 1,...,m. Thus, the determination of the weight of the minimum
weight spanning star forest with p stars for the the inclusion relation configura-
tions digraph G, with at least one star in each connected component and such that
p =81+ 82+ -+ s¢ > t, is equivalent to choose the ¢ best entries, WISI, e Wf:,
of the table W = [W}], one entry in each column, such that

t t t
ZW,:: :min{ZW,ﬁk :Zsk :p}.
k=1 k=1 k=1

For instance, considering the Table 1, obtained for an inclusion relation configu-
rations digraph G with connected components Gy, ..., G4, the best entries for the
determination of the minimum weight arc sum spanning star forest of G with 8

stars are the framed ones.
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TABLE 1. Weights of the minimum weight spanning star forests of the

*
Sk_7

components of G.

In the next section, this problem will be formulated as binary linear programming

problem which, in general, is NP hard too.
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4. OPTIMIZATION TECHNIQUES

Based on the specifications of the problem stated in Section 2, the choice of the
optimization techniques is strongly limited.

First, the use of standard commercial software to solve the complete problem
must be excluded, since we are dealing with instances with millions of vertices.

Second, from items 1 and 2, it follows that the number of connected components
is usually large. However, in each component, there is a vertex just with forward
arcs connecting it with the remaining vertices of that component. Therefore, since
these vertices (one for each component) are star centers in the final solution, a large
number of vertices can be immediately chosen.

Third, since the number of components is large and p can not be very large, the
average number of configurations (vertices) chosen in each component is, in general,
not larger than three or four.

These two final observations together with the observations that the greedy
choice of the second configuration in each component is optimal (for this type
of graphs) and considering item 5 of particularities, strongly suggests the use of the
greedy algorithm.

Next we present the optimization techniques implemented during the project.

Greedy Algorithm: Consider an instance with ¢ components and consider an
integer number p, p > t. Take the initial solution S with the ¢ vertices, one for each
component, with null in-degree. For s = ¢ + 1 until p, choose a vertex not in S

whose inclusion in S produces the greatest reduction of the total cost.

For the large dimension real world problems this algorithm has the drawback
that it may imply reading the adjacency matrix (or part of it) of each component
several times and, since the reading and writing operations are too expensive from
the perspective of computational time consumption, an alternative is to run the
greedy algorithm for each component from 1 to p — ¢t + 1 configurations and then
choose the best possible feasible combination of p configurations (vertices). This
idea was independently used in [1]. Next we describe in more detail this second
algorithm.

Two-Phase Algorithm: Consider an instance with ¢t components and an inte-
ger number p, p > t.
Phase 1: Using the Greedy algorithm for each component Gj separately, k& =
1,...,t, obtain a feasible solution and the corresponding weight, W}/, of the mini-
mum weight spanning star forest for the component Gy with s stars, for selecting
s,froms=1tos=p—t+1.



Phase 2: Given the table of weights W} ,, solve (heuristically) the problem

t p—t+l
(4.1) min > Y Wiz
k=1 s=1
p—t+1
(4.2) s. t. > za=1, (k=1,...,1),
s=1
t p—t+1
k=1 s=1
(4.4) s €10,1),  (i=1,....p—t+1 k=1,....1),

where zz, = 1 if the s-th entry of the k-th column of the table W is chosen,
with s =1,...,p—t+1and k =1,...,¢t. Constraints (4.2) ensure that for each
component just one number of stars is selected and (4.3) ensure that the total
number of selected stars is exactly p.

The problem was solved by a Genetic Algorithm. Briefly, genetic algorithms
(GAs) are search procedures that reproduce the mechanics of natural selection and
crossover in biology genetics. First developed by John H. Holland in the 1960’s,
they allow computers to find solutions (or approximations to them) for difficult
problems by using evolutionary techniques, based on function optimization and ar-
tificial intelligence. The base elements of GAs are chromosomes which are (usually
integer Vectors) representations of solutions. GAs can operate on chromosomes in
different ways. In what follows, we describe what is known as the steady state GA
procedure: (1) generate a population of chromosomes; (2) choose a set of best chro-
mosomes by applying a selection function; (3) recombine (crossover) chromosomes
to obtain new ones; (4) change (mutation) some of them; (5) replace a percentage of
weakest chromosomes by the new ones; and (6) repeat the steps (2)-(5) until it gives
a good solution, in a precise sense, or stop after a given number of iterations. For
a comprehensive guide to this subject and an extended list of applications see [6].

However, for an effective application of GAs, and considering their intrinsic
natura, a good tuning of parameters, choice of the selection function, crossover
and mutation mechanisms is required. Therefore, we describe the choices we found
to give the best results for this problem. The size of the initial population is 300
chromosomes, the probability of a crossover is 0.6, the probability of a mutation is
0.1, the percentage of substitutions is 0.25, and the iteration limit number is 2000.
The crossover uses the two point crossover mechanism, i.e. two cuts are made in
both father and son chromosomes, the mutation is a transposition of two genes, i.e.
the so called swap mutator, and the selection function is the linear objective func-
tion given by the expression (4.1). Let us emphasize that we did not register any
significant improvement by, for example, defining the size of the initial population
as a function of p and ¢.

The current implementation of the GA made use of the free C++ genetic algo-
rithm library (GAlib), developed by Matthew Wall from MIT.



5. COMPUTACIONAL RESULTS

Next we present the computational result, obtained in a PIV 3.2 Ghz computer
with 4Gb of memory and 300Gb of hard disk, where #vertices denotes the number
of vertices, t the number of connected components, p the number of stars, #cars
the total demand of configurations (total number of cars, and % g-a the give-away
percentage. The last columns report results obtained using the Greedy or the

Two-Phase algorithms.

Greedy Two-phase
# vertices | t | p | # cars | time (sec.) | % g-a | time (sec.) | % g-a
166 33 | 65 | 38.910 5 0,68 2 0,68
239 24 | 60 | 38.910 5,5 1,72 3 1,72
317 47 | 65 | 38.733 3 1,32 1 1,32
584 16 | 20 | 30.500 3 1 1 1
TABLE 2. Results for known demand instances.
Greedy Two-phase
# vertices | t | p # cars | time (hr.) | % g-a | time (hr.) | % g-a
2.354.688 | 16 | 150 | 1.844.000 234 14,28 80 14,28
1.118.208 | 14 | 150 | 1.800.000 57 13,07 21 13.07
829.440 | 6 | 150 | 1.800.000 96 10,62 38 10,62
393.216 | 16 | 60 | 1.800.000 1 5,17 0,5 5,17

TABLE 3. Results for forecasted demand instances.

6. CONCLUSIONS

The real application study has several drawbacks from a theoretical perspective.
Probably, the major one, is the lack of any more precise information about the
quality of solutions obtained since, for practical reasons, no lower bounding tech-
nique was implemented. Another drawback is the fact that the output information
obtained is conditioned by the practical interests of the company. Related with the
first drawback it is relevant to refer that other algorithms had been tested in earlier
test versions. We briefly mention an algorithm based on the work [7]: for each
vertex compute the minimum of the weights of the incident arcs (take +oco if the
vertex has in-degree equal to zero). Then choose the p vertices corresponding to
the p greatest values obtained. Although the performance of these other algorithms
was, in general, better for randomly generated data (ignoring some particularities
of the problem), for the preliminary real instances, the greedy algorithm had, in
general, very good performances. An intuitive explanation for that behavior can
be found in Section 4. Also, local search algorithms, tested in previous versions,
were dropped once the largest instances were considered.

This study also raised several questions.
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e How to deal with instances with more than two million vertices? With
the technological advances of the automobile industrie this number will
certainly raise (exponentially) in the next years.

e The minimum weight arc sum spanning star forest model was considered
for the ODMP. Can we derive new results for the ODMP by studying the
structure of this model?

e Different practical perspectives of the problem were presented and different
problem versions can be stated. Namely, considering item 5 of particular-
ities, we may state the following problem: Find the minimum number of
configurations such that the % give — away is lower than a given value.

e The particular structure of the inclusion relation configurations digraph
could be explored. Until now, up to the best of our knowledge, only two
major issues were explored: the fact that the graph has several connected
components [1] and using some properties of the optimal solutions it is
possible to fix the value of several variables [4].

Currently we are studying the last issue in order to improve the implemented

algorithms.
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