A spanning star forest model for the diversity problem in automobile industry

A. Agra^(a), D. Cardoso^(a), O. Cerdeira^(b) and E. Rocha^(a)

^(a)University of Aveiro - ^(b)Technical University of Lisbon

ECCO XVIII, Minsk, May 25-28, 2005

Summary

- **1.Problem description.**
- 2. The minimum arc cost sum spanning star forest model.
- 3. The complexity of the problem.
- 4. An algorithmic strategy.
- 5. Numerical example.

1. Problem description

Cars are purchased with a set of active options:

- airbags;
- air conditioned;
- radio car;
- etc;

which varies from one client to another.

1. **Problem description (cont.)**

• A car has an active option connection if the car has all the necessary material for the connection.

• Each unit may be produced with more active option connections than the necessary ones.

- If a car has an active option connection which not became active, then there is cost.
- The global cost of option connections is very high in automobile industry.
- For technical reasons, it is not possible to produce a large variety of different option connection configurations.

- 1. Problem description (cont.)
- Then the main goals are:
 - to optimize the diversity of option connection configurations;
 - to minimize the cost supply of produced configurations, fulfilling the market requirements;
- The universe of configurations is determined according to the statistic data about costumer preferences and selling expectations.

- 2. The minimum arc cost sum spanning star forest
- Consider the inclusion relation configurations digraph

• Each vertex is a configuration (a set of active option connections) and each arc $(i, j) \in A$ means that the configuration i includes configuration j.

2. The minimum arc cost sum spanning star forest (cont.) • Assuming that c_i and c_j are the unit production costs of both configurations and also that it is expected to sell n_j configurations j, each arc (i, j) has the cost

 $c_{ij} = n_j(c_i - c_j).$

• The inclusion relation configurations digraph has the following properties: each cost c_{ij} is positive, the arcs are transitive and it is acyclic.

• The goal is to determine a minimum arc cost sum spanning star forest with no more than k star centers.

3. The minimum arc cost sum spanning star forest (cont.) A spanning star forest with centers in $\{v_1, v_3\}$.

3. The minimum arc cost sum spanning star forest (cont.)

• The analytic model:

$$\min \qquad \sum_{(i,j)\in A} c_{ij} x_{ij} \\ \text{s. t.} \qquad \sum_{i\in\delta^{-}(j)} x_{ij} + y_j = 1, j \in \mathbf{V}$$
(5)
$$x_{ij} \leq y_i, (i,j) \in \mathbf{A}$$
(6)
$$\sum_{j\in V} y_j \leq \mathbf{k}$$
(7)
$$x_{ij}, y_p \in \mathbb{Z}_0^+, \ p \in \mathbf{V}, (i,j) \in \mathbf{A},$$
(8)

where k is the number of allowed configurations.

- 3. The minimum arc cost sum spanning star forest(cont.)
 Constraints (5) assure that each type of configuration is produced or replaced by another type of configuration.
- Constraints (6) assure that if configuration of type *i* becomes available to supply a configuration of type *j*, then configuration of type *i* must be produced.
- Constraint (7) assures that there are no more than *k* of configurations produced.

- 3. The minimum arc cost sum spanning star forest (cont.)
- Considering the model without the y variables:

$$\min \qquad \sum_{(i,j)\in A} c_{ij} x_{ij} \qquad (14)$$
s. t.
$$\sum_{j\in V} \sum_{i\in\delta^{-}(j)} x_{ij} = n - k \qquad (15)$$

$$\sum_{i\in\delta^{-}(j)} x_{ij} \leq 1, j \in V \qquad (16)$$

$$\sum_{i\in\delta^{-}(j)} x_{ij} + x_{jp} \leq 1, j \in V, p \in \delta^{+}(j) \qquad (17)$$

$$x_{ij} \in \mathbb{Z}_{0}^{+}, (i, j) \in A. \qquad (18)$$

3. Complexity of the problem

• The 3-minimum cover $(C, \mathcal{F}, \mathbf{k})$ asks whether a collection \mathcal{F} of 3-subsets of C contains a cover of C, $\mathcal{F}' \subset \mathcal{F}$, of size not greater than \mathbf{k} .

• The 3-minimum cover $(C, \mathcal{F}, \mathbf{k})$ is NP-complete.

• The 3-minimum cover $(C, \mathcal{F}, \mathbf{k})$, with $C = \{1, \ldots, n\}$, has a solution if and only if the digraph DG = (V, A) $(V = \{C\} \cup \mathcal{F} \cup \{1\} \cup \ldots \cup \{n\} \land (x, y) \in A \Leftrightarrow x \supseteq y)$ has a spanning star forest with $\mathbf{k} + 1$ stars and arc cost sum not greater than $L = 2n + (|\mathcal{F}| - \mathbf{k})(n - 3)$.

3. Complexity of the problem (cont.)

$$L = 2n + (|\mathcal{F}| - k)(n - 3)$$

4. An algorithmic strategy

• The minimum arc cost sum spanning star forest of DG with index star centers in $I = \{i_1, \ldots, i_p\}$ is denoted by $SSF^*(I)$ and has the following tableau:

	v_1	v_2	• • •	v_{n-1}	v_n	
i_1	c_{i_11}	c_{i_12}	• • •	c_{i_1n-1}	c_{i_1n}	$\sum_{j:i_j^*=i_1} c_{i_1j}$
÷	:	:	• • •	÷	:	9
i_p	c_{i_p1}	c_{i_p2}	• • •	c_{i_pn-1}	c_{i_pn}	$\sum_{j:i_j^*=i_p} c_{i_p j}$
$rac{i_p}{z}$	$egin{array}{c} c_{i_p 1} \ z_1 \end{array}$	$rac{c_{i_p2}}{z_2}$	•••	$rac{c_{i_pn-1}}{z_{n-1}}$	$rac{c_{i_pn}}{z_n}$	$rac{\sum_{j:i_j^*=i_p}c_{i_pj}}{\sum_{j=1}^n z_j}$

< 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23</pre>

• An index subset I is feasible if, fixing the vertex subset with indices in I as star centers, there is an arc from a vertex v_i , with $i \in I$, to each vertex v_j , with $j \in \{1, \ldots, n\} \setminus I$.

• Each feasible index subset defines a spanning star forest $SSF^*(I)$.

• Since the inclusion relation configuration digraph DG defines the poset $(V(DG), \supseteq)$, the subset of maximal elements determines the minimum cardinality index set I_0 defining a spanning star forest $SSF^*(I_0)$.

• Consider the $SSF^*(I)$ tableau in the following reduced form:

where each index i_j is equal to the index vertex center of the star to which belongs the vertex v_j .

• Therefore,
$$I = \bigcup_{j=1}^n \{i_j\}.$$

- Algorithm (input: DG, k);
 - 1. Determine $I_0 = \{i : d^-_{DG}(v_i) = 0\};$
 - 2. Set $q \leftarrow 0$ and determine the $SSF^*(I_0)$ reduced tableau:

	v_1	• • •	v_{j}	• • •	v_n	
z^0	$egin{array}{c} z_1^0 \end{array}$	• • •	z_j^0	• • •	z_n^0	$egin{array}{l} z_0^0 = \sum_{j=1}^n z_j^0 \end{array}$
	i_1^0	• • •	i_j^0	• • •	i_n^0	

- 3. While $|I_q| < k$ do
 - 3.1 Determine $i^* \in \{1,\ldots,n\} \setminus I_q$ such that

$$\sum_{j=1}^n \min\{z_j^q, c_{i^*j}\} = \min_{i \in \{1,...,n\} \setminus I_q} \sum_{j=1}^n \min\{z_j^q, c_{ij}\}$$

and set $z_0^{q+1} \leftarrow \sum_{j=1}^n \min\{z_j^q, c_{i^*j}\}$;

3.2 Update $SSF^*(I_q)$, such that for j = 1 to n do

$$\begin{array}{l} * \ z_{j}^{q} \leftarrow \min\{z_{j}^{q-1}, c_{i^{*}j}\}; \\ * \ \text{If} \ c_{i^{*}j} < z_{j}^{q-1} \ \text{then} \ i_{j}^{q} \leftarrow i^{*}; \\ \textbf{3.3 Set} \ I_{q} \leftarrow \bigcup_{j=1}^{n} \{i_{j}^{q}\} \ \text{and} \ q \leftarrow |I_{q}|; \end{array}$$

5. Numerical example

Let us apply the above algorithm to a digraph with arc cost matrix

considering k = 3.

ECCO XVIII - Minsk, May 25-28, 2005

1. $I_0 \leftarrow \{1\}$; **2.**

	v_1	v_2	v_3	v_4	v_5	v_6	
z^0	0	4	2	3	2	4	$z_0^0 = 15$
stc	1	1	1	1	1	1	

3.
$$|I_0| = |\{1\}| = 1 < 3;$$

 $(i^* = 4) \min\{0, \infty\} + \min\{4, 1\} + \min\{2, \infty\} - \min\{3, 0\} + \min\{2, 1\} + \min\{4, 1\} = 5;$

- $z_0^1 \leftarrow \sum_{j=1}^6 \min\{z_j^1, c_{4j}\} = 5;$
- $I_1 \leftarrow \{1,4\};$

_	v_1	v_2	v_3	v_4	v_5	v_6	
z^1	0	1	2	0	1	1	$z_0^1 = 5$
stc	1	4	1	4	4	4	

3. $|I_1| = |\{1,4\}| = 2 < 3;$

ECCO XVIII - Minsk, May 25-28, 2005

$$egin{aligned} &(i^*=3)\,\min\{0,\infty\}+\min\{1,\infty\}+\min\{2,0\}+\ &\min\{0,2\}+\min\{1,2\}+\min\{1,3\}=3;\ &z_0^2\leftarrow\sum_{j=1}^6\min\{z_j^2,c_{3j}\}=3; \end{aligned}$$

• $I_2 \leftarrow \{1,3,4\};$

	v_1	v_2	v_3	v_4	v_5	v_6	
$oldsymbol{z}^1$	0	1	0	0	1	1	$z_0^1=3$
stc	1	4	3	4	4	4	

3. $|I_2| = |\{1, 3, 4\}| = 3.$

