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Abstract

The complementary prism GG of a graph G is obtained from the dis-
joint union of G and its complement G by adding an edge for each pair
of vertices (v, v′), where v is in G and its copy v′ is in G. The Petersen
graph C5C5 and, for n ≥ 2, the corona product of Kn and K1 which is
KnKn are examples of complementary prisms. This paper is devoted to
the computation of eigenpairs of the adjacency, signless Laplacian and
Laplacian matrices of a complementary prism GG in terms of the eigen-
pairs of the corresponding matrices of G. Particular attention is given
to the complementary prisms of regular graphs. Furthermore, Petersen
graph is shown to be the unique complementary prism which is a strongly
regular graph.

AMS Subject Classification: 05C50, 05C76, 15A18.
Keywords: Graph operations; complementary prism of a graph; graph eigen-
values.

1 Introduction

In [8], Haynes et al. introduced the complementary product of two graphs, a
generalization of the cartesian product, and dedicated particular attention to
the special case of complementary prism of a graph, which can be seen as a
variant of a prism, the cartesian product of a cycle by K2. In precise terms,
the complementary prism of a graph G with complement graph G, is the graph
denoted by GG such that V (GG) = V (G∪G) and for which the edges are those
in G and G together with the edges connecting each vertex of G with its copy
in G. Examples of complementary prisms are the Petersen graph C5C5 and the
corona product Kn ◦K1 of the complete graph and K1, which is KnKn. Figure
1 depicts the complementary prism of G = K2 +K1. Taking into account that
if a graph is not connected, then its complement is connected, it follows that
the complementary prism GG of every graph G is a connected graph.

Several combinatorial properties of complementary prisms of graphs have
been obtained in the literature. In [8], the diameter of GG is proved to be
not greater than 3 for every graph G, besides results concerning degrees, dis-
tances, independence and domination numbers and a list of questions and open
problems. In [9], among other results, the characterizations of graphs G whose
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Figure 1: The complementary prism GG of the graph G = K2 +K1.

complementary prisms attain lower bounds on domination and total domina-
tion numbers introduced in [8], were given. In [6] the authors studied algo-
rithmic/complexity properties of complementary prisms of graphs, regarding
cliques, independent sets, k-domination and P3-convexity. An efficient charac-
terization of the circumference of the complementary prism of a tree is presented
in [12], where it is also shown that the Hamiltonicity of GG for graphs G of
bounded maximum degrees can be decided in polynomial time. However, as we
know, regarding the spectra of matrices associated to complementary prisms of
graphs so far there are no published results. The main goal of the current paper
is the determination of the spectra, signless Laplacian and Laplacian spectra of
complementary prisms of graphs.

The graphs G considered in this work are simple and undirected with order
(number of vertices) n. The vertex set of G is denoted by V (G) and its edge set
by E(G). The adjacency matrix of G is the n×n matrix AG whose (i, j)-entry
is equal to 1 whether ij ∈ E(G), that is, if the vertices i and j are adjacent, and
is equal to 0 otherwise. The signless Laplacian (Laplacian) matrix of G is the
matrix QG = DG + AG (LG = DG−AG), where DG = diag(d1, · · · , dn) is the
diagonal matrix of the vertex degrees of G. The matrices AG, QG and LG are
symmetric and then they have n real eigenvalues which are herein indexed in non
increasing order according to the following notation: λ1 ≥ λ2 ≥ · · · ≥ λn are the
n eigenvalues of AG (also called the eigenvalues of G); q1 ≥ q2 ≥ · · · ≥ qn are
the n eigenvalues of QG and µ1 ≥ µ2 ≥ · · · ≥ µn are the n eigenvalues of LG.
Notice that µn(G) = 0 (the all one vector j is an associated eigenvector) and
its multiplicity is equal to the number of components of G. For convenience, we
shall sometimes denote by MG a matrix representing the graph G which can
be AG, QG or LG. Then the multiset (that is, the set with possible repeti-
tions) of eigenvalues of MG is called the MG-spectrum and denoted by σM(G)
(particularly, the AG-spectrum is usually called the spectrum of G). Assuming

that MG has p distinct eigenvalues, we write σM(G) = {γ[r1]1 , . . . , γ
[rp]
p }, where

the exponents indicate the multiplicity of the corresponding eigenvalue. If ρ
is a MG-eigenvalue and u is an associated eigenvector, then (ρ,u) is called an
eigenpair of MG. A MG-eigenvalue ρ of G is said to be a main eigenvalue if
there is an associated eigenvector u which is not orthogonal to j. Otherwise,
we say that ρ is non-main. Further concepts not herein defined can be found in
[2, 3, 4].

This paper is organized as follows. Section 2 is devoted to a general approach
to M-eigenvalues of complementary prisms as a nonlinear eigenvalue problem.
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In Section 3, all the A-eigenpairs of GG but two for each main eigenvalue of
G are determined. Particular attention is given to the complementary prism of
a connected regular graph G, whose spectrum is straighforwardly determined
in terms of the eigenvalues of G. Furthermore, we prove that the Petersen
graph (C5C5) is the unique complementary prism which is a strongly regular
graph. In Section 4 the results obtained in Section 3 for the adjacency matrix
are extended and updated for the signless Laplacian matrix. In Section 4 the
Laplacian spectrum of the complementary prisms GG is completely determined
in terms of the order and Laplacian eigenvalues of G. The paper finishes with
conclusions and some open problems.

2 M-characteristic polynomial of the complemen-
tary prism of a graph

As before, let us use MG to denote the adjacency, the signless Laplacian or the
Laplacian matrix of G. Then the matrix representing the complementary prism
GG of G is defined as follows:

MGG =

(
MG + δI τI

τI MG + δI

)
, (1)

where M ∈ {A,Q,L}, δ =

{
0, if M = A
1, otherwise

, τ =

{
−1, if M = L

1, otherwise
and

I is the identity matrix. Let

(
u
−v

)
be an eigenvector associated to the

eigenvalue ρ of MGG. Then, from the eigenvector equation, MGG

(
u
−v

)
=

ρ

(
u
−v

)
, it is immediate that u 6= 0 6= v. Therefore,

MGG

(
u
−v

)
= ρ

(
u
−v

)
⇔

{
(MG + δI)u− τv = ρu
τu− (MG + δI)v = −ρv

⇔
{

(MG − (ρ− δ)I)u = τv
(MG − (ρ− δ)I)v = τu

(2)

and thus

(MG − (ρ− δ)I)(MG − (ρ− δ)I)v = v (3)

(MG − (ρ− δ)I)(MG − (ρ− δ)I)u = u (4)

The matrices (MG − (ρ− δ)I) (MG − (ρ− δ)I) and (MG− (ρ−δ)I)(MG− (ρ−
δ)I) have the same spectrum (see, for instance, [13, Th. 3.24]). Now, we have
the following result.

Theorem 2.1. Let G be a graph of order n. Then ρ is an eigenvalue of MGG

if and only if 1 is an eigenvalue of the matrix (MG − (ρ− δ)I)(MG − (ρ− δ)I).
Additionally, if v and u are the associated eigenvectors obtained in (3) and (4),

respectively, then

(
u
−v

)
is an eigenvector of MGG associated to ρ.
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Proof. Let ρ be an eigenvalue of MGG. Then, from (2) we obtain (3) (and also
(4)) and thus 1 is an eigenvalue of the matrix (MG − (ρ− δ)I)(MG − (ρ− δ)I).
Conversely, let us assume that 1 is an eigenvalue of the matrix (MG − (ρ −
δ)I)(MG− (ρ− δ)I). Then, there exists v 6= 0 such that (MG− (ρ− δ)I)(MG−

(ρ−δ)I)v = v. Setting (MG−(ρ−δ)I)v = τu, we obtain (2) and thus

(
u
−v

)
is an eigenvector of MGG associated to ρ.

As immediate consequence of Theorem 2.1, we have the following corollary.

Corollary 2.2. The eigenvalues of MGG are the roots of the polynomial

p(ρ) = det((MG − (ρ− δ)I)(MG − (ρ− δ)I)− I), (5)

that is, det(MGG − ρI) = det((MG − (ρ − δ)I)(MG − (ρ − δ)I) − I). More
particularly, the roots of the polynomials

1. pA(λ) = det((AG − λI)(AG − λI)− I),

2. pQ(q) = det((QG − (q − 1)I)(QG − (q − 1)I)− I),

3. pL(µ) = det((LG − (µ− 1)I)(LG − (µ− 1)I)− I),

are the eigenvalues of the matrices AGG, QGG and LGG, respectively.

Example 2.3. Applying Corollary 2.2 to the graph G depicted in Figure 2,
the obtained spectrum, signless Laplacian spectrum and Laplacian spectrum (the
roots of the above polynomials) of GG are the following.
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Figure 2: Graph G.

σA(GG) = {3.62345, 1.93294, 1.30278, 1.30278, 0.930229, 0.618034, 0.3001,

−1.618034, −1.82507, −1.96165, −2.30278, −2.30278},
σQ(GG) = {7.48933, 6.09659, 4.90211, 4.56491, 4.42094, 4.17557, 3.19301,

1.82443, 1.7409, 1.35075, 1.14356, 1.09789},
σL(GG) = {6.51053, 5.90211, 5.64232, 5.41421, 5.17557, 2.82443, 2.58579,

2.35768, 2.09789, 2, 1.48947, 0}.

The determination of the roots of the polynomial p(ρ) in (5) belongs to
the context of nonlinear eigenvalue problems (see, for instance, [1, 10, 11, 14]).
However, in our particular case, in the next sections we take advantage from the
properties of the adjacency, Laplacian and signless Laplacian matrices of these
graphs.
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3 Adjacency eigenpairs of complementary prisms

In this section all the eigenvalues but two for each main eigenvalue of the graph
G of the complementary prism GG are determined in terms of the eigenvalues
of G. Particular attention is given when G is connected and regular and in
which case all the eigenvalues of GG are determined in terms of the eigenvalues
of G. The cases of regular and strongly regular complementary prisms are also
analyzed.

3.1 A-eigenpairs of GG in terms of the A-eigenpairs of G

Non-main A-eigenvalues of G determine non-main A-eigenvalues in G as as-
serted in the following lemma.

Lemma 3.1. [7] If λ is an eigenvalue of G with corresponding eigenvector u
such that u ⊥ j, then −1−λ is an eigenvalue of G with corresponding eigenvector
u.

Theorem 3.2. If (λ,u) is an eigenpair of G such that u ⊥ j, then α1,2(λ) =

−1±
√

(2λ+ 1)2 + 4

2
are eigenvalues of GG with associated eigenvectors w =(

u
(α1,2(λ)− λ)u

)
which are orthogonal to the all one vector.

Proof. Assuming that

(
u
βu

)
is an eigenvector of AGG associated to some

eigenvalue θ and taking into account that AGG =

(
AG I
I AG

)
, it follows

that

AGG

(
u
βu

)
=

(
AGu + βu
u + βAGu

)
=

(
(λ+ β)u

(1− β − βλ)u

)
= θ

(
u
βu

)
.

Therefore, we obtain{
λ+ β = θ
1− β − βλ = θβ

⇔ 1− β − βλ = (λ+ β)β ⇔ β2 + (2λ+ 1)β − 1 = 0.

Thus β =
−(2λ+1)±

√
(2λ+1)2+4

2 =
−1±
√

(2λ+1)2+4

2 − λ and θ =
−1±
√

(2λ+1)2+4

2 .
Since u ⊥ j, the last part is immediate.

Remark 1. We may note that, if λ is a non-main A-eigenvalue of G with
multiplicity m or a main A-eigenvalue with multiplicity m + 1, then there are
m linear independent eigenvectors u1, . . . ,um associated to λ, all orthogonal to

j. As consequence of Theorem 3.2, α1,2 = α1,2(λ) =
−1±
√

(2λ+1)2+4

2 are eigen-

values of GG, each one with multiplicity at least m, and eigenspace orthogonal
to the all one vector spanned, respectively, by the linear independent vectors(

uj
(α1 − λ)uj

)
for j = 1, . . . ,m, (6)

and

(
uj

(α2 − λ)uj

)
for j = 1, . . . ,m. (7)

Additionally, α1(λ) = −1− α2(λ).

5



The next remark states some additional properties of the spectrum of com-
plementary prisms.

Remark 2. If λ ∈ {−1, 0} is an eigenvalue of G which is non-main or main

with multiplicity greater than one, then the symmetric of golden ratio Φ = 1+
√
5

2

and Φ−1 are eigenvalues of the complementary prism GG. In this case, the
eigenvalues α1,2 are {

α1(−1) = α1(0) = −1+
√
5

2 = Φ−1,

α2(−1) = α2(0) = −1−
√
5

2 = −Φ.

However, the presence of −1 or 0 in the spectrum of G is not a necessary con-
dition for −Φ,Φ−1 ∈ σA(GG). For instance, −Φ,Φ−1 ∈ σA(P4P4) and −1, 0 /∈
σA(P4) = {±Φ,±Φ−1}. Furthermore, from this example, since −Φ,Φ−1 ∈
σA(P4)∩σA(P4P4), we may conclude that there are graphs G for which σA(G)∩
σA(GG) 6= ∅.

3.2 Complementary prisms of connected regular graphs

Since among G and G at least one of these graphs is connected, without loss of
generality we may assume that G is connected.

Notice that for every graph G, its largest eigenvalue λ1 is always a main
eigenvalue. In particular, when G is r-regular with spectrum λ1 = r, λ2, . . . , λn,
all eigenvalues but λ1 are non-main [3]. For the spectrum of the complementary
prism of a connected regular graph G we have the following result.

Theorem 3.3. If G is a connected k-regular graph on n vertices, then

β1,2 = β1,2(n, k) =
(n− 1)±

√
(n− 1− 2k)2 + 4

2
(8)

are eigenvalues of GG with corresponding eigenvectors

vi =

(
j

(βi − k)j

)
, for i = 1, 2, respectively.

If GG is non regular, then it is biregular and the eigenvalues (8) are the two
main eigenvalues of GG.

Proof. The proof is similar to the proof of Theorem 3.2.

As an immediate consequence of Theorems 3.2 and 3.3, we may determine
the whole spectrum of the complementary prism GG of a k-regular graph G of
order n in terms of n and the spectrum of G, as the following corollary states.

Corollary 3.4. If G is a connected k-regular graph on n vertices with spectrum

σA = {k, γ[m2]
2 , . . . , γ

[mp]
p }, then the eigenvalues of GG are

(1) α1,i(γi) =
−1 +

√
(2γi + 1)2 + 4

2
, with multiplicity mi, for 2 ≤ i ≤ p;

(2) α2,i(γi) =
−1−

√
(2γi + 1)2 + 4

2
, with multiplicity mi, for 2 ≤ i ≤ p;
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(3) β1,2(n, k) =
n− 1±

√
(n− 1− 2k)2 + 4

2
, which are the two main eigen-

values when GG is non regular.

Example 3.5. Let us determine the spectra of the complementary prisms of
the complete graphs Kn, which are the coronas Kn ◦ K1, the complementary
prisms of the complete bipartite graphs Kn,n and the complementary prism of
the Petersen graph C5C5.

1. Since σA(Kn) = {−1[n−1], n − 1}, setting Gn = KnKn, the spectra of
the graphs in infinite family (Gn)n≥2 have only the following four distinct
eigenvalues

σA(Gn) =

{
(−Φ)

[n−1]
,
(
Φ−1

)[n−1]
,
n− 1±

√
(n− 1)2 + 4

2

}
. (9)

2. Since σA(Kn,n) = {n, 0[2n−2],−n}, setting Hn = Kn,nKn,n, the graphs in
infinite family (Hn)n≥2 have only the following six distinct eigenvalues

σA(Hn) =

{
(−Φ)[2n−2], (Φ−1)[2n−2], n− Φ, n+ Φ−1,

−1±
√

(2n− 1)2 + 4

2

}
.

3. Since σA(C5C5) = {3, 1[5], (−2)[4]}, we have

σA((C5C5)(C5C5)) =

9±
√

13

2
,

(
−1 +

√
13

2

)[9]

,

(
−1−

√
13

2

)[9]
 .

We may recall that a graph of order n is called strongly regular with param-
eters (n, r, a, b) whenever it is not complete or edgeless, each vertex is adjacent
to r vertices, for each pair of adjacent vertices there are a vertices adjacent to
both and for each pair of non-adjacent vertices there are b vertices adjacent to
both. A connected regular graph is strongly regular if and only if it has exactly
three distinct eigenvalues [3, Th. 3.32]. The next theorem states a couple of
properties of regular complementary prisms. Namely, it states that the Petersen
graph is the unique complementary prims which is strongly regular.

Theorem 3.6. Let G be a connected graph on n > 3 vertices.

1. GG is regular if and only if G is k-regular with k = n−1
2 .

2. GG is strongly regular if and only if G = C5.

Proof. Let us prove each of the statements.

1. It is immediate that when G is not regular GG is not regular as well. Thus,
assuming that G is k-regular, it follows that each vertex v ∈ V (GG)∩V (G)
has degree k + 1 and each vertex v′ ∈ V (GG) ∩ V (G) has degree n − k.
Therefore, GG is regular if and only if k + 1 = n− k.
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2. Assume that GG is a strongly regular graph. According to the previous
statement, G is a k-regular graph with k = n−1

2 . Therefore, by Corollary

3.4-(3), r = β1 = n+1
2 and β2 = n−3

2 are eigenvalues of GG.

Let n−1
2 > λ2 ≥ · · · ≥ λn be the eigenvalues of G. Taking into account

that GG has just three distinct eigenvalues, from Corollary 3.4 (1) and
(2) it follows that

−1 +
√

(2λ2 + 1)2 + 4 = · · · = −1 +
√

(2λn + 1)2 + 4 = n− 3,

−1−
√

(2λ2 + 1)2 + 4 = · · · = −1−
√

(2λn + 1)2 + 4 (10)

Equations (10) imply λj =
−1±
√
n(n−4)
2 , 2 ≤ j ≤ n. Therefore, G is a

regular graph with three distinct eigenvalues, namely, k = n−1
2 ,

γ1 =
−1 +

√
n(n− 4)

2
and (11)

γ2 =
−1−

√
n(n− 4)

2
(12)

and thus G is strongly regular. Let us suppose that (n, n−12 , x, y) are the
parameters of G. Then, as it is well known, from the parameters it follows
that the distinct eigenvalues of G are k = n−1

2 ,

γ1 =
x− y +

√
(x− y)2 + 4(k − y)

2
, (13)

and γ2 =
x− y −

√
(x− y)2 + 4(k − y)

2
(14)

From (11) - (13) and (12) - (14) we obtain the equations

x− y +
√

(x− y)2 + 4(k − y)

2
=
−1 +

√
n(n− 4)

2
(15)

x− y −
√

(x− y)2 + 4(k − y)

2
=
−1−

√
n(n− 4)

2
(16)

and (15) and (16) imply x− y = −1. Therefore

1 + 4

(
n− 1

2
− y
)

= n(n− 4)⇔ n(6− n) = 4y + 1.

Since y ≥ 0, then n ≤ 5. As C5 is the unique non complete regular graph
of odd order not greater than 5, the result follows.
The converse is immediate, taking into account that C5 is the strongly
regular graph with parameters (5, 2, 0, 1) and its complementary prism is
the Petersen graph.
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4 Signless Laplacian eigenpairs of complemen-
tary prisms

The results of this section are mostly similar to those obtained in Subsections 3.1
and 3.2. From (1) it follows that

QGG =

(
QG + I I

I QG + I

)
=

(
QG 0
0 QG

)
+

(
I I
I I

)
. (17)

Lemma 4.1. Let G be a graph of order n. If (q,u) is a Q-eigenpair of G such
that u ⊥ j, then (n− 2− q,u) is a Q-eigenpair of G.

Proof. Notice that
QG = QKn −QG.

Since Kn is regular with σQ(Kn) =
{

2(n− 1), (n− 2)[n−1]
}

, its unique main
Q-eigenvalue is 2(n− 1) (see [5]). From u ⊥ j, it follows that QKnu = (n− 2)u
and then

QGu = QKnu−QGu

= (n− 2− q)u.

In the next result all the Q-eigenvalues of the complementary prism GG but
two for each main Q-eigenvalue of the graph G are determined.

Theorem 4.2. Let G be a graph of order n. If (q,u) is a Q-eigenpair of G

such that u ⊥ j, then ρ1,2(q) =
n±

√
(n− 2(q + 1))2 + 4

2
are Q-eigenvalues of

GG with associated eigenvectors

(
u

(ρ1,2(q)− (q + 1))u

)
which are orthogonal

to the all one vector.

Proof. This proof is similar to the proof of Theorem 3.2.

When G is a connected regular graph the following results are obtained using
a technique similar to the one used in Section 3.2.

Theorem 4.3. If G is a connected k-regular graph on n vertices, then

%1,2 = %1,2(n, k) = n±
√

(n− 2k − 1)2 + 1

are Q-eigenvalues of GG with associated eigenvectors

(
j

(%1,2 − 2k − 1)j

)
.

These eigenvalues are the two main Q-eigenvalues of GG when this graph is
non regular.

Proof. The proof is similar to the one of Theorem 4.2, taking into account that
when G is connected and regular all its Q-eigenvalues are non main, except the
largest one ([5]).

The next corollary is just a signless Laplacian version of Corollary 3.4.
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Corollary 4.4. If G is a connected k−regular graph on n vertices such that

σQ =
{

2k, π
[t2]
2 , . . . , π

[tp]
p

}
, then the Q-eigenvalues of GG are

(1) ρ1,i(πi) =
n+

√
(n− 2(πi + 1))2 + 4

2
, with multiplicity ti, for 2 ≤ i ≤ p;

(2) ρ2,i(πi) =
n−

√
(n− 2(πi + 1))2 + 4

2
, with multiplicity ti, for 2 ≤ i ≤ p;

(3) %1,2(n, k) = n±
√

(n− 2k − 1)2 + 1, which are the two main Q-eigenvalues
obtained when GG is non regular.

5 Laplacian eigenpairs of complementary prisms

The following well known lemma establishes that the Laplacian spectrum of G
is closely related to the Laplacian spectrum of G.

Lemma 5.1. If the Laplacian eigenvalues of G are µ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥
µn = 0, then the Laplacian eigenvalues of G are n − µn−1 ≥ · · · ≥ n − µ2 ≥
n − µ1 ≥ 0, and for every i ∈ {1, . . . , n − 1} the Laplacian eigenvalue µi of G
and the Laplacian eigenvalue n− µi have the same associated eigenspace.

As we may note, it follows from (1) that

LGG =

(
LG + I −I
−I LG + I

)
. (18)

Theorem 5.2. Let G be graph on n vertices with Laplacian eigenvalues µ1 ≥
µ2 ≥ · · · ≥ µn−1 ≥ µn = 0. For each i = 1, . . . , n−1, if (µi,ui) is a L-eigenpair
of G, then

τ1,2(µi) =
n+ 2±

√
(n− 2µi)2 + 4

2

are L-eigenvalues of GG with associated eigenvectors

(
ui

(µi − τ1,2(µi))ui

)
.

The others L-eigenvalues of GG are 2 and 0 with associated eigenvectors

(
j
−j

)
and

(
j
j

)
, respectively.

Proof. Let i ∈ {1, . . . , n − 1} and assume that wi =

(
ui
βiui

)
is an eigen-

vector of LGG associated to the eigenvalue τi. Then, taking into account (18)
and Lemma 5.1, from the eigenvector equation LGGwi = τiwi it follows that(

(µi + 1− βi)ui
(−1 + (n− µi + 1)βi)ui

)
= τi

(
ui

βiui

)
. So,{

µi + 1− βi = τi
−1 + (n− µi + 1)βi = τiβi,

(19)

which implies the quadratic equation

β2
i − (2µi − n)βi − 1 = 0.
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Therefore, βi =
2µi − n±

√
(2µi − n)2 + 4

2
and from (19) we obtain

τ1,2(µi) =
n+ 2±

√
(2µi − n)2 + 4

2
.

The last part is immediate.

Example 5.3. Let us apply Theorem 5.2 to compute all the Laplacian eigen-
values of GG, where G is the graph of Example 2.3. Taking into account that

σL(G) =
{

7+
√
5

2 , 5+
√
13

2 , 7−
√
5

2 , 2, 5−
√
13

2 , 0
}

, the L-eigenvalues are 2, 0 and

the ones presented in the following table.

µ τ1(µ) τ2(µ)

7+
√
5

2
8+
√

10+2
√
5

2
8−
√

10+2
√
5

2

5+
√
13

2
8+
√

18−2
√
13

2
8−
√

18−2
√
13

2

7−
√
5

2
8+
√

10−2
√
5

2
8−
√

10−2
√
5

2

2 4 +
√

2 4−
√

2

5−
√
13

2
8+
√

18+2
√
13

2
8−
√

18+2
√
13

2

Corollary 5.4. If G is a graph on n vertices with Laplacian eigenvalues µ1,
µ2, . . ., µn−1 and µn = 0, then the characteristic polynomial of the Laplacian
matrix of GG is

p(τ) = det(τI2n − LGG) = τ(τ − 2)

n−1∏
i=1

(τ2 − (n+ 2)τ + n(µi + 1)− µi2) .

6 Conclusions and open problems

The Petersen graph C5C5 and KnKn, the corona of the complete graph Kn and
K1, are examples of complementary prisms of graphs. As we have proven, the
Petersen graph is the unique complementary prism which is strongly regular.
The Corollary 2.2 presents the A, Q and L-eigenvalues of complementary prisms
GG as roots of the polynomial

p(ρ) = det((MG − (ρ− δ)I)(MG − (ρ− δ)I)− I),

where M ∈ {A,Q,L} and δ =

{
0, if M = A;
1, otherwise.

All the eigenpairs of the matrix M ∈ {AH ,QH ,LH} representing the com-
plementary prism H = GG of the graph G are computed in terms of the eigen-
values of the corresponding matrix M ∈ {AG,QG,LG}, with exception of two
of them for each main eigenvalue of AG and QG, respectively. Particular at-
tention was given to the complementary prisms of regular graphs. From the
obtained results it is immediate that if the matrices MG and MH representing
two graphs G and H are cospectral, then MGG and MHH are cospectral when
M = L and also when M ∈ {A,Q} and G and H are connected regular graphs.

Among several unexplored research directions on the topics of this paper, so
far, the following problems remain unsolved.
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1. Can we compute all the M-eigenvalues of the complementary prism GG
in terms of the M-eigenvalues of G, when M ∈ {A,Q}?

2. Can we decide wether a graph H is a complementary prism of a graph
from the spectrum of MH , for M ∈ {A,Q,L}?

3. In this paper it is proven that there is only one regular complementary
prism with three distinct eigenvalues. Are there non regular complemen-
tary prisms with just three distinct eigenvalues?

Acknowledgement

The research of D.M. Cardoso and P. Carvalho was partially supported by the
Portuguese Foundation for Science and Technology (“FCT-Fundação para a
Ciência e a Tecnologia”), through the CIDMA - Center for Research and Devel-
opment in Mathematics and Applications, within project UID/MAT/04106/2013.
These authors also thanks the hospitality of COPPE of UFRJ, where part of
this research was conducted. M.A.A. de Freitas was partially supported by
National Council of Technological and Scientific Development(CNPq-Conselho
Nacional de Desenvolvimento Cient́ıfico e Tecnológico) and FAPERJ (Fundação
de Amparo à Pesquisa do Estado do Rio de Janeiro). C.T.M.Vinagre thanks
the hospitality of University of Aveiro, where this research was started.

References

[1] W.E. Arnoldi. The principle of minimized iterations in the solution of the matrix

eigenvalue problem. Q. Appl. Math. 9 (1951): 17–29.

[2] A. E. Brouwer, W. H. Haemers. Spectra of Graphs. Springer, New York, 2012.
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