On the maximum cardinality of k-regular induced subgraphs

Domingos Moreira Cardoso
University of Aveiro - Portugal

INFORMS, San Francisco, CA, November 13-16, 2005

Outline

1.Introduction.

2.Maximum size regular induced subgraphs.
3.Some applications.
4.Final remarks.

1. Introduction

Many combinatorial problems can be formulated as the determination of maximum size \boldsymbol{k}-regular induced subgraphs.

- A maximum stable set is 0 -regular;
- A maximum induced matching is 1-regular;
- A maximum clique is $(\omega(G)-1)$-regular;
- An Hamiltonian cycle of a graph G is a maximum cardinality 2-regular induced connected subgraph of $L(G)$;
- etc.

1. Introduction (cont.)

The vertex subset $S_{0}=\{1,2,3,4\}$ induces a 0 -regular subgraph.

1. Introduction (cont.)

The vertex subset $S_{1}=\{5,6,7,8,9,10\}$ induces a 1 -regular subgraph.

1. Introduction (cont.)

The vertex-subsets $S_{2}=\{1,2,5,7,8\}$ induces a 2 -regular subgraph.

1. Introduction (cont.)

- As it is well known the determination of a maximum cardinality k-regular induced subgraph is $N P$-hard;
- It is crucial to obtain polynomial-time upper bounds;
- A vertex subset $S \subseteq V(G)$ is (k, τ)-regular if induces a k-regular subgraph and

$$
\forall v \notin S \quad\left|N_{G}(v) \cap S\right|=\tau
$$

1. Introduction (cont.)

$S_{0}=\{1,2,3,4\}$ is (0,2)-regular;
$S_{1}=\{5,6,7,8,9,10\}$ is $(1,3)$-regular;
$S_{2}=\{1,2,5,7,8\}$ is (2, 1)-regular.
2. Maximum size regular induced subgraphs

Let G be a graph of order n with at least one edge, then

$$
v_{k}(G)=\max _{x \geq 0} 2 \hat{e}^{T} x-\frac{\tau}{k+\tau} x^{T}\left(\frac{A_{G}}{\tau}+I_{n}\right) x
$$

- where \hat{e} is the all-ones vector;
- A_{G} is the adjacency matrix of G and $\tau=-\lambda_{\text {min }}\left(A_{G}\right)$;
- I_{n} is the identity matrix and k is a scalar;
is a convex quadratic program.

2. Maximum size regular induced subgraphs(cont.)

Let G be a simple graph of order n with at least one edge and $-\lambda_{\min }\left(A_{G}\right)=\tau$. If $S \subseteq V(G)$ induces a subgraph of G such that $\bar{d}_{G[S]}=k\left(\right.$ where $\left.\bar{d}_{H}=\frac{1}{|V(H)|} \sum_{v \in V(H)} d_{H}(v)\right)$, then the following properties hold.

- $|S| \leq v_{k}(G)$;
- $|S|=v_{k}(G)$ if and only if S induces a k-regular subgraph and

$$
\tau+k \leq\left|N_{G}(v) \cap S\right| \quad \forall v \notin S
$$

2. Maximum size regular induced subgraphs(cont.)

Assuming that G is regular, then

- $v_{k}(G)=n \frac{k-\lambda_{\min }\left(A_{G}\right)}{\lambda_{\max }\left(A_{G}\right)-\lambda_{\min }\left(A_{G}\right)}$;
- $|S|=v_{k}(G)$ if and only if S is $(k, k+\tau)$-regular.

For the Petersen graph G (where $\lambda_{\min }\left(A_{G}\right)=-2$),

$$
v_{1}(G)=10 \frac{1-(-2)}{3-(-2)}=6
$$

Note that $S_{1}=\{5,6,7,8,9,10\}$ is $(1,3)$-regular and induces the maximum induced matching $M=\{56,9(10), 78\}$.
3. Some applications

As immediate consequence of the previous results, considering a regular graph G with $\tau=-\lambda_{\min }\left(A_{G}\right)$, we have the following extension of the Hoffman bound: If $S \subseteq V(G)$ induces a k-regular subgraph, then

$$
|S| \leq n \frac{k-\lambda_{\min }\left(A_{G}\right)}{\lambda_{\max }\left(A_{G}\right)-\lambda_{\min }\left(A_{G}\right)}
$$

Furthermore,

$$
|S|=n \frac{k-\lambda_{\min }\left(A_{G}\right)}{\lambda_{\max }\left(A_{G}\right)-\lambda_{\min }\left(A_{G}\right)}
$$

iff S is $(k, k+\tau)$-regular.
3. Some applications(cont.)

For this 4-regular graph G (where $\lambda_{\text {min }}\left(A_{G}\right)=-2$)

$$
v_{2}(G)=6 \frac{2-(-2)}{4-(-2)}=4
$$

Note that $S=\{1,3,4,6\}$ is $(2,4)$-regular.

3. Some applications(cont.)

- If $g(G)$ is the girth of a p-regular graph G, with $p>1$, then

$$
g(G) \leq n \frac{2-\lambda_{\min }\left(A_{G}\right)}{p-\lambda_{\min }\left(A_{G}\right)}
$$

- Another consequence:

Let G be an arbitrary graph (regular or nonregular) of order n with at least one edge and $\tau=-\lambda_{\min }\left(A_{G}\right)$.
If $S \subset V(G)$ is $(k, k+\tau)$-regular then S is a maximum cardinality set inducing a k-regular subgraph of G.

3. Some applications(cont.)

The Hoffman-Singleton graph G is a strongly regular graph with parameters $(50,7 ; 0,1)$ (for which $\lambda_{\min }\left(A_{G}\right)=-3$). If $S \subset V(G)$ is a stable set and $M \subset E(G)$ is an induced matching, then
$|S| \leq 50 \frac{0-(-3)}{7-(-3)}=15$.
$2|M| \leq 50 \frac{1-(-3)}{7-(-3)}=20 \Rightarrow|M| \leq 10$. The equality holds iff $V(M)$ is $(1,4)$-regular.

4. Final remarks

The Moore graph G of valency 57 if there exists (so far it is open) is a strongly regular graph with parameters
$(3250,57 ; 0,1)$ (for which $\lambda_{\text {min }}\left(A_{G}\right)=-8$).
If $S \subset V(G)$ is a stable set and $M \subset E(G)$ is an induced matching, then
$|S| \leq 3250 \frac{0-(-8)}{57-(-8)}=400$.
$2|M| \leq 3250 \frac{1-(-8)}{57-(-8)}=450 \Rightarrow|M| \leq 225$. The equality holds iff $V(M)$ is $(1,9)$-regular.

4. Final remarks(cont.)

The recognition of (k, τ)-regular sets in regular graphs can be done using the following result obtained in (Thompson, 1981).

- A p-regular graph has a (k, τ)-regular set S, with $k<p$, iff $k-\tau$ is an adjacency eigenvalue and

$$
(p-k+\tau) x(S)-\tau \hat{e}
$$

is a $(k-\tau)$-eigenvector.

- D. M. Thompson, Eigengraphs: constructing strongly regular graphs with block designs. Utilitas Math., 20 (1981):

