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1. Introduction

In this presentation we deal with simple graphs
(just called graphs) G and the main subject is
the stability number (a(G)) and the maxi-
mum stable set problem (MSSP).

Given a nonnegative integer k, to determine
if a graph G has a stable set of size k is
N P-hard (Karp, 1972).

Furthermore, considering H-free graphs, if
H contains a) a cycle, or b) a vertex of de-
gree more than three, or ¢) two vertices of
degree three in the same connected com-
ponent, then the MSSP is NP-hard in the
class of H-free graphs (Alekseev, 1982).
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There are several classes of graphs for which
the maximum stable set problem can be solved
in polynomial time, for example:

Claw-free graphs, which includes the line-
graphs [(Berge, 1957), (Minty, 1980), (Sbihi,
1980)].

Particular subclasses of Ps-free graphs [(Mosca,
1997), (Mosca, 1999)], including :

B (Ps, Kq,,)-free graphs;
B (P, K> 3)-free graphs;

B (P, Cy)-free graphs.

etc.
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The focus is the class of graphs whose stabil-
ity number is determined by solving a convex
quadratic programming problem (Q-graphs).
The results will be presented crossing the fol-
lowing topics:

Connections of the above convex quadratic
program with the Motzkin-Straus quadratic
formulation of the stability number.

Characterization of 9-graphs and analysis of
its recognition.

Graph eigenvalue properties of particular O-
graphs.

Extensions to the more general case of the
maximum size k-regular induced subgraph
problem.
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By graph eigenvalues we mean (here) adja-
cency eigenvalues. Where, as usually, the ad-
jacency matrix of a graph G of order n is a
n X n matrix Ag = (aij) such that

)1, ifiye E(G)
%5 =13 0, otherwise.

Thus Ag is symmetric and it has n real eigen-
values

Ama:c(AG) =AZ>2A2 2> A= Amin(AG)

If G has at least one edge, then
Amin(AG) § —1.
In fact,
)‘min(AG) = -1

if and only if each component of G is com-
plete.
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2. A Motzkin-Straus like approach

Consider a graph G and the quadratic program

1
f(G) = max{ExTAGac Lx € A},
where A = {z >0:elz =1}

Theorem 1 (Motzkin-Straus, 1965) If G is
a graph with clique number w(G), then

16 = 51 - — ) (1)

Therefore, from (1) and after some algebraic
manipulation,

1 T
() 2 (Ag + Dx. (2)
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Now, let us consider the families of quadratic
programs (with 7 > 0):

va(r) = mina”("C 4 D, (3)
v(T) = Tg(;@e Y —y ( S+ Dy (4)

Then v (1) is the modified quadratic formu-
lation of Motzkin-Straus (2).

Theorem 2 (C, 2003) If z* and y* are op-
timal solutions for (3) and (4), respectively,
then

x* %k
and J

ve(7) va(T)
are optimal solutions of (4) and (3), respec-
tively. Furthermore, vg(T) =

vg(T)’

As consequence of this theorem, v (1) = a(G).
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The family of quadratic programs

UG(T)_m>36<2€ Y — y( ¢+ Dy,

has the following properties (for all 7> 0):
a(G) < vg(T).
1 <wvg(r) <n.

va(r) = 1 if and only if G is complete, and
va(T) = n if and only if G has no edges.

Furthermore, assuming that E(G) # 0, the
quadratic programs are convex for r > —\,,;n(Ag)

(the convex quadratic program, obtained with
T = —A\nin(Ag), was firstly introduced as an

upper bound for a(G) in (Luz, 1995)).
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The function vg :]0, +oo[— [1,n] verifies:
0< 11 <1 =va(r) <vaglm).
d7* > 1 such that vg(7) = a(G) V7 €]0, 7.

VU CV(G) vg_p(T) < va(T).

Theorem 3 (Luz, 1995) Let G be a graph
with at least one edge. Then v (—Amin(Ag)) =
a(G) if and only if for a stable set S C V(G)
(and then for all)

—Amin(Ag) < [Ng(v) N S| Vv e V(G) \ S.

A graph G with at least one edge such that
v(=Amin(Ag)) = a(G) is designated graph with
convex @ P-stability number, where QP means
quadratic program.
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For instance, the cubic graph G depicted in the
next figure is such that \,,;,,(Ag) = —2 and

ve(2) = 4 = a(G).

T herefore, it has convex-Q P stability number.

From now on the graphs with convex QP-
stability number are denoted O-graphs and
va(r), with 7 = —\,,,;n(Ar), is simple denoted

v(G).
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3. O-graphs and its recognition

The class of Q-graphs is not hereditary (it is
not closed under vertex deletion) (Lozin and
C, 2001). However, if GG is a Q-graph and
JU C V(G) such that o(G) = o(G — U), then
G — U is a O-graph.

There exists an infinite number of O-graphs
(C, 2001):

A connected graph with at least one edge,
which is nor a star neither a triangle, has
a perfect matching if and only if its line
graph is a 9-graph.

If each component of G has a nonzero even
number of edges then L(L(G)) is a Q-graph.
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Among several famous 9O-graphs we have the
Petersen graph and the Hoffman-Singleton
graph.

The following results (C, 2001) can be used
on the recognition of O-graphs.

Every graph G has an induced 9-subgraph
H such that a(H) = a(G).

A graph G is a O-graph if and only if each
of its components is a O-graph.

If 3U C V(G) such that v(G) = v(G - U)
and \,in(Aa) < Min(Ac_y), then G is a
Q-graph.
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If 3v € V(G) such that

v(G) # max{v(G —v),v(G — Ng(v))},
then G is not a O-graph.

Consider that dv € V(&) such that
v(G —v) #v(G — Ng(v)).

1. If v(G) = v(G —v) then G is a Q-graph
if and only if G — v is a O-graph.

2. If v(G) = v(G — Ng(v)) then G is a O-
graph if and only if G — Ng(v) is a O-
graph.

Thus, we have problems when Vv € V(G)
v(G) =v(G —v) =v(G — Ng(v)) and
)‘min(AG) — )‘min(AG—v) — Amin(AG—NG(U))-
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The above results allow the recognition of O-
graphs, except for adverse graphs, which are
graphs having an induced subgraph G without
isolated vertices such that v(G) is integer and
Vv € V(G) the following conditions hold:

1. v(G) = v(G — Ng(v)).
2. Apin(Ag) = Amin(AG—NG(U))-

The graph G depicted in the next figure is
an adverse graph (which is a Q-graph, since
v(G) =5 = a(@)).

o o
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A vertex subset S C V(G) is (k,7)-regular if
induces a k-regular subgraph and

Vo & S |[Ng(w)NnS|=r.

For instance, consider the Pertersen graph.

S1=1{1,2,3,4} is (0,2)-regular,

S, =1{5,6,7,8,9,10} is (1,3)-regular,

S3={1,2,5,7,8} is (2,1)-regular.
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Each Hamilton cycle in a graph defines a (2,4)-
regular set in its line graph. For instance, in the
next figure, the edge set {a,b,c,d,e, f} C E(G)
defines a (2,4)-regular set in L(G).

b

. c b c
o o ad

f e

L(G)

Theorem 4 (C and Cvetkovic, 2006) A reg-
ular graph G with at least one edge is a Q-

graph if and only if there exists a (0, 1)-regular

set S C V(G@), with 7 = —\,,in(Ag). Further-

more, S is a maximum stable set and then ev-

ery maximum stable set is (0, 1)-regular.

An adverse graph G is a 9-graph if and only
if 35 C V(G) which is (0, 7)-regular, with
T — _Amin(AG)-
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4. Related properties and extensions

Despite the recognition of (k, 7)-regular sets is
to be NP-hard, we have the following useful
results.

Theorem 5 (Thompson, 1981) A p-regular
graph has a (k,7)-regular set S, with = > 0, if
and only if k— 7 is an adjacency eigenvalue and
(p—k+71)x(S)—7e is a (k— 1)-eigenvector.

Theorem 6 (C and Rama, 2004) A graph G
has a (k,7)-regular set S C V(G) if and only
if the characteristic vector x of S is a solution
for the linear system

(Ag—(k—71)I)x = Te€.
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Given a graph G with at least one edge, con-
sider the modified convex quadratic program-
ming problem depending on a parameter k,
where by 7 we denote —Amm(AG),

T

( + In)z.

G) = max2e’ x —
Uk( ) x>0 e * —I—T

Then, as proved in (C., Kaminski and Lozin,
2007), the following properties hold:

If 35 C V(G) inducing a subgraph of G such
that dgiq) = k (Where dp denotes the av-
erage degree of H), then |S| < v, (G).

If 35 C V(@) inducing a k-regular subgraph,
then |S| = v (G) if and only if

T+k < |Ng(w)NS| Vv & S.
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Theorem 7 (C, Kaminski and Lozin, 2007)

If G is a p-regular graph of order n, with p > 0O,
then

. k — Amin(AG)
vp(G) =n .
Amax(AG) — )‘min(AG)
Furthermore, there exists a vertex subset S
inducing a k-regular subgraph such that

S| = v(G)

if and only if S is (k,k + 7)-regular, with T =
_Amin(AG)-

Then we have the following extension of the
Hoffman bound.

Corollary 8 (C, Kaminski and Lozin, 2007)
Let G be a p-regular graph with n vertices
(p > 0) and S C V(G) inducing a k-regular
subgraph, then

B )\mam(AG) — Amin(AG)
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