Graphs whose stability number is easily determined

Domingos M. Cardoso
Universidade de Aveiro, Portugal

Conference on Graph Theory 80th Birthday of Professor Horst Sachs, Ilmenau, March 27-30, 2007

1. Introduction.

2. A Motzkin-Straus like approach.
3. \mathcal{Q}-graphs and its recognition.
4. Related properties and extensions.
5. References.

1. Introduction

In this presentation we deal with simple graphs (just called graphs) G and the main subject is the stability number $(\alpha(G))$ and the maximum stable set problem (MSSP).

- Given a nonnegative integer k, to determine if a graph G has a stable set of size k is NP-hard (Karp, 1972).
\square Furthermore, considering H-free graphs, if H contains a) a cycle, or b) a vertex of degree more than three, or c) two vertices of degree three in the same connected component, then the MSSP is $N P$-hard in the class of H-free graphs (Alekseev, 1982).

There are several classes of graphs for which the maximum stable set problem can be solved in polynomial time, for example:

■ Claw-free graphs, which includes the linegraphs [(Berge, 1957), (Minty, 1980), (Sbihi, 1980)].

- Particular subclasses of P_{5}-free graphs [(Mosca, 1997), (Mosca, 1999)], including :
$\square\left(P_{5}, K_{1, m}\right)$-free graphs;
■ ($P_{5}, K_{2,3}$)-free graphs;
- $\left(P_{6}, C_{4}\right)$-free graphs.
\square etc.

The focus is the class of graphs whose stability number is determined by solving a convex quadratic programming problem (\mathcal{Q}-graphs). The results will be presented crossing the following topics:

- Connections of the above convex quadratic program with the Motzkin-Straus quadratic formulation of the stability number.
- Characterization of \mathcal{Q}-graphs and analysis of its recognition.
- Graph eigenvalue properties of particular \mathcal{Q} graphs.

■ Extensions to the more general case of the maximum size k-regular induced subgraph problem.

By graph eigenvalues we mean (here) adjacency eigenvalues. Where, as usually, the adjacency matrix of a graph G of order n is a $n \times n$ matrix $A_{G}=\left(a_{i j}\right)$ such that

$$
a_{i j}= \begin{cases}1, & \text { if } i j \in E(G) \\ 0, & \text { otherwise }\end{cases}
$$

Thus A_{G} is symmetric and it has n real eigenvalues

$$
\lambda_{\max }\left(A_{G}\right)=\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}=\lambda_{\min }\left(A_{G}\right)
$$

If G has at least one edge, then

$$
\lambda_{\min }\left(A_{G}\right) \leq-1
$$

In fact,

$$
\lambda_{\min }\left(A_{G}\right)=-1
$$

if and only if each component of G is complete.

2. A Motzkin-Straus like approach

Consider a graph G and the quadratic program

$$
f(G)=\max \left\{\frac{1}{2} x^{T} A_{G} x: x \in \Delta\right\}
$$

where $\Delta=\left\{x \geq 0: \hat{e}^{T} x=1\right\}$.
Theorem 1 (Motzkin-Straus, 1965) If G is a graph with clique number $\omega(G)$, then

$$
\begin{equation*}
f(G)=\frac{1}{2}\left(1-\frac{1}{\omega(G)}\right) . \tag{1}
\end{equation*}
$$

Therefore, from (1) and after some algebraic manipulation,

$$
\begin{equation*}
\frac{1}{\alpha(G)}=\min _{x \in \Delta} x^{T}\left(A_{G}+I\right) x \tag{2}
\end{equation*}
$$

Now, let us consider the families of quadratic programs (with $\tau>0$):

$$
\begin{align*}
\nu_{G}(\tau) & =\min _{x \in \Delta} x^{T}\left(\frac{A_{G}}{\tau}+I\right) x \tag{3}\\
v_{G}(\tau) & =\max _{y \geq 0} 2 \widehat{e}^{T} y-y^{T}\left(\frac{A_{G}}{\tau}+I\right) y \tag{4}
\end{align*}
$$

Then $\nu_{G}(1)$ is the modified quadratic formuIation of Motzkin-Straus (2).

Theorem $2(\mathrm{C}, 2003)$ If x^{*} and y^{*} are optimal solutions for (3) and (4), respectively, then

$$
\frac{x^{*}}{\nu_{G}(\tau)} \text { and } \frac{y^{*}}{v_{G}(\tau)}
$$

are optimal solutions of (4) and (3), respectively. Furthermore, $v_{G}(\tau)=\frac{1}{\nu_{G}(\tau)}$.

As consequence of this theorem, $v_{G}(1)=\alpha(G)$.

The family of quadratic programs

$$
v_{G}(\tau)=\max _{y \geq 0} 2 \overparen{e}^{T} y-y^{T}\left(\frac{A_{G}}{\tau}+I\right) y
$$

has the following properties (for all $\tau>0$):
$\square \alpha(G) \leq v_{G}(\tau)$.
$\square 1 \leq v_{G}(\tau) \leq n$.
$\square v_{G}(\tau)=1$ if and only if G is complete, and $v_{G}(\tau)=n$ if and only if G has no edges.

Furthermore, assuming that $E(G) \neq \emptyset$, the quadratic programs are convex for $\tau \geq-\lambda_{\min }\left(A_{G}\right)$ (the convex quadratic program, obtained with $\tau=-\lambda_{\min }\left(A_{G}\right)$, was firstly introduced as an upper bound for $\alpha(G)$ in (Luz, 1995)).

The function $\left.v_{G}:\right] 0,+\infty[\mapsto[1, n]$ verifies:

$$
\square 0<\tau_{1}<\tau_{2} \Rightarrow v_{G}\left(\tau_{1}\right) \leq v_{G}\left(\tau_{2}\right) .
$$

$\square \exists \tau^{*} \geq 1$ such that $\left.\left.v_{G}(\tau)=\alpha(G) \forall \tau \in\right] 0, \tau^{*}\right]$.

$$
\forall U \subset V(G) v_{G-U}(\tau) \leq v_{G}(\tau)
$$

Theorem 3 (Luz, 1995) Let G be a graph with at least one edge. Then $v_{G}\left(-\lambda_{\min }\left(A_{G}\right)\right)=$ $\alpha(G)$ if and only if for a stable set $S \subset V(G)$ (and then for all)

$$
-\lambda_{\min }\left(A_{G}\right) \leq\left|N_{G}(v) \cap S\right| \forall v \in V(G) \backslash S .
$$

A graph G with at least one edge such that $v\left(-\lambda_{\min }\left(A_{G}\right)\right)=\alpha(G)$ is designated graph with convex $Q P$-stability number, where $Q P$ means quadratic program.

Conference on Graph Theory, Ilmenau, March 27-30, 2007

For instance, the cubic graph G depicted in the next figure is such that $\lambda_{\min }\left(A_{G}\right)=-2$ and

$$
v_{G}(2)=4=\alpha(G) .
$$

Therefore, it has convex- $Q P$ stability number.

From now on the graphs with convex $Q P$ stability number are denoted \mathcal{Q}-graphs and $v_{G}(\tau)$, with $\tau=-\lambda_{\min }\left(A_{G}\right)$, is simple denoted $v(G)$.

3. \mathcal{Q}-graphs and its recognition

The class of \mathcal{Q}-graphs is not hereditary (it is not closed under vertex deletion) (Lozin and C, 2001). However, if G is a \mathcal{Q}-graph and $\exists U \subseteq V(G)$ such that $\alpha(G)=\alpha(G-U)$, then $G-U$ is a \mathcal{Q}-graph.

There exists an infinite number of \mathcal{Q}-graphs (C, 2001):

A connected graph with at least one edge, which is nor a star neither a triangle, has a perfect matching if and only if its line graph is a \mathcal{Q}-graph.

If each component of G has a nonzero even number of edges then $L(L(G))$ is a \mathcal{Q}-graph.

Among several famous \mathcal{Q}-graphs we have the Petersen graph and the Hoffman-Singleton graph.

The following results (C, 2001) can be used on the recognition of \mathcal{Q}-graphs.

Every graph G has an induced \mathcal{Q}-subgraph H such that $\alpha(H)=\alpha(G)$.

A graph G is a \mathcal{Q}-graph if and only if each of its components is a \mathcal{Q}-graph.

- If $\exists U \subseteq V(G)$ such that $v(G)=v(G-U)$ and $\lambda_{\min }\left(A_{G}\right)<\lambda_{\min }\left(A_{G-U}\right)$, then G is a \mathcal{Q}-graph.

If $\exists v \in V(G)$ such that

$$
v(G) \neq \max \left\{v(G-v), v\left(G-N_{G}(v)\right)\right\}
$$

then G is not a \mathcal{Q}-graph.

Consider that $\exists v \in V(G)$ such that

$$
v(G-v) \neq v\left(G-N_{G}(v)\right)
$$

1. If $v(G)=v(G-v)$ then G is a \mathcal{Q}-graph if and only if $G-v$ is a \mathcal{Q}-graph.
2. If $v(G)=v\left(G-N_{G}(v)\right)$ then G is a \mathcal{Q} graph if and only if $G-N_{G}(v)$ is a \mathcal{Q} graph.

Thus, we have problems when $\forall v \in V(G)$
$v(G)=v(G-v)=v\left(G-N_{G}(v)\right)$ and $\lambda_{\min }\left(A_{G}\right)=\lambda_{\min }\left(A_{G-v}\right)=\lambda_{\min }\left(A_{G-N_{G}(v)}\right)$.

The above results allow the recognition of \mathcal{Q} graphs, except for adverse graphs, which are graphs having an induced subgraph G without isolated vertices such that $v(G)$ is integer and $\forall v \in V(G)$ the following conditions hold:

$$
\text { 1. } v(G)=v\left(G-N_{G}(v)\right)
$$

2. $\lambda_{\min }\left(A_{G}\right)=\lambda_{\min }\left(A_{G-N_{G}(v)}\right)$.

The graph G depicted in the next figure is an adverse graph (which is a \mathcal{Q}-graph, since $v(G)=5=\alpha(G))$.

80th Birthday of Professor Horst Sachs, 2007

A vertex subset $S \subseteq V(G)$ is (k, τ)-regular if induces a k-regular subgraph and

$$
\forall v \notin S \quad\left|N_{G}(v) \cap S\right|=\tau
$$

For instance, consider the Pertersen graph.

$\square S_{1}=\{1,2,3,4\}$ is (0,2)-regular,
$\square S_{2}=\{5,6,7,8,9,10\}$ is (1, 3)-regular,
$\square S_{3}=\{1,2,5,7,8\}$ is $(2,1)$-regular.

Conference on Graph Theory, Ilmenau, March 27-30, 2007

Each Hamilton cycle in a graph defines a (2, 4)regular set in its line graph. For instance, in the next figure, the edge set $\{a, b, c, d, e, f\} \subset E(G)$ defines a (2,4)-regular set in $L(G)$.

Theorem 4 (C and Cvetković, 2006) A regular graph G with at least one edge is a \mathcal{Q} graph if and only if there exists a $(0, \tau)$-regular set $S \subset V(G)$, with $\tau=-\lambda_{\text {min }}\left(A_{G}\right)$. Furthermore, S is a maximum stable set and then every maximum stable set is $(0, \tau)$-regular.

- An adverse graph G is a \mathcal{Q}-graph if and only if $\exists S \subseteq V(G)$ which is $(0, \tau)$-regular, with $\tau=-\lambda_{\min }\left(A_{G}\right)$.

4. Related properties and extensions

Despite the recognition of (k, τ)-regular sets is to be $N P$-hard, we have the following useful results.

Theorem 5 (Thompson, 1981) A p-regular graph has a (k, τ)-regular set S, with $\tau>0$, if and only if $k-\tau$ is an adjacency eigenvalue and $(p-k+\tau) x(S)-\tau \hat{e}$ is a $(k-\tau)$-eigenvector.

Theorem 6 (C and Rama, 2004) A graph G has a (k, τ)-regular set $S \subseteq V(G)$ if and only if the characteristic vector x of S is a solution for the linear system

$$
\left(A_{G}-(k-\tau) I\right) x=\tau \widehat{e}
$$

Given a graph G with at least one edge, consider the modified convex quadratic programming problem depending on a parameter k, where by τ we denote $-\lambda_{\min }\left(A_{G}\right)$,

$$
v_{k}(G)=\max _{x \geq 0} 2 \hat{e}^{T} x-\frac{\tau}{k+\tau} x^{T}\left(\frac{A_{G}}{\tau}+I_{n}\right) x .
$$

Then, as proved in (C., Kamiński and Lozin, 2007), the following properties hold:

■ If $\exists S \subseteq V(G)$ inducing a subgraph of G such that $\bar{d}_{G[S]}=k$ (where \bar{d}_{H} denotes the average degree of H), then $|S| \leq v_{k}(G)$.

If $\exists S \subseteq V(G)$ inducing a k-regular subgraph, then $|S|=v_{k}(G)$ if and only if

$$
\tau+k \leq\left|N_{G}(v) \cap S\right| \forall v \notin S .
$$

Theorem 7 (C, Kamiński and Lozin, 2007)

 If G is a p-regular graph of order n, with $p>0$, then$$
v_{k}(G)=n \frac{k-\lambda_{\min }\left(A_{G}\right)}{\lambda_{\max }\left(A_{G}\right)-\lambda_{\min }\left(A_{G}\right)} .
$$

Furthermore, there exists a vertex subset S inducing a k-regular subgraph such that

$$
|S|=v_{k}(G)
$$

if and only if S is $(k, k+\tau)$-regular, with $\tau=$ $-\lambda_{\min }\left(A_{G}\right)$.

Then we have the following extension of the Hoffman bound.

Corollary 8 (C, Kamiński and Lozin, 2007) Let G be a p-regular graph with n vertices ($p>0$) and $S \subseteq V(G)$ inducing a k-regular subgraph, then

$$
|S| \leq n \frac{k-\lambda_{\min }\left(A_{G}\right)}{\lambda_{\max }\left(A_{G}\right)-\lambda_{\min }\left(A_{G}\right)} .
$$

5. REFERENCES

- V. E. Alekseev, On influence of local restrictions to the complexity of finding the independence number of the graph, Combinatorial and Algebraic Methods in Applied Mathematics, Gorkie University Press, Gorky, (1982): 3-13 (in Russian).
C. Berge, Two theorems in graph theory. Proc. Nat. Acad. Sci. USA 43 (1957): 842-844.
D. M. Cardoso, Convex quadratic programming approach to the maximum matching problem, Journal of Global Optimization, 21 (2001): 91-106.
D. M. Cardoso, On graphs with stability number equal to the optimal value of a convex quadratic program, Matemática Contemporânea, 25 (2003): 9-24.

D D. M. Cardoso, P. Rama, Equitable bipartitions of graphs and related results, Journal of Mathematical Sciences, 120 (2004): 869-880.

- D. M. Cardoso and D. Cvetković, Graphs with eigenvalue -2 attaining a convex quadratic upper bound for the stability number, Bull. T. CXXXIII de l'Acad. Serbe Sci. Arts, Cl. Sci. Math. Natur., Sci. Math., 31 (2006): 41-55.
D. M. Cardoso, M. Kaminski, V. Lozin, Maximum kregular induced subgraphs, to appear in Journal of Combinatorial Optimization (2007) doi: 10.1007/s10878-007-9045-9.
- R. M. Karp, Reducibility among combinatorial problems, In: Complexity of Computer Computations, eds. R. E. Miller and J. W. Thatcher, Plenum Press, New York, (1972): 85-104.
- V. V. Lozin and D. M. Cardoso, On hereditary properties of the class of graphs with convex quadratic stability number, Cadernos de Matemática, CM/I50, Departamento de Matemática da Universidade de Aveiro (1999).
- C. J. Luz, An upper bound on the independence number of a graph computable in polynomial time, Operations Research Letters, 18 (1995): 139-145.

■ G. J. Minty, On maximal independent sets of vertices in claw-free graphs, J. Comb. Theory Ser. B 28 (1980): 284-304.

- R. Mosca, Polynomial algorithms for the maximum independent set problem on particular classes of P_{5} free graphs, Inform. Process. Lett. 61 (1997): 137-144.
- R. Mosca, Independent sets in certain P_{6}-free graphs, Discrete Appl. Math. 92 (1999): 177-191.
- T. S. Motzkin and E. G. Straus, Maxima for graphs and a new proof of a theorem of Túran, Canadian Journal of Mathematics, 17 (1965): 533-540.
- N. Sbihi, Algorithm de recherche d'un independent de cardinalité maximum dans une graphe sans étoiles, Discrete Mathematics 29 (1980): 53-76.
D. M. Thompson, Eigengraphs: constructing strongly regular graphs with block designs, Utilitas Math., 20 (1981): 83-115.
http://www.mat.ua.pt/dcardoso

