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2Departamento de Matemáticas, Universidad de Antofagasta, Antofagasta, Chile.

Email: luis.medina@uantof.cl
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Abstract

A weighted Bethe graph B is obtained from a weighted generalized
Bethe tree by identifying each set of children with the vertices of a graph
belonging to a family F of graphs. The operation of identifying the root
vertex of each of r weighted Bethe graphs to the vertices of a connected
graph R of order r is introduced as the R-concatenation of a family of r
weighted Bethe graphs. It is shown that the Laplacian eigenvalues (when
F has arbitrary graphs) as well as the signless Laplacian and adjacency
eigenvalues (when the graphs in F are all regular) of the R-concatenation
of a family of weighted Bethe graphs can be computed (in a unified way)
using the stable and low computational cost methods available for the de-
termination of the eigenvalues of symmetric tridiagonal matrices. Unlike
the previous results already obtained on this topic, the more general con-
text of families of distinct weighted Bethe graphs is herein considered.
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1 Introduction

1.1 Basic notation and definitions

In this paper we deal with undirected simple graphs G of order n, with vertex set
V (G) = {1, . . . , n} and edge set E (G). Considering a vertex subset S ⊂ V (G),
∂ (S) denotes the subset of edges that have exactly one vertex in S. Throughout it
is assumed that each edge e ∈ E(G) has a positive weight w (e). When w (e) = 1
for all e ∈ E(G) the graph G is an unweighted graph otherwise is weighted. The
adjacency matrix of a graph G is the n × n matrix A (G) = (ai,j) such that
ai,j = w (ij) if there is an edge ij joining the vertices i and j and ai,j = 0
elsewhere. The Laplacian matrix and the signless Laplacian matrix of G are
L (G) = D (G) − A (G) and Q (G) = D (G) + A (G) , respectively, where D (G)
is the diagonal matrix with diagonal entries di,i =

∑
e∈∂({i}) w (e), where the

sum is taken over all edges incident to the vertex i. Notice that the matrices
L (G) , Q (G) and A (G) are real and symmetric and thus all of their eigenvalues
are real. Furthermore, L (G) and Q (G) are positive semidefinite and hence each
of their eigenvalues is nonnegative.

Let B be a ŵ-weighted generalized Bethe tree with k > 1 levels, which is a
rooted tree in which the vertices at the same level have the same degree and
edges connecting vertices at consecutive levels (k−j+1 and k−j) have the same
weight wj (the j-th entry of the (k − 1)-tuple ŵ), with 1 ≤ j ≤ k − 1. When all
of the weights are equal to 1, B is called an unweighted generalized Bethe tree or
simply a generalized Bethe tree. Considering a family of graphs F = {Gj : j ∈ ∆},
where ∆ is a non-empty index subset of {1, . . . , k− 1}, the graph B (F) obtained
from the ŵ-weighted generalized Bethe tree B by identifying each set of children
of B at level k − j + 1 with the vertices of the graph Gj ∈ F, is herein called
a ŵ-weighted Bethe graph. This graph is called an unweighted Bethe graph or
simply a Bethe graph when all the weights in the (k − 1)-tuple ŵ are equal to
1 (see [2, Fig.1.2] as an example). The root vertex of B (F) coincides with the
root vertex of B. For 1 ≤ j ≤ k, nj and dj are the number and the degree of the
vertices of B at the level k− j+ 1, respectively. We recall that for a rooted graph
the level of a vertex is one more than its distance from the root vertex. Thus dk
is the degree of the root vertex, nk = 1, d1 = 1 and n1 is the number of pendant
vertices. Let us consider

δj =


wj if j = 1,
(dj − 1)wj−1 + wj if 2 ≤ j ≤ k − 1,
dkwk−1 if j = k.

Notice that δj is the sum of the weights of the edges of B incident with a vertex
at the level k− j+ 1. If w1 = w2 = · · · = wk−1 = 1, then δj = dj for j = 1, . . . , k.
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Now, let mj =
nj

nj+1
for j = 1, . . . , k − 1. Then

mj = dj+1 − 1 (1 ≤ j ≤ k − 2) ,

dk = nk−1 = mk−1,

where mj is the cardinality of each set of children at the level k − j + 1.
From now on, M = M (G) is one of the matrices L (G) , Q (G) or A (G). We

consider only matrices Mj = M (Gj), with eigenvalues θ1 (Mj) , . . . , θmj
(Mj) , for

which emj
(the all one vector with mj entries) is an eigenvector associated to the

eigenvalue θmj
(Mj) , that is,

Mjemj
= θmj

(Mj) emj
. (1)

Observe that (1) holds if M (Gj) = L (Gj) and also if M (Gj) = Q (Gj) or M (Gj) =
A (Gj) whenever Gj is a regular graph. We introduce the notation

s =

{
−1 if M is the Laplacian matrix
1 if M is the signless Laplacian or the adjacency matrix

(2)

and

a =

{
0 if M is the adjacency matrix
1 if M is the Laplacian or the signless Laplacian matrix.

(3)

Definition 1.1 Let us define the matrices Xj, for j = 1, . . . , k − 1, and the
matrices Xj,l for j = 1, 2, . . . , k − 1 and l = 1, . . . ,mj − 1, as follows. Xj is the
j× j leading principal submatrix of the k×k symmetric tridiagonal matrix Xk =

aδ1 + θm1
(M1) w1

√
m1

w1
√
m1 aδ2 + θm2 (M2)

. . .

. . .
. . . wk−2

√
mk−2

wk−2
√
mk−2 aδk−1 + θmk−1

(Mk−1) wk−1
√
mk−1

wk−1
√
mk−1 aδk


and

Xj,l =



aδ1 + θm1
(M1) w1

√
m1

w1
√
m1

. . .
. . .

. . .
. . . wj−2

√
mj−2

wj−2
√
mj−2 aδj−1 + θmj−1

(Mj−1) wj−1
√
mj−1

wj−1
√
mj−1 aδj + θl (Mj)

 .

The multiset of eigenvalues of a square matrix C is denoted σ (C).
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1.2 Previous results and the aim of the paper

Several results on the spectra of matrices associated to generalized Bethe trees
were published in [3, 7, 11] and some of those results were generalized in [12]. In
fact, assuming (1) and defining Ω = {j : 1 ≤ j ≤ k − 1, nj > nj+1}, we have the
following result stated in [12, Th. 2.10].

Theorem 1.2 [12]

σ (M (B (F))) = σ (Xk) ∪
(
∪j∈Ω−∆σ (Xj)

nj−nj+1
)
∪
(
∪j∈∆

(
∪mj−1

l=1 σ (Xj,l)
nj+1

))
,

where σ (Xj)
nj−nj+1 and σ (Xj,l)

nj+1 mean that each eigenvalue in σ (Xj) and in
σ (Xj,l) must be considered with multiplicity nj − nj+1 and nj+1, respectively.
Furthermore, the multiplicities of equal eigenvalues obtained in different matrices
(if any), must be added.

Denoting by Ã the submatrix obtained from a square matrix A by deleting
its last row and its last column, from the proofs of Lemma 2.2, Theorem 2.5 and
Lemma 2.7 in [12], we obtain

Lemma 1.3 [12]∣∣∣λI − ˜M (B (F))
∣∣∣ = Dk−1 (λ)

∏
j∈Ω−∆

(Dj (λ))nj−nj+1
∏
j∈∆

mj−1∏
l=1

(Dj,l (λ))nj+1

where, for j = 1, . . . , k − 1 and l = 1, . . . ,mj − 1, Dj (λ) and Dj,l (λ) are the
characteristic polynomials of the matrices Xj and Xj,l, respectively.

Theorem 1.2 above was extended in [2, Th. 3.7] to a graph R{B (F)} ob-
tained from a connected weighted graph R on r vertices and r copies of B (F)
by identifying the root of the i-th copy B (F) with the i-th vertex of R. Those
spectra were given by the eigenvalues of symmetric tridiagonal matrices of order
j, with 1 ≤ j ≤ k, where k is the number of levels of the generalized Bethe
tree B. Thus, the spectra of M (B (F)) and M(R{B (F)}), respectively, can be
computed using the stable and low computational cost methods available for the
determination of the eigenvalues of symmetric tridiagonal matrices (see [6]).

The purpose of this paper is to extend the results obtained in [2] to a graph
R{Hi : 1 ≤ i ≤ r} defined as follows.

Definition 1.4 Let R be a connected graph on r vertices v1, . . . , vr. For each
i ∈ {1, . . . , r} consider an index subset ∆i ⊆ {1, . . . , ki − 1}, a family of graphs
Fi = {Gi,j : j ∈ ∆i} and the ŵi-weighted Bethe graph Hi = Bi (Fi), where Bi is a
ŵi-weighted generalized Bethe tree with ki levels. The weighted R-concatenation
of the family of weighted Bethe graphs H = {Hi : 1 ≤ i ≤ r} is the graph R{H}
obtained from R and the graphs H1, H2, . . . , Hr by identifying the root of each
Hi with vi.
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As usually, when the weights in the tuples ŵ1, . . . , ŵr are all equal to 1 the
graphR{H} is called an unweightedR-concatenation or simply aR-concatenation
of the family of Bethe graphs H.

The graph depicted in Figure 1 is the R-concatenation of a family of Bethe
graphs H1, . . . ,H4, where R is obtained from K4 after deleting one edge and
H1, . . . ,H4 denotes a collection of four distinct Bethe graphs. Notice that, unlike
the case studied in [2], the graphs Hi in R{Hi : 1 ≤ i ≤ r} can be distinct.

Figure 1: The R-concatenation of a family H of four Bethe graphs, where R is
obtained from K4 after deleting one edge.

A similar operation with the designation of concatenation between two graphs
by their root vertices is used in computer science in context-free word grammars
[4] and graph codes [1]. This graph operation is also called in [8] the coalescence
of two graphs with respect to some particular vertices (one vertex in each graph).

The remaining sections of this paper are organized as follows. Section 2 is
devoted to the introduction of some additional notation to facilitate the presenta-
tion of the main result of Section 3. In Section 3 we characterize the eigenvalues,
including their multiplicities, of the matrix M(R{H}) in a unified way. As an ap-
plication of this main result, in Section 4 the eigenvalues of the Laplacian matrix
of the graph R{H} are characterized as well as the eigenvalues of the signless
Laplacian and adjacency matrices of this graph, whenever for i = 1, . . . , r, in
each family F i (considered for Hi = Bi (Fi)) the graphs Gi,j, with j ∈ ∆i, are all
regular.
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2 Additional notation

Before going further it is worth to introduce the following additional notation.

1. For each i ∈ {1, . . . , r} Hi = Bi(Fi), where Bi is a weighted generalized
Bethe tree with ki levels.

(a) For j = 1, . . . , ki, ni,j and di,j denote the number and the degree of
the vertices of Bi at the level ki − j + 1, respectively.

(b) For j = 1, . . . , ki − 1, the edges of Bi connecting vertices at the level
ki − j + 1 with the vertices at the level ki − j have the weight wi,j.

(c) For j ∈ ∆i, the edges of the graph Gi,j (defined on the set of children
of Bi at level ki− j+1) have the weight ui,j. On the other hand, when
j 6∈ ∆i, ui,j = 0.

2. Now let us define G = R{H}, with H = {Hi : 1 ≤ i ≤ r} .

(a) Considering v1, . . . , vr ∈ V (R), as usually, vi ∼ vj means that vi and
vj are adjacent.

(b) Furthermore, for every pair of vertices vi and vj if vi ∼ vj then εi,j =
εj,i is the weight of the edge vivj, otherwise εi,j = εj,i = 0.

(c) For i = 1, . . . , r, the degree of vi as a vertex of R is d (vi) and ni =∑ki
j=1 ni,j is the number of vertices of the graph Hi. Therefore, the

total number of vertices of G is n =
∑r

i=1 ni.

(d) For 1 ≤ i ≤ r and 1 ≤ j ≤ ki − 1, mi,j =
ni,j

ni,j+1
. Observe that mi,j is

the cardinality of each set of children of Bi at the level ki − j + 1 and
then the order of Gi,j is mi,j. Moreover

mi,j = di,j+1 − 1, 1 ≤ j ≤ ki − 2

mi,ki−1 = di,ki = ni,ki−1.

(e) For i = 1, 2, . . . , r, let

δi,1 = wi,1

δi,j = (di,j − 1)wi,j−1 + wi,j, j = 2, . . . , ki − 1

δi,ki = di,kiwi,ki−1

εi =
∑
vi∼vj

εi,j.

Observe that if Bi is an unweighted tree then δi,j = di,j and if R is an
unweighted graph then εi = d (vi) .
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The identity matrix of appropriate order is denoted by I and Im denotes the
identity matrix of order m. For further notation the reader is referred to [13]
(regarding matrix theory) and [5] (regarding graph spectra).

It should be noted that Bi and Hi have the same vertex set, furthermore the
vertices of G are labeled as follows:

(1) The vertices of H1 are labeled from the bottom to the vertex v1, using the
labels 1, . . . , n1 and at each level from the left to the right;

(2) The vertices of H2 are labeled from the bottom to the vertex v2, using the
labels n1 + 1, . . . , n1 + n2 and at each level from the left to the right;

...

(r) The vertices of Hr are labeled from the bottom to the vertex vr, using the
labels n− nr + 1, . . . , n and at each level from the left to the right.

In addition, for i = 1, . . . , r and j = 1, . . . , r, we denote by Ei,j = (epq) the matrix
of order ti × tj such that etitj = 1 and the other entries are zero.

Using the above mentioned labeling the Laplacian, signless Laplacian and
adjacency matrices of G become M (G) =

M (H1) + aε1E1,1 sε1,2E1,2 · · · · · · sε1,rE1,r

sε1,2E
T
1,2

. . .
. . . sε2,rE2,r

...
. . .

. . .
. . .

...
...

. . . M (Hr−1) + aεr−1Er−1,r−1 sεr−1,rEr−1,r

sε1,rE
T
1,r sε2,rE

T
2,r · · · sεr−1,rE

T
r−1,r M (Hr) + aεrEr,r


,

where s and a are as in (2) and (3), respectively. On the other hand, for
i = 1, . . . , r, M (Hi) + aεiEi,i =

Ini,2
⊗ Si,1 sIni,2

⊗ wi,1emi,1

sIni,2
⊗ wi,1e

T
mi,1

. . .
. . .

. . .
. . .

. . .

. . . Si,ki−1 swi,ki−1emi,ki−1

swi,ki−1e
T
mi,ki−1

a (δi,ki + εi)


where, for j = 1, . . . , ki − 1,

Si,j = aδi,jImi,j
+M (Gi,j)

with M (Gi,j) = 0 if j /∈ ∆i.
Let us assume thatMi,j = M(Gi,j) has the eigenvalues θ1(Mi,j), . . . , θmi,j

(Mi,j)
such that

Mi,jemi,j
= θmi,j

(Mi,j)emi,j
. (4)

This is always the case if M(Gi,j) = L(Gi,j) and also the case if M(Gi,j) = Q(Gi,j)
or M(Gi,j) = A(Gi,j) whenever Gi,j is regular.
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Definition 2.1 For i = 1, . . . , r and j = 1, . . . , ki−1, let Xi,j be the j×j leading
principal submatrix of the ki × ki symmetric tridiagonal matrix Xi,ki = aD+

θmi,1 (Mi,1) wi,1
√
mi,1

wi,1
√
mi,1 θmi,2 (Mi,2)

. . .

. . .
. . . wi,ki−2

√
mi,ki−2

wi,ki−2
√
mi,ki−2 θmi,ki−1

(Mi,ki−1) wi,ki−1
√
mi,ki−1

wi,ki−1
√
mi,ki−1 0

 ,

where a is defined as in (3) and D = diag(δi,1, δi,2, . . . , δi,ki−1, δi,ki).

Definition 2.2 For i = 1, . . . , r, j = 1, . . . , ki − 1 and l = 1, . . . ,mi,j − 1, let
Xi,j,l =



aδi,1 + θmi,1

(
Mi,1

)
wi,1
√
mi,1

wi,1
√
mi,1

.
.
.

.
.
.

. .
.

. .
. wi,j−2

√
mi,j−2

wi,j−2
√
mi,j−2 aδi,j−1 + θmi,j−1

(
Mi,j−1

)
wi,j−1

√
mi,j−1

wi,j−1
√
mi,j−1 aδi,j + θl

(
Mi,j

)


.

3 The main results

Defining Ωi = {j : 1 ≤ j ≤ ki − 1, ni,j > ni,j+1} , i = 1, . . . , r and applying The-
orem 1.2 and Lemma 1.3 to Hi = Bi (Fi) we obtain the following lemma.

Lemma 3.1 For i = 1, . . . , r,

|λI −M (Hi)| = Di,ki(λ)Pi(λ)∣∣∣λI − M̃ (Hi)
∣∣∣ = Di,ki−1(λ)Pi(λ),

where

Pi(λ) =
∏

j∈Ωi−∆i

(Di,j (λ))ni,j−ni,j+1
∏
j∈∆i

mi,j−1∏
l=1

(Di,j,l (λ))ni,j+1

and for j = 1, . . . , ki and l = 1, . . . ,mi,j − 1, Di,j (λ) and Di,j,l (λ) are the char-
acteristic polynomials of the matrices Xi,j and Xi,j,l, respectively.

Before proceeding, it is also worth to recall the following lemma deduced in
[10].

Lemma 3.2 [10] For i = 1, 2, . . . , r, let Bi be a matrix of order ki × ki and µi,j
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be arbitrary scalars. Then∣∣∣∣∣∣∣∣∣∣∣

B1 µ1,2E1,2 · · · µ1,r−1E1,r−1 µ1,rE1,r

µ2,1E
T
1,2 B2 · · · · · · µ2,rE2,r

µ3,1E
T
1,3 µ3,2E

T
2,3

. . . · · · ...
...

...
... Br−1 µr−1,rEr−1,r

µr,1E
T
1,r µr,2E

T
2,r · · · µr,r−1E

T
r−1,r Br

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|B1| µ1,2

∣∣∣B̃2

∣∣∣ · · · µ1,r−1

∣∣∣B̃r−1

∣∣∣ µ1,r

∣∣∣B̃r

∣∣∣
µ2,1

∣∣∣B̃1

∣∣∣ |B2| · · · · · · µ2,r

∣∣∣B̃2

∣∣∣
µ3,1

∣∣∣B̃1

∣∣∣ µ3,2

∣∣∣B̃2

∣∣∣ . . . · · · ...
...

...
... |Br−1| µr−1,r

∣∣∣B̃r−1

∣∣∣
µr,1

∣∣∣B̃1

∣∣∣ µr,2

∣∣∣B̃2

∣∣∣ · · · µr,r−1

∣∣∣B̃r−1

∣∣∣ |Br|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The next theorem states the main result of this paper.

Theorem 3.3 Let us consider the graph G = R{H} . If (4) holds then

σ (M(G)) = σ (X) ∪
r⋃

i=1

(
∪j∈Ωi−∆i

σ (Xi,j)
ni,j−ni,j+1 ∪j∈∆i

(
∪mi,j−1

l=1 σ (Xi,j,l)
ni,j+1

))
where

X =


X1,k1 + aε1E1,1 sε1,2E1,2 · · · sε1,rE1,r

sε1,2E
T
1,2 X2,k2 + aε2E2,2

...
...

. . . . . .
...

...
. . . sεr−1,rEr−1,r

sε1,rE
T
1,r · · · sεr−1,rE

T
r−1,r Xr,kr + aεrEr,r

 ,

σ (Xi,j)
ni,j−ni,j+1 and σ (Xi,j,l)

ni,j+1 mean that each eigenvalue in σ (Xi,j) and in
σ (Xi,j,l) must be considered with multiplicity ni,j −ni,j+1 and ni,j+1, respectively.
Furthermore, the multiplicities of equal eigenvalues obtained in different matrices
(if any), must be added.

Proof. We apply Lemma 3.2 to obtain |λI −M (G)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|λI −M (H1)− aε1E1,1| −sε1,2

∣∣∣λI − M̃ (H2)
∣∣∣ · · · −sε1,r

∣∣∣λI − M̃ (Hr)
∣∣∣

−sε1,2

∣∣∣λI − M̃ (H1)
∣∣∣ . . . . . .

...
...

. . . . . .
...

...
. . . −sεr−1,r

∣∣∣λI − M̃ (Hr)
∣∣∣

−sε1,r

∣∣∣λI − M̃ (H1)
∣∣∣ · · · · · · |λI −M (Hr)− aεrEr,r|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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For i = 1, . . . , r, applying linearity on the last column of |λI −M (Hi)− aεiEi,i| ,
we have

|λI −M (Hi)− aεiEi,i| = |λI −M (Hi)| − aεi
∣∣∣λI − M̃ (Hi)

∣∣∣ .
Now, using Lemma 3.1, we obtain

|λI −M (Hi)− aεiEi,i| = (Di,ki(λ)− aεiDi,ki−1(λ))Pi(λ)

Therefore |λI −M (G)| =∣∣∣∣∣∣∣∣∣∣∣∣

(D1,k1 − aε1D1,k1−1)P1 −sε1,2D2,k2−1P2 · · · −sε1,rDr,kr−1Pr

−sε1,2D1,k1−1P1
. . .

...
...

. . . . . .
...

...
. . . −sεr−1,rDr,kr−1Pr

−sε1,rD1,k1−1P1 · · · · · · (Dr,kr − aεrDr,kr−1)Pr

∣∣∣∣∣∣∣∣∣∣∣∣
=

R (λ)
r∏

i=1

Pi (λ) , where R (λ) =∣∣∣∣∣∣∣∣∣∣∣∣

D1,k1 − aε1D1,k1−1 −sε1,2D2,k2−1 · · · −sε1,rDr,kr−1

−sε1,2D1,k1−1
. . . . . .

...
...

. . . . . .
...

...
. . . −sεr−1,rDr,kr−1

−sε1,rD1,k1−1 · · · −sεr−1,rDr−1,kr−1−1 Dr,kr − aεrDr,kr−1

∣∣∣∣∣∣∣∣∣∣∣∣
.

in which, for short, the variable λ has been omitted.
Now, applying Lemma 3.2, we have |λI −X| =∣∣∣∣∣∣∣∣∣∣∣∣

λI −X1,k1 − aε1E1,1 −sε1,2E1,2 · · · −sε1,rE1,r

−sε1,2E
T
1,2 λI −X2,k2 − aε2E2,2

...
...

. . . . . .
...

...
. . . −sεr−1,rEr−1,r

−sε1,rE
T
1,r · · · −sεr−1,rE

T
r−1,r λI −Xr,kr − aεrEr,r

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|λI −X1,k1 − aε1E1,1| −sε1,2

∣∣∣λI − X̃2,k2

∣∣∣ · · · −sε1,r

∣∣∣λI − X̃r,kr

∣∣∣
−sε1,2

∣∣∣λI − X̃1,k1

∣∣∣ |λI −X2,k2 − aε2E2,2|
...

...
. . . . . .

...
...

. . . −sεr−1,r

∣∣∣λI − X̃r,kr

∣∣∣
−sε1,r

∣∣∣λI − X̃1,k1

∣∣∣ · · · · · · |λI −Xr,kr − aεrEr,r|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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For i = 1, . . . , r, expanding along the last column, we get

|λI −Xi,ki − aεiEi,i| = |λI −Xi,ki | − aεi
∣∣∣λI − X̃i,ki

∣∣∣ .
Now, we use the fact that |λI −Xi,ki | = Di,ki (λ) and

∣∣∣λI − X̃i,ki

∣∣∣ = Di,ki−1 (λ) .

Replacing, we obtain |λI −X| = R (λ).

4 The Laplacian, signless Laplacian and adja-

cency spectra of R{H}
Throughout this section, we analyze the particular cases of the Laplacian, signless
Laplacian and adjacency spectra of G = R{H}.

4.1 On the Laplacian spectra of G
We already observe that condition (4) holds for the Laplacian matrix. Then we
may apply Theorem 3.3 to find the Laplacian spectrum of G.

For i = 1, . . . , r and j = 1, . . . , ki − 1, let

µ1(Mi,j) ≥ µ2(Mi,j) ≥ · · · ≥ µmi,j
(Mi,j) = 0

where Mi,j = L (Gi,j).
Since, according to (2) and (3), s = −1 and a = 1 whenever M = L (G) and

µmi,j
(Mi,j) = 0 for i = 1, . . . , r and j = 1, . . . , ki − 1, the Laplacian spectrum of

G follows easily from Theorem 3.3.

Theorem 4.1 The Laplacian spectrum of G = R{H} is

σ (L(G)) = σ (U) ∪
r⋃

i=1

(
∪j∈Ωi−∆i

σ (Ui,j)
ni,j−ni,j+1 ∪j∈∆i

(
∪mi,j−1

l=1 σ (Ui,j,l)
ni,j+1

))
where,

1. for i = 1, . . . , r and j ∈ Ωi−∆i, Ui,j is the j×j leading principal submatrix
of the ki × ki matrix Ui,ki = Xi,ki (in this particular case, the diagonal
entries in Ui,ki are δi,1, . . . , δi,ki),

2. for i = 1, . . . , r, j ∈ ∆i and l = 1, . . . ,mi,j − 1, Ui,j,l = Xi,j,l (in this partic-
ular case, the diagonal entries in Ui,j,l are δi,1, . . . , δi,j−1, δi,j + µl (L(Gi,j))),

3. and U = X, with Xi,ki = Ui,ki , a = 1 and s = −1.

The multiplicities of the eigenvalues of L (G) are considered as in Theorem 3.3.
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4.2 On the signless Laplacian and adjacency spectra of G
We denote the signless Laplacian eigenvalues and adjacency eigenvalues of a graph
S of order m as follows

q1 (S) ≤ q2 (S) ≤ q3 (S) ≤ · · · ≤ qm−1 (S) ≤ qm (S)

and
λ1 (S) ≤ λ2 (S) ≤ · · · ≤ λm−1 (S) ≤ λm (S)

respectively. In particular, if S is a regular graph of degree t and order m in which
the edges have a weight equal to u then Q (S) em = 2tuem, A (S) em = tuem and
thus qm (S) = 2tu and λm (S) = tu.

If each Gi,j is a regular graph of degree ri,j then (4) holds and we may apply
Theorem 3.3 to obtain the eigenvalues of Q (G) and A (G).

Since, according to (2) and (3), s = 1 and a = 1 whenever M = Q(G) and
qmi,j

(Mi,j) = 2mi,jui,j for i = 1, . . . , r and j = 1, . . . , ki−1, the signless Laplacian
spectrum of G follows easily from Theorem 3.3.

Theorem 4.2 If for i = 1, . . . , r and for each j ∈ ∆i the graph Gi,j is a regular
graph of degree ri,j and ri,j = 0 whenever j /∈ ∆i, then the signless Laplacian
spectrum of G = R{Hi : 1 ≤ i ≤ r} is

σ (Q(G)) = σ (V ) ∪
r⋃

i=1

(
∪j∈Ωi−∆i

σ (Vi,j)
ni,j−ni,j+1 ∪j∈∆i

(
∪mi,j−1

l=1 σ (Vi,j,l)
ni,j+1

))
where,

1. for i = 1, . . . , r and j ∈ Ωi−∆i, Vi,j is the j× j leading principal submatrix
of the ki×ki matrix Vi,ki = Xi,ki (in this particular case the diagonal entries
in Vki are δi,1 + 2ri,1ui,1, δi,2 + 2ri,2ui,2, . . . , δi,ki−1 + 2ri,ki−1ui,ki−1, δi,ki),

2. for i = 1, . . . , r, j ∈ ∆i and l = 1, . . . ,mi,j−1, Vi,j,l = Xi,j,l (in this particu-
lar case the diagonal entries in Vi,j,l are δi,1+2ri,1ui,1, δi,2+2ri,2ui,2, . . . , δi,j−1+
2ri,j−1ui,j−1, δi,j + ql(Gi,j)),

3. and V = X, with Xi,ki = Vi,ki , a = 1 and s = 1.

The multiplicities of the eigenvalues of Q (G) are considered as in Theorem 3.3.

Since, according to (2) and (3), s = 1 and a = 0 whenever M = A (G) and
λmi,j

(Mi,j) = mi,jui,j for i = 1, . . . , r and j = 1, . . . , ki − 1, the application of
Theorem 3.3 yields to
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Theorem 4.3 If for i = 1, . . . , r and for each j ∈ ∆i the graph Gi,j is a regular
graph of degree ri,j and ri,j = 0 whenever j /∈ ∆i, then the adjacency spectrum of
G = R{H} is

σ (A(G)) = σ (W ) ∪
r⋃

i=1

(
∪j∈Ωi−∆i

σ (Wi,j)
ni,j−ni,j+1 ∪j∈∆i

∪mi,j−1
l=1 σ (Wi,j,l)

ni,j+1

)
where,

1. for i = 1, . . . , r and j ∈ Ωi−∆i, Wi,j is the j×j leading principal submatrix
of the ki×ki matrix Wi,ki = Xi,ki (in this particular case the diagonal entries
in Wi,ki are ri,1ui,1, ri,2ui,2, . . . , ri,ki−1ui,ki−1, 0),

2. for i = 1, . . . , r, j ∈ ∆i and l = 1, . . . ,mi,j − 1, Wi,j,l = Xi,j,l (in this par-
ticular case the diagonal entries in Wi,j,l are ri,1ui,1, ri,2ui,2, . . . , ri,j−1ui,j−1,
λl(Gi,j)),

3. and W = X, with Xi,ki = Wi,ki, a = 0 and s = 1.

The multiplicities of the eigenvalues of A (G) are considered as in Theorem 3.3.

From Theorem 4.1, Theorem 4.2 and Theorem 4.3, the Laplacian eigen-
values, signless Laplacian eigenvalues and adjacency eigenvalues of R(H), re-
spectively, are the eigenvalues of symmetric tridiagonal matrices of order j,
1 ≤ j ≤ max{k1, . . . , kr}. Thus we may use the stable and low computational
cost methods available to compute the eigenvalues of such matrices.
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