A short proof of the Newton-Kantarovich theorem Domingos M Cardoso¹ and Luís A Vieira²

October 22, 2008

1 Basic notions

Consider a nonempty open convex subset $C \subseteq \mathbb{R}^n$. Then a function $f: C \to \mathbb{R}$ is *m*-strongly convex in *C* if it has second derivatives on *C* and $\exists m > 0$ such that

(1)
$$\forall x \in C \qquad m \|h\|^2 \leq h^T \nabla^2 f(x) h \ \forall h \in \mathbb{R}^n,$$

where $\nabla^2 f(x)$ denotes the Hessian matrix of f in x. It is immediate that every strongly convex function is strictly convex, however the converse is not true. For instance, the function $f : \mathbb{R} \to \mathbb{R}$, such that $f(x) \mapsto x^{2k}$, with $k \in \mathbb{N} \setminus \{1\}$, is strictly convex but it is not strongly convex (since its second derivative in x = 0 is null and then (1) is not fulfilled). It is also immediate that the Hessian matrix of each strongly convex function is positive definite and then it is invertible.

Lemma 1.1 If $C \subseteq \mathbb{R}^n$ is a nonempty open convex subset and the function $f: C \to \mathbb{R}$ is m-strongly convex in C, then

$$\|(\nabla^2 f(x))^{-1}\| \le \frac{1}{m},$$

where $||A|| = \sup_{h \neq 0} \frac{||Ah||_2}{||h||_2}$.

 $\begin{array}{l} \mathbf{Proof:} \ \| (\nabla^2 f(x))^{-1} \| = \sup_{y \neq 0} \frac{\| (\nabla^2 f(x))^{-1} y \|_2}{\| y \|_2} = \sup_{\nabla^2 f(x)h \neq 0} \frac{\| h \|_2}{\| \nabla^2 f(x)h \|_2} = \\ \frac{1}{\inf_{h \neq 0} \frac{\| \nabla^2 f(x)h \|_2}{\| h \|_2}} \ (\text{since } h \neq 0 \Leftrightarrow \nabla^2 f(x)h \neq 0). \ \text{Taking into account that} \\ \forall h \in \mathbb{R}^n \setminus \{0\} \end{array}$

$$m\|h\|_{2}^{2} \leq h^{T} \nabla^{2} f(x)h \leq \|h\|_{2} \|\nabla^{2} f(x)h\|_{2} \Rightarrow m \leq \frac{\|\nabla^{2} f(x)h\|_{2}}{\|h\|_{2}}$$

it follows $m \leq \inf_{h \neq 0} \frac{\|\nabla^2 f(x)h\|_2}{\|h\|_2} \Leftrightarrow \frac{1}{\inf_{h \neq 0} \frac{\|\nabla^2 f(x)h\|_2}{\|h\|_2}} \leq \frac{1}{m}$ and therefore, $\frac{\|(\nabla^2 f(x))^{-1}\| \leq \frac{1}{m}}{\dots} \blacksquare$

¹University of Aveiro, Portugal (dcardoso@ua.pt)

²University of Porto, Portugal (lvieira@fe.up.pt).

Consider the nonempty subset $D \subseteq \mathbb{R}^n$. Then a function $F: D \to \mathbb{R}^m$ is Lipschitzian in D, with constant of Lipschitz L, if $\forall x, y \in D ||f(x) - f(y)|| \le L||x - y||$.

Lemma 1.2 If $C \subseteq \mathbb{R}^n$ is a nonempty open convex subset, the function $f: C \to \mathbb{R}$ has second derivatives on C and $\nabla^2 f(x)$ is Lipschitzian with constant of Lipschitz L, then $\forall h \in \mathbb{R}^n$, such that $x + h \in C$,

(2)
$$\|\nabla f(x+h) - \nabla f_x(h)\| \leq \frac{L}{2} \|h\|^2,$$

where $\nabla f(y)$ denotes the gradient of f in y and $f_x(h) = f(x) + (\nabla f(x))^T h + \frac{1}{2}h^T \nabla^2 f(x)h$ is the quadratic approximation of the function f in a neighborhood of x in C.

Proof: First, it should be noted that $\nabla f_x(h) = \nabla f(x) + \nabla^2 f(x)h$, and then $\nabla f(x+h) - \nabla f_x(h) = \nabla f(x+h) - \nabla f(x) - \nabla^2 f(x)h$. Therefore,

$$\begin{aligned} \|\nabla f(x+h) - \nabla f_x(h)\| &= \|\nabla f(x+h) - \nabla f(x) - \nabla^2 f(x)h\| \\ &= \|\int_0^1 \nabla^2 f(x+th)hdt - \nabla^2 f(x)h\| \\ &= \|\int_0^1 (\nabla^2 f(x+th) - \nabla^2 f(x))hdt\| \\ &\leq \int_0^1 \|\nabla^2 f(x+th) - \nabla^2 f(x)\|\|h\|dt \\ &\leq \int_0^1 Lt\|h\|^2 dt. \\ &= \frac{L}{2}\|h\|^2. \end{aligned}$$

_	

2 The Newton-Kantorovich theorem

Consider the function $f : \mathbb{R}^n \to \mathbb{R}$ with continuous second derivatives and its quadratic approximation in a neighborhood of $x^k \in \mathbb{R}^n$,

$$f_{x^{k}}(h) = f(x^{k}) + (\nabla f(x^{k}))^{T}h + \frac{1}{2}h^{T}\nabla^{2}f(x^{k})h$$

If $\nabla^2 f(x)$ is invertible, then the well known Newton's iterates

(3)
$$x^{k+1} = x^k - (\nabla^2 f(x^k))^{-1} \nabla f(x^k), \quad k = 0, 1, \dots,$$

follows since the critical point that solves the system of equations $\nabla f_{x^k}(h) = 0 \iff \nabla f(x^k) + \nabla^2 f(x^k)h = 0 \iff \nabla^2 f(x^k)h = -\nabla f(x^k)$ is $h = -(\nabla^2 f(x^k))^{-1} \nabla f(x^k)$. The Newton-Kantorovich theorem states some conditions that assure the convergence of the Newton's iterates (3), $x^{k+1} = x^k + h$, to a critical point of f.

Theorem 2.1 Consider a nonempty open set $C \subseteq \mathbb{R}^n$ and a function $f : \mathbb{R}^n \to \mathbb{R}$ with second derivatives in C. Assuming that $\nabla^2 f(x)$ is a Lipschitzian function with Lipschitz constant L, if the function f is m-strongly convex in a open ball with center in a critical point x^* and radius $\frac{m}{L}$, $B(x^*, \frac{m}{L}) \subset C$, then $\forall x^0 \in B(x^*, \frac{m}{L})$ the sequence (3) has quadratic convergence to x^* .

Proof: If x^{k+1} is determined from x^k , according to (3), then

$$\begin{aligned} x^{k+1} - x^* &= x^k - (\nabla^2 f(x^k))^{-1} \nabla f(x^k) - x^* \\ &= x^k - x^* - (\nabla^2 f(x^k))^{-1} \nabla f(x^k) + (\nabla^2 f(x^k))^{-1} \nabla f(x^*) \\ &\quad \text{(notice that } \nabla f(x^*) = 0) \\ &= (\nabla^2 f(x^k))^{-1} \nabla^2 f(x^k) (x^k - x^*) - (\nabla^2 f(x^k))^{-1} \nabla f(x^k) \\ &\quad + (\nabla^2 f(x^k))^{-1} \nabla f(x^*) \\ &= (\nabla^2 f(x^k))^{-1} [\nabla^2 f(x^k) (x^k - x^*) - (\nabla f(x^k) - \nabla f(x^*))] \end{aligned}$$

Therefore, assuming $x^k \in B(x^*, \frac{m}{2^s L})$, with $s \ge 0$, it follows

$$\begin{split} \|x^{k+1} - x^*\| &= \|(\nabla^2 f(x^k))^{-1} [\nabla f(x^*) - \nabla f(x^k) - \nabla^2 f(x^k)(x^* - x^k)]\| \\ &\leq \|(\nabla^2 f(x^k))^{-1}\| \|\nabla f(x^*) - \nabla f(x^k) - \nabla^2 f(x^k)(x^* - x^k)\| \\ &\leq \frac{1}{m} \|\nabla f(x^*) - \nabla f(x^k) - \nabla^2 f(x^k)(x^* - x^k)\| \text{ (by Lemma 1.1)} \\ &\leq \frac{L}{2m} \|x^* - x^k\|^2 \text{ (by Lemma 1.2)} \\ &< \frac{L}{2m} \frac{m^2}{2^{2s}L^2} = \frac{m}{2^{2s+1}L} \text{ (since } \|x^* - x^k\| < \frac{m}{2^sL}). \end{split}$$

Thus $x^k \in B(x^*, \frac{m}{2^{sL}}) \Rightarrow x^{k+1} \in B(x^*, \frac{m}{2^{2s+1}L})$ and since, by hypothesis, $x^0 \in B(x^*, \frac{m}{L})$, then

$$x^{0} \in B(x^{*}, \frac{m}{L}) \Rightarrow x^{1} \in B(x^{*}, \frac{m}{2L}) \Rightarrow x^{2} \in B(x^{*}, \frac{m}{2^{3}L}) \Rightarrow x^{3} \in B(x^{*}, \frac{m}{2^{7}L}) \Rightarrow \cdots$$
Eventhermore, since $\|x^{k+1} - x^{*}\| \leq L \|x^{k} - x^{*}\|^{2} \leq L$, the

Furthermore, since $||x^{k+1} - x^*|| \leq \frac{L}{2m} ||x^k - x^*||^2 \Leftrightarrow \frac{||x^{k+1} - x^*||}{||x^k - x^*||^2} \leq \frac{L}{2m}$, the sequence of Newton iterates (3) has quadratic convergence.