# On the multiplicity of $\alpha$ as eigenvalue of $A_{\alpha}(G)$ of graphs with pendant vertices 

Domingos M. Cardoso<br>Department of Mathematics, Universidade de Aveiro, Aveiro, Portugal<br>Germain Pastén, Oscar Rojo<br>Department of Mathematics, Universidad Católica del Norte, Antofagasta, Chile.


#### Abstract

Let $G$ be a simple undirected graph. Let $0 \leq \alpha \leq 1$. Let $$
A_{\alpha}(G)=\alpha D(G)+(1-\alpha) A(G)
$$


where $D(G)$ and $A(G)$ are the diagonal matrix of the vertex degrees of $G$ and the adjacency matrix of $G$, respectively. Let $p(G)>0$ and $q(G)$ be the number of pendant vertices and quasi-pendant vertices of $G$, respectively. Let $m_{G}(\alpha)$ be the multiplicity of $\alpha$ as eigenvalue of $A_{\alpha}(G)$. It is proved that

$$
m_{G}(\alpha) \geq p(G)-q(G)
$$

with equality if each internal vertex is a quasi-pendant vertex. If there is at least one internal vertex which is not a quasi-pendant vertex, the equality

$$
m_{G}(\alpha)=p(G)-q(G)+m_{N}(\alpha)
$$

is determined in which $m_{N}(\alpha)$ is the multiplicity of $\alpha$ as eigenvalue of the matrix $N$. This matrix is obtained from $A_{\alpha}(G)$ taking the entries corresponding to the internal vertices which are non quasi-pendant vertices. These results are applied to search for the multiplicity of $\alpha$ as eigenvalue of $A_{\alpha}(G)$ when $G$ is a path, a caterpillar, a circular caterpillar, a generalized Bethe tree or a Bethe tree. For the Bethe tree case, a simple formula for the nullity is given.
Keywords: Adjacency matrix, signless Laplacian matrix, Laplacian matrix, convex combination of matrices, eigenvalues, nullity.
2000 MSC: 05E30, 15A18, 05C50

## 1. Introduction

Let $G=(V(G), E(G))$ be a simple undirected graph on $n$ vertices with vertex set $V(G)$ and edge set $E(G)$. Let $D(G)$ be the diagonal matrix of order $n$ whose $(i, i)$-entry is the degree of the $i-t h$ vertex of $G$ and let $A(G)$ be the adjacency matrix of $G$. The matrices $L(G)=D(G)-A(G)$ and $Q(G)=D(G)+A(G)$ are the Laplacian and signless Laplacian matrix of $G$, respectively. The matrices $L(G)$ and $Q(G)$ are both positive semidefinite and $(0, \mathbf{1})$ is an eigenpair of $L(G)$ where $\mathbf{1}$ is the all ones vector. For a connected graph $G$, the smallest eigenvalue of $Q(G)$ is positive if and only if $G$ is non-bipartite.

In [9], the family of matrices $A_{\alpha}(G)$,

$$
A_{\alpha}(G)=\alpha D(G)+(1-\alpha) A(G)
$$

with $\alpha \in[0,1]$, is introduced together with a number of some basic results and several open problems.

Observe that $A_{0}(G)=A(G)$ and $A_{1 / 2}(G)=\frac{1}{2} Q(G)$.
A pendant vertex is a vertex of degree 1 and a quasi-pendant vertex is a vertex adjacent to a pendant vertex. Let $p(G)$ be the number of pendant vertices and $q(G)$ be the number of quasi-pendant vertices. An internal vertex is a vertex of degree at least 2. Throughout this paper, we assume that $G$ is a graph with pendant vertices.

The multiplicity of $\mu$ as an eigenvalue of the matrix $M$ is denoted by $m_{M}(\mu)$.

The following results are due to I. Faria [6].
Lemma 1. [6] For any graph $G$,

$$
\begin{equation*}
m_{L(G)}(1) \geq p(G)-q(G) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{Q(G)}(1) \geq p(G)-q(G) \tag{2}
\end{equation*}
$$

In [1], it is proved that the equalities in (1) and (2) occur if each internal vertex is a quasi-pendant vertex. Moreover, if there is at least one internal vertex which is not a quasi-pendant vertex then equalities

$$
m_{L(G)}(1)=p(G)-q(G)+m_{N^{-}}(1)
$$

and

$$
m_{Q(G)}(1)=p(G)-q(G)+m_{N^{+}}(1)
$$

are determined, where the matrices $N^{-}$and $N^{+}$are obtained from the Laplacian matrix and signless Laplacian matrix, respectively, taking the entries corresponding to the internal vertices which are non-quasi-pendant vertices.

We already observed that $A_{1 / 2}(G)=\frac{1}{2} Q(G)$. Then the above mentioned results can be used to find the multiplicity of $1 / 2$ as eigenvalue of $A_{1 / 2}(G)$.

In this paper, we search for the multiplicity of $\alpha \in[0,1]$ as eigenvalue of $A_{\alpha}(G)$. The multiplicity of $\alpha=0$ as eigenvalue of $A(G)$ is known as the nullity of $G$ and it has been extensively studied (see $[12,13,15]$ ) and plays an important role in Chemistry. Some of its applications are described in $[2,5,7,8,14,16]$.

Since $A_{1}(G)=D(G)$, from now on, we consider $\alpha \in[0,1)$.
For simplicity, we write $m_{G}(\alpha)$ instead $m_{A_{\alpha}(G)}(\alpha)$. More precisely, we prove that

$$
\begin{equation*}
m_{G}(\alpha) \geq p(G)-q(G) \tag{3}
\end{equation*}
$$

If each internal vertex of $G$ is a quasi-pendant vertex, it is proved that the equality in (3) holds. If there is at least one internal vertex which is not a quasi-pendant vertex, the equality

$$
m_{G}(\alpha)=p(G)-q(G)+m_{N}(\alpha)
$$

is determined in which $m_{N}(\alpha)$ is the multiplicity of $\alpha$ as eigenvalue of the matrix $N$. This matrix is obtained from $A_{\alpha}(G)$ taking the entries corresponding to the internal vertices which are non quasi-pendant vertices.

Let $r(G)$ be the number of internal vertices of $G$. From now on, $G$ is a connected graph on $n$ vertices. Let

$$
\begin{gathered}
V_{P}=\{v \in V(G): v \text { is a pendant vertex }\} \\
V_{Q}=\{v \in V(G): v \text { is a quasi-pendant vertex }\}
\end{gathered}
$$

and

$$
C(G)=V(G) \backslash\left(V_{P} \cup V_{Q}\right)
$$

Then $C(G)$ is the set of the internal vertices of $G$ which are not quasi-pendant vertices.

Throughout the text, $|S|$ denotes the cardinality of the set $S$. Clearly $\left|V_{P}\right|=p(G),\left|V_{Q}\right|=q(G)$ and $|C(G)|=n-p(G)-q(G)$.

We introduce some additional notation.

- The identity matrix is denoted by $I$ and the zero matrix by 0 .
- If $M$ is a matrix of order $m \times m$ with $m \geq 2$ then $\widetilde{M}$ is the matrix obtained from $M$ by deleting its last row and its last column.
- The determinant of a square matrix $M$ is denoted by $|M|$ and the transpose of $M$ by $M^{T}$.
- $E$ denotes a matrix whose entries are zeros except the entry in the last row and last column which is 1 .
- $G[F]$ denotes the subgraph of $G$ induced by $F \subseteq V(G)$.

The orders of the matrices $I, 0$ and $E$ will be clear from the context.
We recall Lemma 2.2 of [11] that will play an important role in this paper.
Lemma 2. [11] For $i=1,2, \ldots, m$, let $B_{i}$ be a matrix of order $k_{i} \times k_{i}$ and $\mu_{i, j}$ be arbitrary scalars. Then

$$
\begin{aligned}
& \left|\begin{array}{ccccc}
B_{1} & \mu_{1,2} E & \cdots & \mu_{1, m-1} E & \mu_{1, m} E \\
\mu_{2,1} E^{T} & B_{2} & \cdots & \cdots & \mu_{2, m} E \\
\mu_{3,1} E^{T} & \mu_{3,2} E^{T} & \ddots & \ldots & \vdots \\
\vdots & \vdots & \vdots & B_{m-1} & \mu_{m-1, m} E \\
\mu_{m, 1} E^{T} & \mu_{m, 2} E^{T} & \cdots & \mu_{m, m-1} E^{T} & B_{m}
\end{array}\right| \\
& =\left|\begin{array}{ccccc}
\left|B_{1}\right| & \mu_{1,2}\left|\widetilde{B_{2}}\right| & \cdots & \mu_{1, m-1}\left|\widetilde{B_{m-1}}\right| & \mu_{1, m} \mid \widetilde{B_{m}} \\
\mu_{2,1}\left|\widetilde{B_{1}}\right| & \left|B_{2}\right| & \cdots & \cdots & \mu_{2, m}\left|\widetilde{B_{m}}\right| \\
\mu_{3,1}\left|\widetilde{B_{1}}\right| & \mu_{3,2}\left|\widetilde{B_{2}}\right| & \ddots & \cdots & \vdots \\
\vdots & \vdots & \vdots & \left|B_{m-1}\right| & \mu_{m-1, m}\left|\widetilde{B_{m}}\right| \\
\mu_{m, 1}\left|\widetilde{B_{1}}\right| & \mu_{m, 2}\left|\widetilde{B_{2}}\right| & \cdots & \mu_{m, m-1}\left|\widetilde{B_{m-1}}\right| & \left|B_{m}\right|
\end{array}\right| .
\end{aligned}
$$

The following result is Corollary 1.3 in [1].
Corollary 1. If $k_{i}=1$, for some $1 \leq i \leq m$, then defining $\widetilde{B_{i}}=1$ the equality in Lemma 2 also holds.

Another previous result that we need is the following.

Lemma 3. Consider the square matrix of order $s+1$

$$
S(\alpha)=\left[\begin{array}{ccccc}
\alpha & 0 & \ldots & 0 & 1-\alpha \\
0 & \alpha & \ldots & 0 & 1-\alpha \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & \alpha & 1-\alpha \\
1-\alpha & 1-\alpha & \ldots & 1-\alpha & \alpha d
\end{array}\right]
$$

Then the characteristic polynomial of $S(\alpha)$ is

$$
|x I-S(\alpha)|=(x-\alpha)^{s-1}\left((x-\alpha d)(x-\alpha)-s(1-\alpha)^{2}\right)
$$

Throughout this paper, unless otherwise stated, $v_{1}, v_{2}, \ldots, v_{r(G)}$ are the internal vertices of $G$. As usual, $u \sim v$ means that the vertices $u$ and $v$ are adjacent. For the internal vertices, $d_{i}$ is the degree of the vertex $v_{i}$ as a vertex of $G$ and $\varepsilon_{i, j}=1$ if $v_{i} \sim v_{j}$ and $\varepsilon_{i, j}=0$, otherwise. For instance, $d_{7}=6$, $\varepsilon_{3,7}=1$ and $\varepsilon_{7,10}=0$ (see Figure 1 and Figure 2).

We label the vertices of $G$ with the numbers $1,2, \ldots, n$, starting with the vertices of the stars $K_{1, s_{1}}, \ldots, K_{1, s_{q(G)}}$, at each star the vertices are labeled beginning with the pendant vertices, and finishing with the internal vertices which are not quasi-pendants. This labeling of the vertices of $G$ is herein called the global labeling of the vertices of $G$. Notice that, since the internal vertices of $G$ are also denoted by $v_{1}, \ldots, v_{q(G)}, \ldots, v_{r(G)}$, for $j=1, \ldots, q(G)$, each of these vertices $v_{j}$ corresponds, in the global labeling of the vertices of $G$, to the vertex $\sum_{i=1}^{j} s_{i}+j$ and the vertices $v_{q(G)+1}, \ldots, v_{r(G)}$ correspond to the vertices $q(G)+p(G)+1, \ldots, n$, respectively.

## 2. Each internal vertex is a quasi-pendant vertex

In this section we consider the case in which each internal vertex of $G$ is a quasi-pendant vertex. Then $r(G)=q(G)$ and there are stars $K_{1, s_{1}}, \ldots, K_{1, s_{q(G)}}$ such that $G$ is obtained by identifying the root of $K_{1, s_{i}}$ with the $i$-th vertex of the graph induced by the quasi-pendant vertices. Moreover, $s_{1}+s_{2}+$ $\cdots+s_{q(G)}+q(G)=n$ and $s_{i} \geq 1$ for all $i$. We denote this graph $G$ by $G\left(s_{1}, s_{2}, \ldots, s_{q(G)}\right)$. In Figure 1, we have an example of such a graph.


Figure 1: A example where each internal vertex is quasi-pendant.


Figure 2: The subgraph induced by the internal vertices $v_{1}=3, v_{2}=7, v_{3}=11, v_{4}=$ $14, v_{5}=19$ and $v_{6}=23$ of the graph in Figure 1.

For $i=1,2, \ldots, q(G)$, let

$$
S_{i}(\alpha)=\left[\begin{array}{ccccc}
\alpha & 0 & \ldots & 0 & 1-\alpha \\
0 & \alpha & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \alpha & 1-\alpha \\
1-\alpha & \ldots & \ldots & 1-\alpha & \alpha d_{v_{i}}
\end{array}\right]
$$

of order $\left(s_{i}+1\right) \times\left(s_{i}+1\right)$ and

$$
C_{i}(\alpha)=\left[\begin{array}{cc}
\alpha & (1-\alpha) \sqrt{s_{i}} \\
(1-\alpha) \sqrt{s_{i}} & \alpha d_{v_{i}}
\end{array}\right]
$$

From the definition of the matrices $S_{i}$ and $C_{i}$, and Lemma 3, we have the following corollary.

Corollary 2. For $i=1,2, \ldots, q(G)$,
1.

$$
\left|x I-S_{i}(\alpha)\right|=(x-\alpha)^{s_{i}-1}\left|x I-C_{i}(\alpha)\right| .
$$

and
2.

$$
\left|x \widetilde{x-S_{i}}(\alpha)\right|=(x-\alpha)^{s_{i}} .
$$

From now on, let $1-\alpha=\beta$. Using the above mentioned labeling the $\operatorname{matrix} A_{\alpha}(G), G=G\left(s_{1}, s_{2}, \ldots, s_{q(G)}\right)$, becomes

$$
A_{\alpha}(G)=\left[\begin{array}{cccc}
S_{1}(\alpha) & \varepsilon_{1,2} \beta E & \ldots & \varepsilon_{1, q(G)} \beta E \\
\varepsilon_{1,2} \beta E^{T} & S_{2}(\alpha) & \ddots & \vdots \\
\vdots & \ddots & \ddots & \varepsilon_{q(G)-1, q(G)} \beta E \\
\varepsilon_{1, q(G)} \beta E^{T} & \cdots & \varepsilon_{q(G)-1, q(G)} \beta E^{T} & S_{q(G)}(\alpha)
\end{array}\right]
$$

The next theorem gives the spectrum of $A_{\alpha}(G)$ if $G=G\left(s_{1}, s_{2}, \ldots, s_{q(G)}\right)$.
Theorem 1. If $G=G\left(s_{1}, s_{2}, \ldots, s_{q(G)}\right)$, the eigenvalues of $A_{\alpha}(G)$ are $\alpha$ with multiplicity at least $p(G)-q(G)$ and the eigenvalues of the $2 q(G) \times 2 q(G)$ matrix

$$
X=\left[\begin{array}{ccccc}
C_{1}(\alpha) & \varepsilon_{1,2} \beta E & \cdots & \cdots & \varepsilon_{1, q(G)} \beta E \\
\varepsilon_{1,2} \beta E & C_{2}(\alpha) & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & C_{q(G)-1}(\alpha) & \varepsilon_{q(G)-1, q(G)} \beta E \\
\varepsilon_{1, q(G)} \beta E & \cdots & \cdots & \varepsilon_{q(G)-1, q(G)} \beta E & C_{q(G)}(\alpha)
\end{array}\right]
$$

Proof. Applying Lemma 2 and Corollary 2, together with a factoring in each column, we have $\left|x I-A_{\alpha}(G)\right|=$

$$
\left|\begin{array}{cccc}
\left(x I-S_{1}(\alpha)\right) & -\varepsilon_{1,2} \beta E & \cdots & -\varepsilon_{1, q(G)} \beta E \\
-\varepsilon_{1,2} \beta E^{T} & \left(x I-S_{2}(\alpha)\right) & \ddots & \vdots \\
\vdots & \ddots & \ddots & -\varepsilon_{q(G)-1, q(G)} \beta E \\
-\varepsilon_{1, q(G)} \beta E^{T} & \cdots & -\varepsilon_{q(G)-1, q(G)} \beta E^{T} & \left(x I-S_{q(G)}(\alpha)\right)
\end{array}\right|=
$$

$$
\prod_{j=1}^{q(G)}(x-\alpha)^{s_{j}-1}\left|\begin{array}{cccc}
\left|x I-C_{1}(\alpha)\right| & -\varepsilon_{1,2} \beta(x-\alpha) & \cdots & -\varepsilon_{1, q(G)} \beta(x-\alpha) \\
-\varepsilon_{1,2} \beta(x-\alpha) & \left|x I-C_{2}(\alpha)\right| & \cdots & \vdots \\
\vdots & \vdots & \ddots & -\varepsilon_{q(G)-1, q(G)} \beta(x-\alpha) \\
-\varepsilon_{1, q(G)} \beta(x-\alpha) & -\varepsilon_{2, q(G)} \beta(x-\alpha) & \cdots & \left|x I-C_{q(G)}(\alpha)\right|
\end{array}\right| .
$$

Applying again Lemma 2, it follows that $|x I-X|=$

$$
\left|\begin{array}{ccccc}
\left|x I-C_{1}(\alpha)\right| & -\varepsilon_{1,2} \beta(x-\alpha) & \cdots & -\varepsilon_{1, q(G)-1} \beta(x-\alpha) & -\varepsilon_{1, q(G)} \beta(x-\alpha) \\
-\varepsilon_{1,2} \beta(x-\alpha) & \left|x I-C_{2}(\alpha)\right| & \cdots & -\varepsilon_{2, q(G)-1} \beta(x-\alpha) & -\varepsilon_{2, q(G)} \beta(x-\alpha) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
-\varepsilon_{1, q(G)-1} \beta(x-\alpha) & -\varepsilon_{2, q(G)-1} \beta(x-\alpha) & \cdots & \left|x I-C_{q(G)-1}(\alpha)\right| & -\varepsilon_{q(G)-1, q(G)} \beta(x-\alpha) \\
-\varepsilon_{1, q(G)} \beta(x-\alpha) & -\varepsilon_{2, q(G)} \beta(x-\alpha) & \cdots & -\varepsilon_{q(G)-1, q(G)} \beta(x-\alpha) & \left|x I-C_{q(G)}(\alpha)\right|
\end{array}\right|
$$

Finally, observe that $\prod_{j=1}^{q(G)}(x-\alpha)^{s_{j}-1}=(x-\alpha)^{p(G)-q(G)}$.
Corollary 3. The multiplicity of $\alpha$ as an eigenvalue of $A_{\alpha}(G)$, where $G=$ $G\left(s_{1}, s_{2}, \ldots, s_{q(G)}\right)$, is exactly $p(G)-q(G)$.

Proof. It is sufficient to prove that $|\alpha I-X| \neq 0$. From the above expression for $|x I-X|$, we have $|\alpha I-X|=$

$$
\left|\begin{array}{cccc}
\left|\alpha I-C_{1}(\alpha)\right| & 0 & \cdots & 0 \\
0 & \left|\alpha I-C_{2}(\alpha)\right| & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \left|\alpha I-C_{q(G)}(\alpha)\right|
\end{array}\right|
$$

and for $i=1,2, \ldots, q(G),\left|\alpha I-C_{i}(\alpha)\right|=-(1-\alpha)^{2} s_{i} \neq 0$. Hence $|\alpha I-X| \neq 0$.

## 3. Graphs having internal vertices which are non quasi-pendant

Let $\mathbf{e}$ be a column vector of zeros except its last entry which is 1 . As before, the dimension of $\mathbf{e}$ will be clear from the context.

Suppose $r(G)>q(G)$. Then there are $r(G)-q(G)$ internal vertices which are non quasi-pendant vertices and $q(G)$ internal vertices which are the roots of the stars $K_{1, s_{1}}, K_{1, s_{2}}, \ldots, K_{1, s_{q(G)}}$. Let us denote such a graph $G$ by $G\left(s_{1}, \ldots, s_{q(G)}, \mathbf{0}\right)$, where $\mathbf{0}$ indicates a vector of zeros with $r(G)-q(G)$ entries. Without loss of generality, we assume that $V_{Q}=\left\{v_{1}, v_{2}, \ldots, v_{q(G)}\right\}$ and $C(G)=\left\{v_{q(G)+1}, v_{q(G)+2}, \ldots, v_{r}(G)\right\}$. We recall that the global labeling
for the vertices of $G\left(s_{1}, \ldots, s_{q(G)}, \mathbf{0}\right)$ is such that the labels $1,2, \ldots, p(G)+$ $q(G)$ are used for the vertices of the stars $K_{1, s_{1}}, K_{1, s_{2}}, \ldots, K_{1, s_{q(G)}}$, and the labels $p(G)+q(G)+1, \ldots, n$ are used for the internal vertices which are non quasi-pendant, as illustrated in Figure 3. Using this global labeling jointly with the labels $v_{1}, \ldots, v_{r(G)}$ for the internal vertices (as before) the matrix $A_{\alpha}(G)$, where $G=G\left(s_{1}, \ldots, s_{q(G)}, \mathbf{0}\right)$, is

$$
A_{\alpha}(G)=\left[\begin{array}{cc}
U & V \\
V^{T} & N
\end{array}\right]
$$

where

$$
\begin{gathered}
U=\left[\begin{array}{ccccc}
S_{1}(\alpha) & \varepsilon_{1,2} \beta E & \ldots & \varepsilon_{1, q(G)-1} \beta E & \varepsilon_{1, q(G)} \beta E \\
\varepsilon_{1,2} \beta E^{T} & S_{2}(\alpha) & \ldots & \varepsilon_{2, q(G)-1} \beta E & \varepsilon_{2, q(G)} \beta E \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\varepsilon_{1, q(G)-1} \beta E^{T} & \varepsilon_{2, q(G)-1} \beta E & \ldots & S_{q(G)-1}(\alpha) & \varepsilon_{q(G)-1, q(G)} \beta E \\
\varepsilon_{1, q(G)} \beta E^{T} & \varepsilon_{2, q(G)} \beta E & \ldots & \varepsilon_{q(G)-1, q(G)} \beta E^{T} & S_{q(G)}(\alpha)
\end{array}\right], \\
V=\beta\left[\begin{array}{ccccc}
\varepsilon_{1, q(G)+1} \mathbf{e} & \varepsilon_{1, q(G)+2} \mathbf{e} & \ldots & \varepsilon_{1, r(G)-1} \mathbf{e} & \varepsilon_{1, r(G)} \mathbf{e} \\
\varepsilon_{2, q(G)+1} \mathbf{e} & \varepsilon_{2, q(G)+2} \mathbf{e} & \ldots & \varepsilon_{1, r(G)-1} \mathbf{e} & \varepsilon_{2, r(G)} \mathbf{e} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\varepsilon_{q(G)-1, q(G)+1} \mathbf{e} & \varepsilon_{q(G)-1, q(G)+2} \mathbf{e} & \ldots & \varepsilon_{q(G)-1, r(G)-1} \mathbf{e} & \varepsilon_{q(G)-1, r(G)} \mathbf{e} \\
\varepsilon_{q(G), q(G)+1} \mathbf{e} & \varepsilon_{q(G), q(G)+2} \mathbf{e} & \ldots & \varepsilon_{q(G), r(G)-1} \mathbf{e} & \varepsilon_{q(G), r(G)}
\end{array}\right]
\end{gathered}
$$

and

$$
N=\left[\begin{array}{ccccc}
\alpha d_{q(G)+1} & \varepsilon_{q(G)+1, q(G)+2} \beta & \ldots & \varepsilon_{q(G)+1, r(G)-1} \beta & \varepsilon_{q(G)+1, r(G)} \beta \\
\varepsilon_{q(G)+1, q(G)+2} \beta & \alpha d_{q(G)+2} & \ldots & \varepsilon_{q(G)+2, r(G)-1} \beta & \varepsilon_{q(G)+2, r(G)} \beta \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\varepsilon_{q(G)+1, r(G)-1} \beta & \varepsilon_{q(G)+2, r(G)-1} \beta & \ldots & \alpha d_{r(G)-1} & \varepsilon_{r(G)-1, r(G)} \beta \\
\varepsilon_{q(G)+1, r(G)} \beta & \varepsilon_{q(G)+2, r(G)} \beta & \ldots & \varepsilon_{r(G)-1, r(G)} \beta & \alpha d_{r(G)}
\end{array}\right]
$$

where $d_{q(G)+1}, d_{q(G)+2}, \ldots, d_{r(G)-1}, d_{r(G)}$ are the degrees of the vertices $v_{q(G)+1}, v_{q(G)+2}, \ldots, v_{r(G)-1}, v_{r(G)}$, respectively.

Applying Lemma 2, Corollary 1 and Corollary 2, together with a factoring in each of the first $q(G)$ columns of the resulting determinant, one can prove the following theorem.

Theorem 2. If $G=G\left(s_{1}, s_{2}, \ldots, s_{q(G)}, \boldsymbol{O}\right)$, the eigenvalues of $A_{\alpha}(G)$ are $\alpha$ with multiplicity at least $p(G)-q(G)$ and the eigenvalues of the $(n+q(G)-$ $p(G)) \times(n+q(G)-p(G))$ matrix

$$
X=\left[\begin{array}{cc}
Q & R \\
R^{T} & N
\end{array}\right]
$$

where

$$
\begin{aligned}
& Q=\left[\begin{array}{ccccc}
C_{1}(\alpha) & \varepsilon_{1,2} \beta E & \ldots & \varepsilon_{1, q(G)-1} \beta E & \varepsilon_{1, q(G)} \beta E \\
\varepsilon_{1,2} \beta E & C_{2}(\alpha) & \ldots & \varepsilon_{2, q(G)-1} \beta E & \varepsilon_{2, q(G)} \beta E \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\varepsilon_{1, q(G)-1} \beta E & \varepsilon_{2, q(G)-1} \beta E & \ldots & C_{q(G)-1}(\alpha) & \varepsilon_{q(G)-1, q(G)} \beta E \\
\varepsilon_{1, q(G)} \beta E & \varepsilon_{2, q(G)} \beta E & \ldots & \varepsilon_{q(G)-1, q(G)} \beta E & C_{q(G)}(\alpha)
\end{array}\right], \\
& N=\left[\begin{array}{cccccc}
\alpha d_{q(G)+1} \beta & \varepsilon_{q(G)+1, q(G)+2} \beta & \ldots & \varepsilon_{q(G)+1, r(G)-1} \beta & \varepsilon_{q(G)+1, r(G)} \beta \\
\varepsilon_{q(G)+1, q(G)+2} \beta & \alpha d_{q(G)+2} & \ldots & \varepsilon_{q(G)+2, r(G)-1} \beta & \varepsilon_{q(G)+2, r(G)} \beta \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\varepsilon_{q(G)+1, r(G)-1} \beta & \varepsilon_{q(G)+2, r(G)-1} \beta & \ldots & \alpha d_{r(G)-1} & \varepsilon_{r(G)-1, r(G)} \beta \\
\varepsilon_{q(G)+1, r(G)} \beta & \varepsilon_{q(G)+2, r(G)} \beta & \ldots & \varepsilon_{r(G)-1, r(G)} \beta & \alpha d_{r(G)}
\end{array}\right]
\end{aligned}
$$

and

$$
R=\beta\left[\begin{array}{ccccc}
\varepsilon_{1, q(G)+1} \mathbf{e} & \varepsilon_{1, q(G)+2} \mathbf{e} & \ldots & \varepsilon_{1, r(G)-1} \mathbf{e} & \varepsilon_{1, r(G)} \mathbf{e} \\
\varepsilon_{2, q(G)+1} \mathbf{e} & \varepsilon_{2, q(G)+2} \mathbf{e} & \ldots & \varepsilon_{2, r(G)-1} \mathbf{e} & \varepsilon_{2, r(G)} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\varepsilon_{q(G)-1, q(G)+1} \mathbf{e} & \varepsilon_{q(G)-1, q(G)+2} \mathbf{e} & \ldots & \varepsilon_{q(G)-1, r(G)-1} \mathbf{e} & \varepsilon_{q(G)-1, r(G)} \mathbf{e} \\
\varepsilon_{q(G), q(G)+1} \mathbf{e} & \varepsilon_{q(G), q(G)+2} \mathbf{e} & \ldots & \varepsilon_{q(G), r(G)-1} \mathbf{e} & \varepsilon_{q(G), r(G)} \mathbf{e}
\end{array}\right] .
$$

Theorem 3. Let $G=G\left(s_{1}, s_{2}, \ldots, s_{q(G)}, \boldsymbol{O}\right)$. Let $X, Q$ and $N$ be the matrices in Theorem 2. Then

1. $m_{X}(\alpha)=m_{N}(\alpha)$.
2. $m_{G}(\alpha)=p(G)-q(G)+m_{N}(\alpha)$.

Proof.

1. We have $|\alpha I-X|=\left|\begin{array}{cc}\alpha I-Q & -R \\ -R^{T} & \alpha I-N\end{array}\right|$. Hence, applying Corollary 1,


Figure 3: The graph $G(2,3,3,4, \mathbf{0})$.
we obtain $|\alpha I-X|=$

$$
\left.\begin{array}{|ccccc}
-(1-\alpha)^{2} s_{1} & 0 & \cdots & 0 & * \\
0 & -(1-\alpha)^{2} s_{2} & \vdots & \vdots & \vdots \\
\vdots & 0 & \ddots & 0 & \vdots \\
\vdots & \cdots & \cdots & -(1-\alpha)^{2} s_{q(G)} & * \\
0 & 0 & \cdots & 0 & |\alpha I-N|
\end{array} \right\rvert\,=
$$

Since $1-\alpha \neq 0$ and $s_{i} \geq 1$, for $1 \leq i \leq q(G)$, we obtain $|\alpha I-X|=0$ if and only if $|\alpha I-N|=0$. Hence $m_{X}(\alpha)=m_{N}(\alpha)$.
2. From Theorem 2, $m_{G}(\alpha)=p(G)-q(G)+m_{X}(\alpha)$. Since $m_{X}(\alpha)=$ $m_{N}(\alpha)$, the result follows.

We see that the matrix $N$ in Theorem 2 is obtained from $A_{\alpha}(G)$ by taking the entries corresponding to the internal vertices which are not quasi-pendant vertices.

We recall that $G[F]$ denotes the subgraph of $G$ induced by $F \subseteq V(G)$.
Theorem 4. Let $G=G\left(s_{1}, s_{2}, \ldots, s_{q(G)}, \boldsymbol{O}\right)$. Let $X, Q$ and $N$ be the matrices in Theorem 3. Let $C_{1}, \ldots, C_{t}$ be the components of the subgraph induced by $C(G)$. Then

$$
m_{G}(\alpha)=p(G)-q(G)+\sum_{i=1}^{t} m_{N_{i}}(\alpha)
$$

where, for $1 \leq i \leq t, N_{i}=(1-\alpha) A\left(G\left[C_{i}\right]\right)+\alpha D_{i}$, where $D_{i}$ is a diagonal matrix of order $\left|C_{i}\right|$ in which each diagonal entry is the degree in $G$ of the corresponding vertex.

Proof. From the hypothesis, there is a labeling of the vertices of $C(G)$ such that $N=\bigoplus_{i=1}^{t} N_{i}$ (the direct sum of the matrices $\left.N_{i}, i=1, \ldots, t\right)$. Therefore $m_{N}(\alpha)=\sum_{i=1}^{t} m_{N_{i}}(\alpha)$. Now, the result is immediate by Theorem 3.

Example 1. For the graph $G$ in Figure 3, we have $p(G)=12, q(G)=4$. We see that $N=\left[\begin{array}{cc}3 \alpha & 0 \\ 0 & 3 \alpha\end{array}\right]$. Hence $|\alpha I-N|=\left|\begin{array}{cc}\alpha-3 \alpha & 0 \\ 0 & \alpha-3 \alpha\end{array}\right|=0$ if and only if $\alpha=0$. Therefore, $\alpha$ is not an eigenvalue of $N$, when $\alpha \neq 0$. Then, from Theorem 3, the multiplicity of $\alpha$ as an eigenvalue of $A_{\alpha}(G)$ is

$$
\begin{cases}p(G)-q(G)=8, & \text { when } \alpha \neq 0 \\ p(G)-q(G)+m_{N}(0)=10, & \text { otherwise } .\end{cases}
$$

We recall that the nullity of a graph $G$, denoted by $\eta(G)$, is the multiplicity of 0 as eigenvalue of $A(G)$. From Theorem 4, we obtain

Corollary 4. Let $G=G\left(s_{1}, s_{2}, \ldots, s_{q(G)}, \boldsymbol{O}\right)$. Let $C_{1}, \ldots, C_{t}$ be the components of the subgraph induced by $C(G)$. Then

$$
\begin{equation*}
\eta(G)=p(G)-q(G)+\sum_{i=1}^{t} \eta\left(N_{i}\right) \tag{4}
\end{equation*}
$$

where, for $1 \leq i \leq t, N_{i}=A\left(G\left[C_{i}\right]\right)$ and $\eta\left(N_{i}\right)$ is the multiplicity of 0 as eigenvalue of $N_{i}$.

Corollary 5. Let $G=G\left(s_{1}, s_{2}, \ldots, s_{q(G)}, \boldsymbol{O}\right)$. Let $C_{1}, \ldots, C_{t}$ be the components of the subgraph induced by $C(G)$. Let $H$ be the induced subgraph of $G$ obtained by deleting one pendant vertex together with the vertex adjacent to $i t$. Then $\eta(G)=\eta(H)$.

Proof. Clearly $C(H)=C(G)$ and the components of the subgraphs induced by $C(H)$ and $C(G)$ are the same. In addition, $p(H)-q(H)=p(G)-1-$ $(q(G)-1)=p(G)-q(G)$. Applying (4), we obtain $\eta(H)=\eta(G)$.

A version of Corollary 5 is proved in [3] assuming that $G$ is a bipartite graph with at least one pendant vertex.

## 4. Applications on some particular graphs

In this section, the above results are applied to search for the multiplicity of $\alpha \in[0,1)$ as an eigenvalue of $A_{\alpha}(G)$ when $G$ is a path, a caterpillar, a circular caterpillar, a generalized Bethe tree or a Bethe tree.

### 4.1. The multiplicity of $\alpha$ as an eigenvalue of $A_{\alpha}\left(P_{n}\right)$

Let $P_{n}$ be the path of $n$ vertices. It is well known that 0 is an eigenvalue of $A\left(P_{n}\right)$ if and only if $n$ is odd. Moreover, if $n$ is odd then 0 is a simple eigenvalue of $A\left(P_{n}\right)$. We begin considering the cases $2 \leq n \leq 4$.

- If $n=2$ then $A_{\alpha}\left(P_{2}\right)=\left[\begin{array}{cc}\alpha & 1-\alpha \\ 1-\alpha & \alpha\end{array}\right]$. We have $\left|A_{\alpha}\left(P_{2}\right)-\alpha I_{2}\right|=$ $\left|\begin{array}{cc}0 & 1-\alpha \\ 1-\alpha & 0\end{array}\right|=0$ if and only if $\alpha=1$. Hence $\alpha \in(0,1)$ is not an eigenvalue of $A_{\alpha}\left(P_{2}\right)$.
- If $n=3$ then $P_{3}$ is a graph with 2 pendant vertices and 1 quasi-pendant vertex. From Corollary $3, m_{P_{3}}(\alpha)=2-1=1$.
- If $n=4$ then $P_{4}$ is a graph with 2 pendant vertices and 2 quasi-pendant vertices. From Corollary $3, m_{P_{4}}(\alpha)=2-2=0$. Hence $\alpha \in(0,1)$ is not an eigenvalue of $A_{\alpha}\left(P_{4}\right)$.

From now on let us assume that $P_{n}$ is such that $n \geq 5$. Since $\alpha \neq 1$, the vertices of $P_{n}$ can be labeled such that $A_{\alpha}\left(P_{n}\right)$ is a symmetric tridiagonal matrix with nonzero codiagonal entries. Hence the eigenvalues of $A_{\alpha}\left(P_{n}\right)$ are simple and, in particular, if $\alpha \neq 1$ is an eigenvalue of $A_{\alpha}\left(P_{n}\right)$ then it will be a simple eigenvalue. We recall the following lemma (see [4]).

Lemma 4. The eigenvalues of the symmetric tridiagonal matrix

$$
N(\alpha)=\left[\begin{array}{ccccc}
2 \alpha & 1-\alpha & & &  \tag{5}\\
1-\alpha & 2 \alpha & 1-\alpha & & \\
& \ddots & \ddots & \ddots & \\
& & 1-\alpha & 2 \alpha & 1-\alpha \\
& & & 1-\alpha & 2 \alpha
\end{array}\right]
$$

of order $s \times s$ are

$$
2 \alpha+2(1-\alpha) \cos \left(\frac{\pi j}{s+1}\right)
$$

for $j=1,2, \ldots, s$.

Corollary 6. Let $N(\alpha)$ as in (5).

1. If $2 / 3 \leq \alpha<1$ then $\alpha$ is not an eigenvalue of $N(\alpha)$.
2. $\gamma$ is an eigenvalue of $N(\gamma)$ if and only if

$$
\gamma=\frac{-2 \cos \left(\frac{\pi j}{s+1}\right)}{1-2 \cos \left(\frac{\pi j}{s+1}\right)}
$$

for some $j=1, \ldots, s$.
3. Let

$$
\begin{equation*}
\alpha_{j}=\frac{-2 \cos \left(\frac{\pi j}{s+1}\right)}{1-2 \cos \left(\frac{\pi j}{s+1}\right)} \tag{6}
\end{equation*}
$$

Then $\alpha_{j}$ is an eigenvalue of $N\left(\alpha_{j}\right)$ and $0<\alpha_{j}<1$ if and only if $j \in\left\{\left\lfloor\frac{s+3}{2}\right\rfloor, \ldots, s\right\}$.

## Proof.

1. Assume $2 / 3 \leq \alpha<1$. Using this hypothesis, the matrix $N(\alpha)-\alpha I$ is irreducible and diagonally dominant with strict inequality in at least one row. Then, by Theorem 1.21 in [17], $N(\alpha)-\alpha I$ is an invertible matrix. Hence $\alpha$ is not an eigenvalue of $N(\alpha)$.
2. It is immediate from Lemma 4.
3. Let $\alpha_{j}$ as in (6). Then $\alpha_{j}$ is an eigenvalue of $N\left(\alpha_{j}\right)$. The following fact is immediate:

$$
0<\frac{x}{1+x}<1 \text { if and only if } x>0
$$

Let $j \in\left\{\left\lfloor\frac{s+3}{2}\right\rfloor, \ldots, s\right\}$. Then $-2 \cos \left(\frac{\pi j}{s+1}\right)>0$. From the above fact, $0<\alpha_{j}=\frac{-2 \cos \left(\frac{\pi j}{s+1}\right)}{1-2 \cos \left(\frac{\pi j}{s+1}\right)}<1$. Conversely, suppose that $0<\alpha_{j}<1$. We use again the above mentioned fact, to obtain that $-2 \cos \left(\frac{\pi j}{s+1}\right)>0$. Hence $j \in\left\{\left\lfloor\frac{s+3}{2}\right\rfloor, \ldots, s\right\}$.

Since $n \geq 5, P_{n}$ has 2 pendant vertices, 2 quasi-pendant vertices and $n-4$ internal vertices which are not quasi-pendants. By Theorem 3, $m_{P_{n}}(\alpha)=$
$2-2+m_{N}(\alpha)=m_{N}(\alpha)$, where

$$
N=N(\alpha)=\left[\begin{array}{ccccc}
2 \alpha & 1-\alpha & & & \\
1-\alpha & 2 \alpha & 1-\alpha & & \\
& \ddots & \ddots & \ddots & \\
& & 1-\alpha & 2 \alpha & 1-\alpha \\
& & & 1-\alpha & 2 \alpha
\end{array}\right]
$$

of order $(n-4) \times(n-4)$.
In particular, for $n=5$ and $n=6$, we have

- $m_{P_{5}}(\alpha)=m_{N}(\alpha)$ where $N=N(\alpha)=[2 \alpha]$. Since $\alpha \neq 0$ is not an eigenvalue of $[2 \alpha]$, we have that $\alpha \neq 0$ is not an eigenvalue of $A_{\alpha}\left(P_{5}\right)$.
- $m_{P_{6}}(\alpha)=m_{N}(\alpha)$ where $N=N(\alpha)=\left[\begin{array}{cc}2 \alpha & 1-\alpha \\ 1-\alpha & 2 \alpha\end{array}\right]$. We have $\left|N(\alpha)-\alpha I_{2}\right|=\left|\begin{array}{cc}\alpha & 1-\alpha \\ 1-\alpha & \alpha\end{array}\right|=0$ if and only if $\alpha=1 / 2$. Hence $\alpha \in(0,1)$ is an eigenvalue of $A_{\alpha}\left(P_{6}\right)$ if and only if $\alpha=1 / 2$.

Applying Theorem 4 and Corollary 6, we get
Corollary 7. Let $n \geq 7$. Then $\alpha \in(0,1)$ is an eigenvalue of $A_{\alpha}\left(P_{n}\right)$ if and only if

$$
\alpha=\frac{-2 \cos \left(\frac{\pi j}{n-3}\right)}{1-2 \cos \left(\frac{\pi j}{n-3}\right)}
$$

for some $j \in\left\{\left\lfloor\frac{n-1}{2}\right\rfloor, \ldots, n-4\right\}$.
4.2. Multiplicity of $\alpha$ as eigenvalue of $A_{\alpha}(G)$ when $G$ is a caterpillar or a circular caterpillar
We recall that a graph $G$ is a caterpillar (respectively, a circular caterpillar) if its internal vertices induce a path (respectively, a cycle). We say that a caterpillar or a circular caterpillar is complete if each internal vertex is a quasi-pendant vertex. From Corollary 3, we get

Corollary 8. If $G$ is a complete caterpillar or a complete circular caterpillar then $m_{G}(\alpha)=p(G)-q(G)$.


Figure 4: An example of a circular caterpillar.

If $G$ is a caterpillar or a circular caterpillar having internal vertices which are not quasi-pendant vertices, we may use Theorem 4 together with equation 6 to find $m_{G}(\alpha)$.

Example 2. Let us find the exact multiplicity of $\alpha \in[0,1)$ as eigenvalue of $A_{\alpha}(G)$ where $G$ is the circular caterpillar in Figure 4. Applying Theorem 4, we obtain

$$
m_{G}(\alpha)=p(G)-q(G)+m_{N_{1}}(\alpha)+m_{N_{2}}(\alpha)=14-6+m_{N_{1}}(\alpha)+m_{N_{2}}(\alpha)
$$

where $N_{1}=N_{1}(\alpha)=\left[\begin{array}{ccc}2 \alpha & 1-\alpha & 0 \\ 1-\alpha & 2 \alpha & 1-\alpha \\ 0 & 1-\alpha & 2 \alpha\end{array}\right]$ and $N_{2}=N_{2}(\alpha)=[2 \alpha]$. By equation (6) in Corollary $6, \alpha \in(0,1)$ is an eigenvalue of $N_{1}(\alpha)$ if and only if $\alpha=\alpha_{3}=\frac{-2 \cos \left(\frac{3 \pi}{4}\right)}{1-2 \cos \left(\frac{3 \pi}{4}\right)}=\frac{\sqrt{2}}{1+\sqrt{2}}$.

Moreover, $\alpha \in[0,1)$ is an eigenvalue of $N_{2}$ if and only if $\alpha=0$. Then, from Theorem 4, the multiplicity of $\alpha$ as an eigenvalue of $A_{\alpha}(G)$ is

$$
\begin{cases}8+m_{N_{1}}(\alpha)+m_{N_{2}}(\alpha)=8+1+0=9, & \text { when } \alpha=\alpha_{3} ; \\ 8+m_{N_{1}}(0)+m_{N_{2}}(0)=8+0+1=9, & \text { when } \alpha=0 ; \\ 8+m_{N_{1}}(\alpha)+m_{N_{2}}(\alpha)=8, & \text { when } \alpha \in(0,1) \backslash\left\{\alpha_{3}\right\} .\end{cases}
$$

4.3. Multiplicity of $\alpha$ as eigenvalue of $A_{\alpha}(T)$ when $T$ is a generalized Bethe tree
Given a rooted graph, the level of a vertex is equal to its distance to the root vertex increased by one. A generalized Bethe tree is a rooted tree in which vertices at the same level have the same degree.


Figure 5: An example of a generalized Bethe tree of 4 levels.

In this section, $B_{k}$ is a generalized Bethe tree of $k>1$ levels. Given a $B_{k}$ and an integer $1 \leq j \leq k, n_{k-j+1}$ is the number of vertices at level $j$ and $d_{k-j+1}$ is the degree of them. In particular, $d_{1}=1, n_{k}=1, n_{1}=p\left(B_{k}\right)$ and $n_{2}=q\left(B_{k}\right)$.

Definition 1. For $j=1,2, \ldots, k-1$, let $T_{j}$ be the $j \times j$ leading principal submatrix of the $k \times k$ symmetric tridiagonal matrix
$T_{k}=\left[\begin{array}{ccccccc}\alpha & \beta \sqrt{d_{2}-1} & 0 & \cdots & 0 & 0 & 0 \\ \beta \sqrt{d_{2}-1} & \alpha d_{2} & \beta \sqrt{d_{3}-1} & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha d_{k-2} & \beta \sqrt{d_{k-1}-1} & 0 \\ 0 & 0 & 0 & \cdots & \beta \sqrt{d_{k-1}-1} & \alpha d_{k-1} & \beta \sqrt{d_{k}} \\ 0 & 0 & 0 & \cdots & 0 & \beta \sqrt{d_{k}} & \alpha d_{k}\end{array}\right]$
where $\beta=1-\alpha$.
Let $\sigma(M)$ be the multiset of eigenvalues of the matrix $M$.
Since $d_{s}>1$ for all $s=2,3, \ldots, j$, each matrix $T_{j}$ has nonzero codiagonal entries. Then the eigenvalues of each $T_{j}$ are simple and $\sigma\left(T_{j}\right) \cap \sigma\left(T_{j+1}\right)=\phi$ for $j=1, \ldots, k-1$.

The following theorem was proved in [10].
Theorem 5. Let $B_{k}$ be a generalized Bethe tree

1. The multiset of the eigenvalues of $A_{\alpha}\left(B_{k}\right)$ is

$$
\begin{equation*}
\sigma\left(A_{\alpha}\left(B_{k}\right)\right)=\sigma\left(T_{1}\right) \cup \cdots \cup \sigma\left(T_{k}\right) . \tag{7}
\end{equation*}
$$

2. The multiplicity of each eigenvalue of $T_{j}$ as an eigenvalue of $A_{\alpha}\left(B_{k}\right)$ is $n_{j}-n_{j+1}$ if $1 \leq j \leq k-1$, and is 1 if $j=k$. If some eigenvalues obtained in different matrices are equal, their multiplicities are added together.
3. The largest eigenvalue of $T_{k}$ is the largest eigenvalue of $A_{\alpha}\left(B_{k}\right)$.

We observe that for $k \geq 3$,

$$
T_{2}=\left[\begin{array}{cc}
\alpha & (1-\alpha) \sqrt{d_{2}-1} \\
(1-\alpha) \sqrt{d_{2}-1} & \alpha d_{2}
\end{array}\right] .
$$

Hence $\left|T_{2}-\alpha I_{2}\right|=\left|\begin{array}{cc}0 & (1-\alpha) \sqrt{d_{2}-1} \\ (1-\alpha) \sqrt{d_{2}-1} & \alpha\left(d_{2}-1\right)\end{array}\right|=-(1-\alpha)^{2}\left(d_{2}-1\right) \neq$
0 because $\alpha \neq 1$. The next corollary follows easily from Theorem 5 .
Corollary 9. Let $\alpha \in[0,1)$. Then

1. $m_{B_{2}}(\alpha)=n_{1}-1$.
2. $m_{B_{3}}(\alpha)=n_{1}-n_{2}$ if $\alpha \neq 0$ and $m_{B_{3}}(0)=n_{1}-n_{2}+1$.
3. For $k \geq 4$,

$$
\begin{equation*}
m_{B_{k}}(\alpha)=n_{1}-n_{2}+\sum_{j=3}^{k-1}\left(n_{j}-n_{j+1}\right) m_{T_{j}}(\alpha)+m_{T_{k}}(\alpha) \tag{8}
\end{equation*}
$$

in which, for $j=3, \ldots, k, m_{T_{j}}(\alpha)=1$ if $\alpha \in \sigma\left(T_{j}\right)$ and $m_{T_{j}}(\alpha)=0$ otherwise.

We already observed that $\sigma\left(T_{j}\right) \cap \sigma\left(T_{j+1}\right)=\phi$ for $j=1, \ldots, k-1$.
Example 3. Let us find $m_{B_{4}}(\alpha)$. Using (8),

$$
m_{B_{4}}(\alpha)=n_{1}-n_{2}+\left(n_{3}-n_{4}\right) m_{T_{3}}(\alpha)+m_{T_{4}}(\alpha)
$$

where $n_{4}=1, T_{3}=\left[\begin{array}{ccc}\alpha & (1-\alpha) \sqrt{d_{2}-1} & 0 \\ (1-\alpha) \sqrt{d_{2}-1} & \alpha d_{2} & (1-\alpha) \sqrt{d_{3}-1} \\ 0 & (1-\alpha) \sqrt{d_{3}-1} & \alpha d_{3}\end{array}\right]$
and

$$
T_{4}=\left[\begin{array}{cccc}
\alpha & (1-\alpha) \sqrt{d_{2}-1} & 0 & 0 \\
(1-\alpha) \sqrt{d_{2}-1} & \alpha d_{2} & (1-\alpha) \sqrt{d_{3}-1} & 0 \\
0 & (1-\alpha) \sqrt{d_{3}-1} & \alpha d_{3} & (1-\alpha) \sqrt{d_{4}} \\
0 & 0 & (1-\alpha) \sqrt{d_{4}} & \alpha d_{4}
\end{array}\right]
$$

It is easily to find that

$$
\left|T_{3}-\alpha I_{3}\right|=-\alpha(1-\alpha)^{2}\left(d_{2}-1\right)\left(d_{3}-1\right)
$$

and

$$
\left|T_{4}-\alpha I_{4}\right|=-(1-\alpha)^{2}\left(d_{2}-1\right)\left(\alpha^{2}\left(d_{3}-1\right)\left(d_{4}-1\right)-(1-\alpha)^{2} d_{4}\right)
$$

Hence $\alpha \in[0,1)$ is an eigenvalue of $T_{3}$ if and only if $\alpha=0$ and $\alpha \in[0,1)$ is an eigenvalue of $T_{4}$ if and only if $\alpha=\alpha_{0}=\frac{\sqrt{d_{4}}}{\sqrt{d_{4}}+\sqrt{\left(d_{3}-1\right)\left(d_{4}-1\right)}}$. Therefore the multiplicity of $\alpha$ as an eigenvalue of $A_{\alpha}\left(B_{4}\right)$ is

$$
\begin{cases}n_{1}-n_{2}+n_{3}-1, & \text { when } \alpha=0 \\ n_{1}-n_{2}+1, & \text { when } \alpha=\alpha_{0} \\ n_{1}-n_{2}, & \text { when } \alpha \in(0,1) \backslash\left\{\alpha_{0}\right\} .\end{cases}
$$

4.4. Multiplicity of $\alpha$ as eigenvalue of $A_{\alpha}(T)$ and the nullity of $T$ when $T$ is a Bethe tree
A Bethe tree $B(d, k)$ is a rooted tree of $k$ levels in which the root has degree $d$, the vertices in level $j(2 \leq j \leq k-1)$ have degree equal to $d+1$ and the vertices in level $k$ have degree equal to 1 (pendant vertices). Clearly, any Bethe tree $B(d, k)$ is a generalized Bethe tree in which the matrix $T_{j}$ is the $j \times j$ leading principal submatrix of the $k \times k$ symmetric tridiagonal matrix

$$
T_{k}=\left[\begin{array}{ccccccc}
\alpha & \beta \sqrt{d} & 0 & \cdots & 0 & 0 & 0  \tag{9}\\
\beta \sqrt{d} & \alpha d & \beta \sqrt{d} & \cdots & 0 & 0 & 0 \\
0 & \beta \sqrt{d} & \alpha d & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \alpha d & \beta \sqrt{d} & 0 \\
0 & 0 & 0 & \cdots & \beta \sqrt{d} & \alpha d & \beta \sqrt{d} \\
0 & 0 & 0 & \cdots & 0 & \beta \sqrt{d} & \alpha d
\end{array}\right]
$$

where $\beta=1-\alpha$. Moreover, $n_{j}=d^{k-j}$ for $j=1, \ldots, k$. From Corollary 9, we get

Corollary 10. Let $\alpha \in[0,1)$. Then

1. $m_{B(d, 2)}(\alpha)=d-1$.
2. $m_{B(d, 3)}(\alpha)=(d-1) d$ if $\alpha \neq 0$ and

$$
\eta(B(d, 3))=m_{B(d, 3)}(0)=(d-1) d+1
$$

3. For $k \geq 4$,

$$
\begin{equation*}
m_{B(d, k)}(\alpha)=(d-1)\left(d^{k-2}+\sum_{j=3}^{k-1} d^{k-j-1} m_{T_{j}}(\alpha)\right)+m_{T_{k}}(\alpha) \tag{10}
\end{equation*}
$$

in which the matrix $T_{j}$, for $j=3, \ldots, k$, is the $j \times j$ principal submatrix of $T_{k}$ as in (9) and $m_{T_{j}}(\alpha)=1$ if $\alpha \in \sigma\left(T_{j}\right)$ and $m_{T_{j}}(\alpha)=0$ otherwise.
Finally, we find the nullity of $B(d, k)$. Let $\alpha=0$. Then, $\beta=1$ and the matrix $T_{k}$ becomes

$$
T_{k}=\left[\begin{array}{ccccccc}
0 & \sqrt{d} & 0 & \cdots & 0 & 0 & 0  \tag{11}\\
\sqrt{d} & 0 & \sqrt{d} & \cdots & 0 & 0 & 0 \\
0 & \sqrt{d} & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & \sqrt{d} & 0 \\
0 & 0 & 0 & \cdots & \sqrt{d} & 0 & \sqrt{d} \\
0 & 0 & 0 & \cdots & 0 & \sqrt{d} & 0
\end{array}\right]
$$

Corollary 11. The nullity of $B(d, k)$ is given by

$$
\eta(B(d, k))= \begin{cases}\frac{d^{k}-1}{d+1}, & \text { if } k \text { is even } \\ \frac{d^{k}+1}{d+1}, & \text { otherwise }\end{cases}
$$

Proof. We recall that, for $j=1, \ldots, k-1, T_{j}$ is the $j \times j$ principal submatrix of $T_{k}$ as in (11). One can easily see that 0 is an eigenvalue of $T_{j}$ if and only if $j$ is odd.

1. Let $k$ be an even integer.

For $k=2$, we have $m_{B(d, 2)}(0)=\eta(B(d, 2))=d-1=\frac{d^{2}-1}{d+1}$. Let $k \geq 4$. From (10), we obtain

$$
\eta\left(B(d, k)=(d-1)\left(d^{k-2}+d^{k-4}+\ldots+d^{2}+1\right)=\frac{d^{k}-1}{d+1}\right.
$$

2. Let $k$ be an odd integer.

For $k=3$, we have $m_{B(d, 3)}(0)=\eta(B(d, 3))=(d-1) d+1=\frac{d^{3}+1}{d+1}$. Let $k \geq 5$. From (10), we obtain

$$
\eta(B(d, k))=(d-1)\left(d^{k-2}+d^{k-4}+\ldots+d^{3}+d\right)+1=\frac{d^{k}+1}{d+1}
$$

Acknowledgments The research of D. M. Cardoso author is partially supported by Portuguese funds through the CIDMA - Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology ("FCT-Fundação para a Ciência e a Tecnologia"), within project PEst-OE/MAT/UI4106/2013. The research of G. Pastén is supported by CONICYT-PCHA/MagisterNacional/2015-22151590. O. Rojo thanks the hospitality of the Department of Mathematics, Universidade de Aveiro, Aveiro, Portugal, where part of this research was conducted.

## References

## References

[1] E. Andrade, D. M. Cardoso, G. Pastén, O. Rojo, On the Faria's inequality for the Laplacian and signless Laplacian spectra: A unified approach, Linear Algebra Appl. 472 (2015), 81-96.
[2] B. Borovićanin, I. Gutman, Nullity of graphs, in: D. Cvetković, I. Gutman, Eds. Applications of Graph Spectra, Math. Inst., Belgrade, 2009, 107-122.
[3] D. Cvetković, I. Gutman, The algebraic multiplicity of the number zero in the spectrum of a bipartite graph, Matematicki Vesnik (Beograd) 9 (1972), 141150.
[4] S. Kouachi, Eigenvalues and eigenvectors of tridiagonal matrix, Electronic Journal of Linear Algebra, Volume 15, pp. 115-133, April 2006.
[5] J. R. Dias, Molecular Orbital Calculations Using Chemical Graph Theory, SpringerVerlag, Berlin, 1993.
[6] I. Faria, Permanental roots and the star degree of a graph. Linear Algebra Appl. 64 (1985), 255-265.
[7] A. Graovac, I. Gutman, N. Trinajstić, Topological Approach to the Chemistry of Conjugated Molecules, SpringerVerlag, Berlin, 1977.
[8] I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry, SpringerVerlag, Berlin, 1986.
[9] V. Nikiforov, Merging the $A$ - and $Q$-spectral theories, 2016, Preprint available at arXiv:1607.03015.
[10] V. Nikiforov, G. Pastén, O. Rojo, R. Soto, On the $A_{\alpha}$-spectra of trees, 2016, Preprint available at arXiv:1609.00835.
[11] O. Rojo, L. Medina, Spectra of weighted compound graphs of generalized Bethe trees, Electronic Journal of Linear Algebra 18 (2009), 30-57.
[12] I. Sciriha, On the coefficient of $\lambda$ in the characteristic polynomial of singular graphs, Utilitas Mathematica 52 (1997), 97-111.
[13] I. Sciriha, On the construction of graphs of nullity one, Discrete Mathematics 181(1-3) (1998), 193-211.
[14] I. Sciriha, P. W. Fowler, Nonbonding Orbitals in Fullerenes: Nuts and Cores in Singular Polyhedral Graphs, J.Chem.Inf.Model. 47 (2007), 1763-1775.
[15] I. Sciriha, Maximal core size in singular graphs, Ars Mathematica Contemporanea 2(2) (2009), 217-229.
[16] N. Trinajstić, Chemical Graph Theory, Vols. I and II, CRC Press, Boca Raton, 1983.
[17] R. Varga, Matrix Iterative Analysis, SpringerVerlag, Berlin, 2000.

