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Abstract

Let G be a simple undirected graph. Let 0 ≤ α ≤ 1. Let

Aα(G) = αD(G) + (1− α)A(G)

where D(G) and A(G) are the diagonal matrix of the vertex degrees of G
and the adjacency matrix of G, respectively. Let p(G) > 0 and q(G) be the
number of pendant vertices and quasi-pendant vertices of G, respectively.
Let mG(α) be the multiplicity of α as eigenvalue of Aα(G). It is proved that

mG(α) ≥ p(G)− q(G)

with equality if each internal vertex is a quasi-pendant vertex. If there is at
least one internal vertex which is not a quasi-pendant vertex, the equality

mG(α) = p(G)− q(G) +mN(α)

is determined in which mN(α) is the multiplicity of α as eigenvalue of the ma-
trix N . This matrix is obtained from Aα(G) taking the entries corresponding
to the internal vertices which are non quasi-pendant vertices. These results
are applied to search for the multiplicity of α as eigenvalue of Aα(G) when
G is a path, a caterpillar, a circular caterpillar, a generalized Bethe tree or a
Bethe tree. For the Bethe tree case, a simple formula for the nullity is given.
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1. Introduction

Let G = (V (G), E(G)) be a simple undirected graph on n vertices with
vertex set V (G) and edge set E(G). Let D(G) be the diagonal matrix of
order n whose (i, i)−entry is the degree of the i − th vertex of G and let
A (G) be the adjacency matrix of G. The matrices L(G) = D(G)−A(G) and
Q(G) = D(G) + A(G) are the Laplacian and signless Laplacian matrix of
G, respectively. The matrices L(G) and Q(G) are both positive semidefinite
and (0,1) is an eigenpair of L (G) where 1 is the all ones vector. For a
connected graph G, the smallest eigenvalue of Q(G) is positive if and only if
G is non-bipartite.

In [9], the family of matrices Aα(G),

Aα(G) = αD(G) + (1− α)A(G)

with α ∈ [0, 1], is introduced together with a number of some basic results
and several open problems.

Observe that A0 (G) = A (G) and A1/2 (G) = 1
2
Q (G).

A pendant vertex is a vertex of degree 1 and a quasi-pendant vertex is
a vertex adjacent to a pendant vertex. Let p(G) be the number of pendant
vertices and q(G) be the number of quasi-pendant vertices. An internal
vertex is a vertex of degree at least 2. Throughout this paper, we assume
that G is a graph with pendant vertices.

The multiplicity of µ as an eigenvalue of the matrix M is denoted by
mM(µ).

The following results are due to I. Faria [6].

Lemma 1. [6] For any graph G,

mL(G)(1) ≥ p(G)− q(G) (1)

and
mQ(G)(1) ≥ p(G)− q(G). (2)

In [1], it is proved that the equalities in (1) and (2) occur if each internal
vertex is a quasi-pendant vertex. Moreover, if there is at least one internal
vertex which is not a quasi-pendant vertex then equalities

mL(G)(1) = p(G)− q(G) +mN−(1)
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and
mQ(G)(1) = p(G)− q(G) +mN+(1)

are determined, where the matrices N− and N+ are obtained from the Lapla-
cian matrix and signless Laplacian matrix, respectively, taking the entries
corresponding to the internal vertices which are non-quasi-pendant vertices.

We already observed that A1/2(G) = 1
2
Q(G). Then the above mentioned

results can be used to find the multiplicity of 1/2 as eigenvalue of A1/2(G).
In this paper, we search for the multiplicity of α ∈ [0, 1] as eigenvalue

of Aα(G). The multiplicity of α = 0 as eigenvalue of A(G) is known as the
nullity of G and it has been extensively studied (see [12, 13, 15]) and plays
an important role in Chemistry. Some of its applications are described in
[2, 5, 7, 8, 14, 16].

Since A1(G) = D(G), from now on, we consider α ∈ [0, 1).
For simplicity, we write mG(α) instead mAα(G)(α). More precisely, we

prove that
mG(α) ≥ p(G)− q(G). (3)

If each internal vertex of G is a quasi-pendant vertex, it is proved that the
equality in (3) holds. If there is at least one internal vertex which is not a
quasi-pendant vertex, the equality

mG(α) = p(G)− q(G) +mN(α)

is determined in which mN(α) is the multiplicity of α as eigenvalue of the ma-
trix N . This matrix is obtained from Aα(G) taking the entries corresponding
to the internal vertices which are non quasi-pendant vertices.

Let r(G) be the number of internal vertices of G. From now on, G is a
connected graph on n vertices. Let

VP = {v ∈ V (G) : v is a pendant vertex} ,

VQ = {v ∈ V (G) : v is a quasi-pendant vertex}
and

C(G) = V (G) \ (VP ∪ VQ) .

Then C(G) is the set of the internal vertices of G which are not quasi-pendant
vertices.

Throughout the text, |S| denotes the cardinality of the set S. Clearly
|VP | = p (G) , |VQ| = q (G) and |C(G)| = n− p (G)− q (G) .

We introduce some additional notation.
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• The identity matrix is denoted by I and the zero matrix by 0.

• If M is a matrix of order m × m with m ≥ 2 then M̃ is the matrix
obtained from M by deleting its last row and its last column.

• The determinant of a square matrix M is denoted by |M | and the
transpose of M by MT .

• E denotes a matrix whose entries are zeros except the entry in the last
row and last column which is 1.

• G[F ] denotes the subgraph of G induced by F ⊆ V (G).

The orders of the matrices I, 0 and E will be clear from the context.
We recall Lemma 2.2 of [11] that will play an important role in this paper.

Lemma 2. [11] For i = 1, 2, . . . ,m, let Bi be a matrix of order ki × ki and
µi,j be arbitrary scalars. Then∣∣∣∣∣∣∣∣∣∣∣

B1 µ1,2E · · · µ1,m−1E µ1,mE
µ2,1E

T B2 · · · · · · µ2,mE

µ3,1E
T µ3,2E

T . . . · · · ...
...

...
... Bm−1 µm−1,mE

µm,1E
T µm,2E

T · · · µm,m−1E
T Bm

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|B1| µ1,2

∣∣∣B̃2

∣∣∣ · · · µ1,m−1

∣∣∣B̃m−1

∣∣∣ µ1,m

∣∣∣B̃m

∣∣∣
µ2,1

∣∣∣B̃1

∣∣∣ |B2| · · · · · · µ2,m

∣∣∣B̃m

∣∣∣
µ3,1

∣∣∣B̃1

∣∣∣ µ3,2

∣∣∣B̃2

∣∣∣ . . . · · · ...
...

...
... |Bm−1| µm−1,m

∣∣∣B̃m

∣∣∣
µm,1

∣∣∣B̃1

∣∣∣ µm,2

∣∣∣B̃2

∣∣∣ · · · µm,m−1

∣∣∣B̃m−1

∣∣∣ |Bm|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The following result is Corollary 1.3 in [1].

Corollary 1. If ki = 1, for some 1 ≤ i ≤ m, then defining B̃i = 1 the
equality in Lemma 2 also holds.

Another previous result that we need is the following.
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Lemma 3. Consider the square matrix of order s+ 1

S(α) =


α 0 . . . 0 1− α
0 α . . . 0 1− α
...

...
. . .

...
...

0 0 . . . α 1− α
1− α 1− α . . . 1− α αd

 .

Then the characteristic polynomial of S(α) is

|xI − S(α)| = (x− α)s−1((x− αd)(x− α)− s(1− α)2).

Throughout this paper, unless otherwise stated, v1, v2, . . . , vr(G) are the
internal vertices of G. As usual, u ∼ v means that the vertices u and v are
adjacent. For the internal vertices, di is the degree of the vertex vi as a vertex
of G and εi,j = 1 if vi ∼ vj and εi,j = 0, otherwise. For instance, d7 = 6,
ε3,7 = 1 and ε7,10 = 0 (see Figure 1 and Figure 2).

We label the vertices of G with the numbers 1, 2, . . . , n, starting with the
vertices of the stars K1,s1 , . . . , K1,sq(G)

, at each star the vertices are labeled
beginning with the pendant vertices, and finishing with the internal vertices
which are not quasi-pendants. This labeling of the vertices of G is herein
called the global labeling of the vertices of G. Notice that, since the internal
vertices of G are also denoted by v1, . . . , vq(G), . . . , vr(G), for j = 1, . . . , q(G),
each of these vertices vj corresponds, in the global labeling of the vertices of
G, to the vertex

∑j
i=1 si + j and the vertices vq(G)+1, . . . , vr(G) correspond to

the vertices q(G) + p(G) + 1, . . . , n, respectively.

2. Each internal vertex is a quasi-pendant vertex

In this section we consider the case in which each internal vertex of G is a
quasi-pendant vertex. Then r(G) = q(G) and there are starsK1,s1 , . . . , K1,sq(G)

such that G is obtained by identifying the root of K1,si with the i−th vertex
of the graph induced by the quasi-pendant vertices. Moreover, s1 + s2 +
· · · + sq(G) + q(G) = n and si ≥ 1 for all i. We denote this graph G by
G(s1, s2, . . . , sq(G)). In Figure 1, we have an example of such a graph.
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Figure 1: A example where each internal vertex is quasi-pendant.
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Figure 2: The subgraph induced by the internal vertices v1 = 3, v2 = 7, v3 = 11, v4 =
14, v5 = 19 and v6 = 23 of the graph in Figure 1.

For i = 1, 2, . . . , q(G), let

Si(α) =


α 0 . . . 0 1− α
0 α

. . . . . .
...

...
. . . . . . . . .

...

0
. . . . . . α 1− α

1− α . . . . . . 1− α αdvi


of order (si + 1)× (si + 1) and

Ci(α) =

[
α (1− α)

√
si

(1− α)
√
si αdvi

]
.

From the definition of the matrices Si and Ci, and Lemma 3, we have the
following corollary.
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Corollary 2. For i = 1, 2, . . . , q(G),

1.
|xI − Si(α)| = (x− α)si−1|xI − Ci(α)|.

and

2.
| ˜xI − Si(α)| = (x− α)si .

From now on, let 1 − α = β. Using the above mentioned labeling the
matrix Aα(G), G = G(s1, s2, . . . , sq(G)), becomes

Aα(G) =


S1(α) ε1,2βE . . . ε1,q(G)βE

ε1,2βE
T S2(α)

. . .
...

...
. . . . . . εq(G)−1,q(G)βE

ε1,q(G)βE
T . . . εq(G)−1,q(G)βE

T Sq(G)(α)


The next theorem gives the spectrum ofAα(G) ifG = G

(
s1, s2, . . . , sq(G)

)
.

Theorem 1. If G = G
(
s1, s2, . . . , sq(G)

)
, the eigenvalues of Aα(G) are α

with multiplicity at least p(G)−q(G) and the eigenvalues of the 2q(G)×2q(G)
matrix

X =


C1(α) ε1,2βE · · · · · · ε1,q(G)βE

ε1,2βE C2(α)
. . .

...
...

. . . . . . . . .
...

...
. . . Cq(G)−1(α) εq(G)−1,q(G)βE

ε1,q(G)βE · · · · · · εq(G)−1,q(G)βE Cq(G)(α)

 .

Proof. Applying Lemma 2 and Corollary 2, together with a factoring in
each column, we have |xI − Aα(G)| =∣∣∣∣∣∣∣∣∣

(xI − S1(α)) −ε1,2βE . . . −ε1,q(G)βE

−ε1,2βET (xI − S2(α))
. . .

...
...

. . . . . . −εq(G)−1,q(G)βE
−ε1,q(G)βE

T . . . −εq(G)−1,q(G)βE
T (xI − Sq(G)(α))

∣∣∣∣∣∣∣∣∣ =
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q(G)∏
j=1

(x− α)sj−1

∣∣∣∣∣∣∣∣∣∣
|xI − C1(α)| −ε1,2β(x− α) . . . −ε1,q(G)β(x− α)

−ε1,2β(x− α) |xI − C2(α)| . . .
...

...
...

. . . −εq(G)−1,q(G)β(x− α)
−ε1,q(G)β(x− α) −ε2,q(G)β(x− α) . . . |xI − Cq(G)(α)|

∣∣∣∣∣∣∣∣∣∣
.

Applying again Lemma 2, it follows that |xI −X| =∣∣∣∣∣∣∣∣∣∣∣

|xI − C1(α)| −ε1,2β(x− α) . . . −ε1,q(G)−1β(x− α) −ε1,q(G)β(x− α)
−ε1,2β(x− α) |xI − C2(α)| . . . −ε2,q(G)−1β(x− α) −ε2,q(G)β(x− α)

...
...

. . .
...

...
−ε1,q(G)−1β(x− α) −ε2,q(G)−1β(x− α) . . . |xI − Cq(G)−1(α)| −εq(G)−1,q(G)β(x− α)
−ε1,q(G)β(x− α) −ε2,q(G)β(x− α) . . . −εq(G)−1,q(G)β(x− α) |xI − Cq(G)(α)|

∣∣∣∣∣∣∣∣∣∣∣
.

Finally, observe that
∏q(G)

j=1 (x− α)sj−1 = (x− α)p(G)−q(G).

Corollary 3. The multiplicity of α as an eigenvalue of Aα(G), where G =
G
(
s1, s2, . . . , sq(G)

)
, is exactly p(G)− q(G).

Proof. It is sufficient to prove that |αI−X| 6= 0. From the above expression
for |xI −X|, we have |αI −X| =∣∣∣∣∣∣∣∣∣

|αI − C1(α)| 0 . . . 0

0 |αI − C2(α)| . . .
...

...
. . . . . . 0

0 . . . 0 |αI − Cq(G)(α)|

∣∣∣∣∣∣∣∣∣
and for i = 1, 2, . . . , q(G), |αI−Ci(α)| = −(1−α)2si 6= 0. Hence |αI−X| 6= 0.

3. Graphs having internal vertices which are non quasi-pendant

Let e be a column vector of zeros except its last entry which is 1. As
before, the dimension of e will be clear from the context.

Suppose r(G) > q(G). Then there are r(G) − q(G) internal vertices
which are non quasi-pendant vertices and q(G) internal vertices which are
the roots of the stars K1,s1 , K1,s2 , . . . , K1,sq(G)

. Let us denote such a graph G
by G(s1, . . . , sq(G),0), where 0 indicates a vector of zeros with r(G) − q(G)
entries. Without loss of generality, we assume that VQ = {v1, v2, . . . , vq(G)}
and C(G) = {vq(G)+1, vq(G)+2, . . . , vr(G)}. We recall that the global labeling
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for the vertices of G(s1, . . . , sq(G),0) is such that the labels 1, 2, . . . , p(G) +
q(G) are used for the vertices of the stars K1,s1 , K1,s2 , . . . , K1,sq(G)

, and the
labels p(G) + q(G) + 1, . . . , n are used for the internal vertices which are non
quasi-pendant, as illustrated in Figure 3. Using this global labeling jointly
with the labels v1, . . . , vr(G) for the internal vertices (as before) the matrix
Aα(G), where G = G(s1, . . . , sq(G),0), is

Aα(G) =

[
U V
V T N

]
where

U =


S1(α) ε1,2βE . . . ε1,q(G)−1βE ε1,q(G)βE
ε1,2βE

T S2(α) . . . ε2,q(G)−1βE ε2,q(G)βE
...

...
. . .

...
...

ε1,q(G)−1βE
T ε2,q(G)−1βE . . . Sq(G)−1(α) εq(G)−1,q(G)βE

ε1,q(G)βE
T ε2,q(G)βE . . . εq(G)−1,q(G)βE

T Sq(G)(α)

 ,

V = β


ε1,q(G)+1e ε1,q(G)+2e . . . ε1,r(G)−1e ε1,r(G)e
ε2,q(G)+1e ε2,q(G)+2e . . . ε1,r(G)−1e ε2,r(G)e

...
...

. . .
...

...
εq(G)−1,q(G)+1e εq(G)−1,q(G)+2e . . . εq(G)−1,r(G)−1e εq(G)−1,r(G)e
εq(G),q(G)+1e εq(G),q(G)+2e . . . εq(G),r(G)−1e εq(G),r(G)e


and

N =


αd

q(G)+1
ε
q(G)+1,q(G)+2

β . . . ε
q(G)+1,r(G)−1

β ε
q(G)+1,r(G)

β

ε
q(G)+1,q(G)+2

β αd
q(G)+2

. . . ε
q(G)+2,r(G)−1

β ε
q(G)+2,r(G)

β
...

...
. . .

...
...

ε
q(G)+1,r(G)−1

β ε
q(G)+2,r(G)−1

β . . . αd
r(G)−1

ε
r(G)−1,r(G)

β

ε
q(G)+1,r(G)

β ε
q(G)+2,r(G)

β . . . ε
r(G)−1,r(G)

β αd
r(G)


where dq(G)+1, dq(G)+2, . . . , dr(G)−1, dr(G) are the degrees of the vertices
vq(G)+1, vq(G)+2, . . . , vr(G)−1, vr(G), respectively.

Applying Lemma 2, Corollary 1 and Corollary 2, together with a factoring
in each of the first q(G) columns of the resulting determinant, one can prove
the following theorem.
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Theorem 2. If G = G
(
s1, s2, . . . , sq(G),0

)
, the eigenvalues of Aα(G) are α

with multiplicity at least p(G)− q(G) and the eigenvalues of the (n+ q(G)−
p(G))× (n+ q(G)− p(G)) matrix

X =

[
Q R
RT N

]
where

Q =


C1(α) ε1,2βE . . . ε1,q(G)−1βE ε1,q(G)βE
ε1,2βE C2(α) . . . ε2,q(G)−1βE ε2,q(G)βE

...
...

. . .
...

...
ε1,q(G)−1βE ε2,q(G)−1βE . . . Cq(G)−1(α) εq(G)−1,q(G)βE
ε1,q(G)βE ε2,q(G)βE . . . εq(G)−1,q(G)βE Cq(G)(α)

 ,

N =


αd

q(G)+1
ε
q(G)+1,q(G)+2

β . . . ε
q(G)+1,r(G)−1

β ε
q(G)+1,r(G)

β

ε
q(G)+1,q(G)+2

β αd
q(G)+2

. . . ε
q(G)+2,r(G)−1

β ε
q(G)+2,r(G)

β
...

...
. . .

...
...

ε
q(G)+1,r(G)−1

β ε
q(G)+2,r(G)−1

β . . . αd
r(G)−1

ε
r(G)−1,r(G)

β

ε
q(G)+1,r(G)

β ε
q(G)+2,r(G)

β . . . ε
r(G)−1,r(G)

β αd
r(G)


and

R = β


ε1,q(G)+1e ε1,q(G)+2e . . . ε1,r(G)−1e ε1,r(G)e
ε2,q(G)+1e ε2,q(G)+2e . . . ε2,r(G)−1e ε2,r(G)e

...
...

. . .
...

...
εq(G)−1,q(G)+1e εq(G)−1,q(G)+2e . . . εq(G)−1,r(G)−1e εq(G)−1,r(G)e
εq(G),q(G)+1e εq(G),q(G)+2e . . . εq(G),r(G)−1e εq(G),r(G)e

 .

Theorem 3. Let G = G
(
s1, s2, . . . , sq(G),0

)
. Let X,Q and N be the matri-

ces in Theorem 2. Then

1. mX(α) = mN(α).

2. mG(α) = p(G)− q(G) +mN(α).

Proof.

1. We have |αI −X| =

∣∣∣∣ αI −Q −R
−RT αI −N

∣∣∣∣ . Hence, applying Corollary 1,
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Figure 3: The graph G(2, 3, 3, 4,0).

we obtain |αI −X| =∣∣∣∣∣∣∣∣∣∣∣∣

−(1− α)2s1 0 · · · 0 ∗
0 −(1− α)2s2

...
...

...
... 0

. . . 0
...

... · · · · · · −(1− α)2sq(G) ∗
0 0 · · · 0 |αI −N |

∣∣∣∣∣∣∣∣∣∣∣∣
=

(−1)q(G) (1− α)2q(G)s1s2 . . . sq(G) |αI −N | .
Since 1− α 6= 0 and si ≥ 1, for 1 ≤ i ≤ q(G), we obtain |αI −X| = 0 if

and only if |αI −N | = 0. Hence mX(α) = mN(α).
2. From Theorem 2, mG(α) = p(G) − q(G) + mX(α). Since mX(α) =

mN(α), the result follows.
We see that the matrix N in Theorem 2 is obtained from Aα(G) by taking

the entries corresponding to the internal vertices which are not quasi-pendant
vertices.

We recall that G[F ] denotes the subgraph of G induced by F ⊆ V (G).

Theorem 4. Let G = G
(
s1, s2, . . . , sq(G),0

)
. Let X,Q and N be the matri-

ces in Theorem 3. Let C1, . . . , Ct be the components of the subgraph induced
by C(G). Then

mG(α) = p(G)− q(G) +
∑t

i=1mNi(α),

11



where, for 1 ≤ i ≤ t, Ni = (1 − α)A(G[Ci]) + αDi, where Di is a diagonal
matrix of order |Ci| in which each diagonal entry is the degree in G of the
corresponding vertex.

Proof. From the hypothesis, there is a labeling of the vertices of C(G) such
that N =

⊕t
i=1Ni (the direct sum of the matrices Ni, i = 1, . . . , t). Therefore

mN(α) =
∑t

i=1mNi(α). Now, the result is immediate by Theorem 3.

Example 1. For the graph G in Figure 3, we have p(G) = 12, q(G) = 4.

We see that N =

[
3α 0
0 3α

]
. Hence |αI − N | =

∣∣∣∣ α− 3α 0
0 α− 3α

∣∣∣∣ = 0

if and only if α = 0. Therefore, α is not an eigenvalue of N , when α 6= 0.
Then, from Theorem 3, the multiplicity of α as an eigenvalue of Aα(G) is{

p (G)− q (G) = 8, when α 6= 0;
p (G)− q (G) +mN(0) = 10, otherwise.

We recall that the nullity of a graph G, denoted by η(G), is the multi-
plicity of 0 as eigenvalue of A(G). From Theorem 4, we obtain

Corollary 4. Let G = G
(
s1, s2, . . . , sq(G),0

)
. Let C1, . . . , Ct be the compo-

nents of the subgraph induced by C(G). Then

η(G) = p(G)− q(G) +
t∑
i=1

η(Ni), (4)

where, for 1 ≤ i ≤ t, Ni = A(G[Ci]) and η(Ni) is the multiplicity of 0 as
eigenvalue of Ni.

Corollary 5. Let G = G
(
s1, s2, . . . , sq(G),0

)
. Let C1, . . . , Ct be the compo-

nents of the subgraph induced by C(G). Let H be the induced subgraph of G
obtained by deleting one pendant vertex together with the vertex adjacent to
it. Then η(G) = η(H).

Proof. Clearly C(H) = C(G) and the components of the subgraphs induced
by C(H) and C(G) are the same. In addition, p(H) − q(H) = p(G) − 1 −
(q(G)− 1) = p(G)− q(G). Applying (4), we obtain η(H) = η(G).

A version of Corollary 5 is proved in [3] assuming that G is a bipartite
graph with at least one pendant vertex.

12



4. Applications on some particular graphs

In this section, the above results are applied to search for the multiplicity
of α ∈ [0, 1) as an eigenvalue of Aα(G) when G is a path, a caterpillar, a
circular caterpillar, a generalized Bethe tree or a Bethe tree.

4.1. The multiplicity of α as an eigenvalue of Aα(Pn)

Let Pn be the path of n vertices. It is well known that 0 is an eigenvalue
of A(Pn) if and only if n is odd. Moreover, if n is odd then 0 is a simple
eigenvalue of A(Pn). We begin considering the cases 2 ≤ n ≤ 4.

• If n = 2 then Aα(P2) =

[
α 1− α

1− α α

]
. We have |Aα(P2) − αI2| =∣∣∣∣ 0 1− α

1− α 0

∣∣∣∣ = 0 if and only if α = 1. Hence α ∈ (0, 1) is not an

eigenvalue of Aα(P2).

• If n = 3 then P3 is a graph with 2 pendant vertices and 1 quasi-pendant
vertex. From Corollary 3, mP3(α) = 2− 1 = 1.

• If n = 4 then P4 is a graph with 2 pendant vertices and 2 quasi-pendant
vertices. From Corollary 3, mP4(α) = 2 − 2 = 0. Hence α ∈ (0, 1) is
not an eigenvalue of Aα(P4).

From now on let us assume that Pn is such that n ≥ 5. Since α 6= 1, the
vertices of Pn can be labeled such that Aα(Pn) is a symmetric tridiagonal
matrix with nonzero codiagonal entries. Hence the eigenvalues of Aα(Pn) are
simple and, in particular, if α 6= 1 is an eigenvalue of Aα(Pn) then it will be
a simple eigenvalue. We recall the following lemma (see [4]).

Lemma 4. The eigenvalues of the symmetric tridiagonal matrix

N(α) =


2α 1− α

1− α 2α 1− α
. . . . . . . . .

1− α 2α 1− α
1− α 2α

 (5)

of order s× s are

2α + 2(1− α) cos(
πj

s+ 1
)

for j = 1, 2, . . . , s.

13



Corollary 6. Let N(α) as in (5).

1. If 2/3 ≤ α < 1 then α is not an eigenvalue of N(α).

2. γ is an eigenvalue of N(γ) if and only if

γ =
−2 cos( πj

s+1
)

1− 2 cos( πj
s+1

)

for some j = 1, . . . , s.

3. Let

αj =
−2 cos( πj

s+1
)

1− 2 cos( πj
s+1

)
. (6)

Then αj is an eigenvalue of N(αj) and 0 < αj < 1 if and only if
j ∈ {b s+3

2
c, . . . , s}.

Proof.

1. Assume 2/3 ≤ α < 1. Using this hypothesis, the matrix N(α)− αI is
irreducible and diagonally dominant with strict inequality in at least
one row. Then, by Theorem 1.21 in [17], N(α) − αI is an invertible
matrix. Hence α is not an eigenvalue of N(α).

2. It is immediate from Lemma 4.

3. Let αj as in (6). Then αj is an eigenvalue of N(αj). The following fact
is immediate:

0 <
x

1 + x
< 1 if and only if x > 0.

Let j ∈ {b s+3
2
c, . . . , s}. Then −2 cos( πj

s+1
) > 0. From the above fact,

0 < αj =
−2 cos( πj

s+1
)

1−2 cos( πj
s+1

)
< 1. Conversely, suppose that 0 < αj < 1. We use

again the above mentioned fact, to obtain that −2 cos( πj
s+1

) > 0. Hence

j ∈ {b s+3
2
c, . . . , s}.

Since n ≥ 5, Pn has 2 pendant vertices, 2 quasi-pendant vertices and n−4
internal vertices which are not quasi-pendants. By Theorem 3, mPn(α) =

14



2− 2 +mN(α) = mN(α), where

N = N(α) =


2α 1− α

1− α 2α 1− α
. . . . . . . . .

1− α 2α 1− α
1− α 2α


of order (n− 4)× (n− 4).

In particular, for n = 5 and n = 6, we have

• mP5(α) = mN(α) where N = N(α) = [2α]. Since α 6= 0 is not an
eigenvalue of [2α], we have that α 6= 0 is not an eigenvalue of Aα(P5).

• mP6(α) = mN(α) where N = N(α) =

[
2α 1− α

1− α 2α

]
. We have

|N(α) − αI2| =

∣∣∣∣ α 1− α
1− α α

∣∣∣∣ = 0 if and only if α = 1/2. Hence

α ∈ (0, 1) is an eigenvalue of Aα(P6) if and only if α = 1/2.

Applying Theorem 4 and Corollary 6, we get

Corollary 7. Let n ≥ 7. Then α ∈ (0, 1) is an eigenvalue of Aα(Pn) if and
only if

α =
−2 cos( πj

n−3)

1− 2 cos( πj
n−3)

for some j ∈ {bn−1
2
c, . . . , n− 4}.

4.2. Multiplicity of α as eigenvalue of Aα(G) when G is a caterpillar or a
circular caterpillar

We recall that a graph G is a caterpillar (respectively, a circular caterpil-
lar) if its internal vertices induce a path (respectively, a cycle). We say that
a caterpillar or a circular caterpillar is complete if each internal vertex is a
quasi-pendant vertex. From Corollary 3, we get

Corollary 8. If G is a complete caterpillar or a complete circular caterpillar
then mG(α) = p(G)− q(G).
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Figure 4: An example of a circular caterpillar.

If G is a caterpillar or a circular caterpillar having internal vertices which are
not quasi-pendant vertices, we may use Theorem 4 together with equation 6
to find mG(α).

Example 2. Let us find the exact multiplicity of α ∈ [0, 1) as eigenvalue of
Aα(G) where G is the circular caterpillar in Figure 4. Applying Theorem 4,
we obtain

mG(α) = p(G)− q(G) +mN1(α) +mN2(α) = 14− 6 +mN1(α) +mN2(α)

where N1 = N1(α) =

 2α 1− α 0
1− α 2α 1− α

0 1− α 2α

 and N2 = N2(α) = [2α]. By

equation (6) in Corollary 6, α ∈ (0, 1) is an eigenvalue of N1(α) if and only

if α = α3 =
−2 cos( 3π

4
)

1−2 cos( 3π
4
)

=
√
2

1+
√
2
.

Moreover, α ∈ [0, 1) is an eigenvalue of N2 if and only if α = 0. Then,
from Theorem 4, the multiplicity of α as an eigenvalue of Aα(G) is

8 +mN1(α) +mN2(α) = 8 + 1 + 0 = 9, when α = α3;
8 +mN1(0) +mN2(0) = 8 + 0 + 1 = 9, when α = 0;
8 +mN1(α) +mN2(α) = 8, when α ∈ (0, 1)\{α3}.

4.3. Multiplicity of α as eigenvalue of Aα(T ) when T is a generalized Bethe
tree

Given a rooted graph, the level of a vertex is equal to its distance to the
root vertex increased by one. A generalized Bethe tree is a rooted tree in
which vertices at the same level have the same degree.
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root

Figure 5: An example of a generalized Bethe tree of 4 levels.

In this section, Bk is a generalized Bethe tree of k > 1 levels. Given a
Bk and an integer 1 ≤ j ≤ k, nk−j+1 is the number of vertices at level j and
dk−j+1 is the degree of them. In particular, d1 = 1, nk = 1, n1 = p(Bk) and
n2 = q(Bk).

Definition 1. For j = 1, 2, . . . , k − 1, let Tj be the j × j leading principal
submatrix of the k × k symmetric tridiagonal matrix

Tk =



α β
√
d2 − 1 0 · · · 0 0 0

β
√
d2 − 1 αd2 β

√
d3 − 1 · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · αdk−2 β
√
dk−1 − 1 0

0 0 0 · · · β
√
dk−1 − 1 αdk−1 β

√
dk

0 0 0 · · · 0 β
√
dk αdk


where β = 1− α.

Let σ(M) be the multiset of eigenvalues of the matrix M .
Since ds > 1 for all s = 2, 3, ...., j, each matrix Tj has nonzero codiagonal

entries. Then the eigenvalues of each Tj are simple and σ(Tj) ∩ σ(Tj+1) = φ
for j = 1, . . . , k − 1.

The following theorem was proved in [10].

Theorem 5. Let Bk be a generalized Bethe tree.

1. The multiset of the eigenvalues of Aα(Bk) is

σ(Aα(Bk)) = σ(T1) ∪ · · · ∪ σ(Tk). (7)
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2. The multiplicity of each eigenvalue of Tj as an eigenvalue of Aα(Bk)
is nj − nj+1 if 1 ≤ j ≤ k − 1, and is 1 if j = k. If some eigenvalues
obtained in different matrices are equal, their multiplicities are added
together.

3. The largest eigenvalue of Tk is the largest eigenvalue of Aα(Bk).

We observe that for k ≥ 3,

T2 =

[
α (1− α)

√
d2 − 1

(1− α)
√
d2 − 1 αd2

]
.

Hence |T2−αI2| =
∣∣∣∣ 0 (1− α)

√
d2 − 1

(1− α)
√
d2 − 1 α(d2 − 1)

∣∣∣∣ = −(1−α)2(d2−1) 6=

0 because α 6= 1. The next corollary follows easily from Theorem 5.

Corollary 9. Let α ∈ [0, 1). Then

1. mB2(α) = n1 − 1.

2. mB3(α) = n1 − n2 if α 6= 0 and mB3(0) = n1 − n2 + 1.

3. For k ≥ 4,

mBk(α) = n1 − n2 +
k−1∑
j=3

(nj − nj+1)mTj(α) +mTk(α) (8)

in which, for j = 3, . . . , k, mTj(α) = 1 if α ∈ σ(Tj) and mTj(α) = 0
otherwise.

We already observed that σ(Tj) ∩ σ(Tj+1) = φ for j = 1, . . . , k − 1.

Example 3. Let us find mB4(α). Using (8),

mB4(α) = n1 − n2 + (n3 − n4)mT3(α) +mT4(α)

where n4 = 1, T3 =

 α (1− α)
√
d2 − 1 0

(1− α)
√
d2 − 1 αd2 (1− α)

√
d3 − 1

0 (1− α)
√
d3 − 1 αd3


and

T4 =


α (1− α)

√
d2 − 1 0 0

(1− α)
√
d2 − 1 αd2 (1− α)

√
d3 − 1 0

0 (1− α)
√
d3 − 1 αd3 (1− α)

√
d4

0 0 (1− α)
√
d4 αd4

 .
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It is easily to find that

|T3 − αI3| = −α(1− α)2(d2 − 1)(d3 − 1)

and

|T4 − αI4| = −(1− α)2(d2 − 1)(α2(d3 − 1)(d4 − 1)− (1− α)2d4).

Hence α ∈ [0, 1) is an eigenvalue of T3 if and only if α = 0 and α ∈ [0, 1) is

an eigenvalue of T4 if and only if α = α0 =
√
d4√

d4+
√

(d3−1)(d4−1)
. Therefore the

multiplicity of α as an eigenvalue of Aα(B4) is
n1 − n2 + n3 − 1, when α = 0;
n1 − n2 + 1, when α = α0;
n1 − n2, when α ∈ (0, 1)\{α0}.

4.4. Multiplicity of α as eigenvalue of Aα(T ) and the nullity of T when T is
a Bethe tree

A Bethe tree B(d, k) is a rooted tree of k levels in which the root has
degree d, the vertices in level j (2 ≤ j ≤ k − 1) have degree equal to d + 1
and the vertices in level k have degree equal to 1 (pendant vertices). Clearly,
any Bethe tree B(d, k) is a generalized Bethe tree in which the matrix Tj
is the j × j leading principal submatrix of the k × k symmetric tridiagonal
matrix

Tk =



α β
√
d 0 · · · 0 0 0

β
√
d αd β

√
d · · · 0 0 0

0 β
√
d αd · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · αd β
√
d 0

0 0 0 · · · β
√
d αd β

√
d

0 0 0 · · · 0 β
√
d αd


(9)

where β = 1 − α. Moreover, nj = dk−j for j = 1, . . . , k. From Corollary 9,
we get

Corollary 10. Let α ∈ [0, 1). Then

1. mB(d,2)(α) = d− 1.

2. mB(d,3)(α) = (d− 1)d if α 6= 0 and
η(B(d, 3)) = mB(d,3)(0) = (d− 1)d+ 1.
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3. For k ≥ 4,

mB(d,k)(α) = (d− 1)(dk−2 +
k−1∑
j=3

dk−j−1mTj(α)) +mTk(α) (10)

in which the matrix Tj, for j = 3, . . . , k, is the j×j principal submatrix
of Tk as in (9) and mTj(α) = 1 if α ∈ σ(Tj) and mTj(α) = 0 otherwise.

Finally, we find the nullity of B(d, k). Let α = 0. Then, β = 1 and the
matrix Tk becomes

Tk =



0
√
d 0 · · · 0 0 0√

d 0
√
d · · · 0 0 0

0
√
d 0 · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · 0
√
d 0

0 0 0 · · ·
√
d 0

√
d

0 0 0 · · · 0
√
d 0


(11)

Corollary 11. The nullity of B(d, k) is given by

η(B(d, k)) =


dk−1
d+1

, if k is even;

dk+1
d+1

, otherwise.

Proof. We recall that, for j = 1, . . . , k−1, Tj is the j×j principal submatrix
of Tk as in (11). One can easily see that 0 is an eigenvalue of Tj if and only
if j is odd.

1. Let k be an even integer.
For k = 2, we have mB(d,2)(0) = η(B(d, 2)) = d− 1 = d2−1

d+1
. Let k ≥ 4.

From (10), we obtain

η(B(d, k) = (d− 1)(dk−2 + dk−4 + . . .+ d2 + 1) =
dk − 1

d+ 1
.

2. Let k be an odd integer.
For k = 3, we have mB(d,3)(0) = η(B(d, 3)) = (d− 1)d + 1 = d3+1

d+1
. Let

k ≥ 5. From (10), we obtain

η(B(d, k)) = (d− 1)(dk−2 + dk−4 + . . .+ d3 + d) + 1 =
dk + 1

d+ 1
.
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