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Introduction

Let us consider the simple graph

G = (V, E)

of order n, where V = V (G) is the set of nodes and E = E(G) is
the set of edges.

AG will denote the adjacency matrix of the graph G and λmin(AG)
the minimum eigenvalue of AG.

It is well known that if G has at least one edge, then
λmin(AG) ≤ −1. Actually

¥ λmin(AG) = 0 iff G has no edges,

¥ λmin(AG) = −1 iff G has at least one edge and every
component complete,

¥ λmin(AG) ≤ −√2 otherwise.
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Introduction (cont.)

A graph G is (H1, . . . , Hk)-free if G contains no copy of the graphs
H1, . . . ,Hk, as induced subgraphs.

¥ In particular, G is H-free if G has no copy of H as an induced
subgraph.

¥ A claw-free graph is a K1,3-free graph.

Let us define the quadratic programming problem (PG(τ)):

υG(τ) = max{2êT x− xT (
1
τ

AG + In)x : x ≥ 0},

with τ > 0.

If x∗(τ) is an optimal solution for (PG(τ)) then

0 ≤ x∗(τ) ≤ 1.
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Introduction (cont.)

∀τ > 0 1 ≤ υG(τ) ≤ n.

The fucntion υG :]0, +∞[7→ [1, n] has the following properties:

¥ ∀τ > 0 α(G) ≤ υG(τ).

¥ 0 < τ1 < τ2 ⇒ υG(τ1) ≤ υG(τ2).

¥ υG(1) = α(G).

¥ If τ∗ > 0, then the following are equivalent.

– ∃τ̄ ∈]0, τ∗[ such that υG(τ̄) = υG(τ∗);

– υG(τ∗) = α(G);

– ∀τ ∈]0, τ∗[ x∗(τ) is not spurious;

– ∀τ ∈]0, τ∗] υG(τ) = α(G).

¥ ∀U ⊂ V (G) ∀τ > 0 υG−U (τ) ≤ υG(τ).
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Introduction (cont.)
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Figure 1: A graph G with λmin(AG) = −2 and υG(2) =

α(G) = 4.
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Introduction (cont.)
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Figure 2: Function υG(τ), where G is the above graph.
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The class of Q-graphs

¥ The graphs G such that υG(−λmin(AG)) = α(G) are called
graphs with convex-QP stability number

where QP means quadratic program.

¥ The class of these graphs will be denoted by Q and its elements
called Q-graphs.

¥ Since the components of the optimal solutions of (PG(τ)) are
between 0 and 1, then υG(τ) = α(G) if and only if (PG(τ)) has
an integer optimal solution.

Theorem[Luz, 1995]
If G has at least one edge then G ∈ Q if and only if, for a
maximum stable set S (and then for all),

−λmin(AG) ≤ min{|NG(i) ∩ S| : i 6∈ S}. (1)
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The class of Q-graphs (cont.)

There exists an infinite number of graphs with convex-QP stability
number.

Theorem[Cardoso, 2001]
A connected graph with at least one edge, which is nor a star
neither a triangle, has a perfect matching if and only if its line
graph has convex-QP stability number.

As immediate consequence, we have the following corollary.

Corollary[Cardoso, 2001]
If G is a connected graph with an even number of edges then
L(L(G)) has convex-QP stability number.

9



'

&

$

%

The class of Q-graphs (cont.)

There are several famous Q-graphs.

¥ The Petersen graph P , where λmin(AP ) = −2 and
α(P ) = υP (2) = 4.

¥ The Hoffman-Singleton graph HS, where λmin(AHS) = −3 and
α(HS) = υHS(3) = 15.

¥ If the fourth graph of Moore M4 there exists with
α(M4) = 400, as it is expected, then it is a Q-graph.

¥ Additionally, taking into account (??), graphs defined by the
disjoint union of complete subgraphs and complete bipartite
graphs are trivial examples of Q-graphs.
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The class of Q-graphs (cont.)

Additional examples of Q-graphs
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Figure 3: Graph G such that λmin(AG) = −2 and υG(2) =

3 = α(G).
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The class of Q-graphs (cont.)
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Figure 4: Graph G such that λmin(AG) = −3 and υG(3) =

12 = α(G).
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The class of Q-graphs (cont.)

¥ A graph belongs to Q if and only if each of its components
belongs to Q.

¥ Every graph G has a subgraph H ∈ Q such that α(G) = α(H).

¥ If G ∈ Q and ∃U ⊆ V (G) such that

α(G) = α(G− U)

then G− U ∈ Q.

¥ If ∃v ∈ V (G) such that

υG(τ) 6= max{υG−{v}(τ), υG−NG(v)(τ)},

with τ = −λmin(AG), then G 6∈ Q.
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The class of Q-graphs (cont.)

¥ Consider that ∃v ∈ V (G) such that

υG−{v}(τ) 6= υG−NG(v)(τ)

and τ = −λmin(AG).

1. If υG(τ) = υG−{v}(τ) then

G ∈ Q iff G− {v} ∈ Q.

2. If υG(τ) = υG−NG(v)(τ) then

G ∈ Q iff G−NG(v) ∈ Q.
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The class of Q-graphs (cont.)

¥ Assuming that

τ1 = −λmin(AG) > −λmin(AG−U ) = τ2,

with U ⊂ V (G). Then

υG(τ1) = υG−U (τ2) ⇒ G ∈ Q,

υG(τ1) > υG−U (τ2) ⇒ G 6∈ Q or U ∩ S 6= ∅,

for each maximum stable set S of G.
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Adverse graphs and (k, τ)-regular sets

¥ Using the above results, we may recognize if a graph G is (or
not) a Q-graph, unless an induced subgraph H = G−U (where
U ⊂ V (G) can be empty) is obtained, such that

τ = λmin(AG) = λmin(AH), (2)

υG(τ) = υH(τ), (3)

∀v ∈ V (H) λmin(AH) = λmin(AH−NG(v)), (4)

∀v ∈ V (H) υH(τ) = υH−NG(v)(τ). (5)

¥ A subgraph H of G without isolated vertices, for which the
conditions (??)-(??) are fulfilled is called adverse.
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Adverse graphs and (k, τ)-regular sets (cont.)
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Figure 5: Adverse graph G, with λmin(AG) = −2 and

υG(2) = α(G) = 5.
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Adverse graphs and (k, τ)-regular sets (cont.)

¥ Based in the above results, a procedure which recognizes if a
graph G is (or not) in Q or determines an adverse subgraph
can be implemented.

¥ A subset of vertices S ⊂ V (G) is (k, τ)-regular if induces in G a
k-regular subgraph and ∀v 6∈ S

|NG(v) ∩ S| = τ.

¥ The maximum stable sets of the graphs of figures 1, ?? and ??
are (0, 2)-regular and the maximum stable set of the graph of
figure ?? is (0, 6)-regular.
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Adverse graphs and (k, τ)-regular sets (cont.)

¥ The Petersen graph P includes the (0, 2)-regular set
S = {1, 2, 3, 4} and the (2, 1)-regular sets T1 = {1, 2, 5, 7, 8} and
T2 = {3, 4, 6, 9, 10}.
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Figure 6: The Petersen graph.

¥ L(P ) includes the (0, 2)-regular set {{1, 9}, {5, 6}, {2, 10},
{4, 8}, {3, 7}} (a perfect matching) and the (0, 1)-regular set
{{5, 6}, {9, 10}, {7, 8}} (a perfect induced matching).
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Adverse graphs and (k, τ)-regular sets (cont.)

Theorem
Let G be adverse and τ = −λmin(AG). Then G ∈ Q if and only
if ∃S ⊂ V (G) which is (0, τ)-regular.

Theorem
Let G be p-regular, with p > 0. Then G ∈ Q if and only if
∃S ⊂ V (G) which is (0, τ)-regular, with τ = −λmin(AG).

Theorem[Thompson, 1981]
Let G be a p-regular graph and x(S) the characteristic vector of
S ⊂ V (G). Then S is (k, τ)-regular if and only if

(ê− p− (k − τ)
τ

x(S)) ∈ Ker(AG − (k − τ)In),

where ê is the all-ones vector.
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Analysis of particular families of graphs

There are several families of graphs in which we can recognise (in
polynomial-time) Q-graphs.

1. Bipartite graphs

– Since the minimum eigenvalue of a connected bipartite
graph G is simple, then ∃v ∈ V (G) such that
λmin(AG) < λmin(AG−{v}).

2. Dismantlable graphs

– The one-vertex graph is dismantlable. A graph G with at
least two vertices is dismantlable if ∃x, y ∈ V (G) such that
NG[x] ⊆ NG[y] and G− {x} is dismantlable

Theorem
Given a graph G and τ > 1, if ∃p, q ∈ V (G) such that
NG[q] ⊆ NG[p] then υG(τ) > υG−NG(p)(τ).
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Analysis of particular families of graphs (cont.)

3. Graphs with low Dilworth number

– Given two vertices x, y ∈ V (G), if NG(y) ⊆ NG[x] then we
say that the vertices x and y are comparable (according to
the vicinal preorder). The Dilworth number of a graph G,

dilw(G), is the largest number of pairwise incomparable
vertices of G.

Theorem
Let G be a not complete graph. If dilw(G) < ω(G) then G

is not adverse.
A threshold graph has Dilworth number equal to 1.
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Analysis of particular families of graphs (cont.)

4. (C4, P5)-free graphs

Theorem
Let G be a graph and τ > 1. If ∃pq ∈ E(G) such that

υG(τ) = υG−NG(p)(τ) = υG−NG(q)(τ)

then pq belongs to a C4 or p and q are the midpoints of a P4.

Combining the above theorem with a result obtained from
(Brandstädt and Lozin, 2001), where it is stated that ”if a
graph is (banner,P5)-free then any midpoint of a P4 is
α-redundant”, the next theorem follows.

Theorem
Let G be a graph without isolated vertices, for which the
equalities (??) hold, with τ > 1. If G is (C4, P5)-free, then

∀v ∈ V (G) α(G) = α(G− {v}).
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Analysis of particular families of graphs (cont.)

5. Claw-free graphs

Theorem
Let G be a claw-free graph and τ > 1. If ∃pq ∈ E(G) such
that p and q are not the midpoints of a P4 and

υG(τ) = υG−NG(p)(τ) = υG−NG(q)(τ)

then neither p nor q are α-critical.

Theorem
Let G be a (claw, P5)-free graph without isolated vertices. If
G is adverse then ∀v ∈ V (G) α(G) = α(G− {v}).
Theorem
Let G be a claw-free graph and p, q ∈ V (G) such that
pq 6∈ E(G). If NG(p) ⊆ NG(q) then ∀v ∈ NG(p)

α(G) = α(G− {v}).
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Relations with the Lovász’s ϑ-function

¥ It is well known (Lovász,1986) that the Lovász’s ϑ-number of a
graph G of order n, can be obtained from the equality

ϑ(G) = min{λmax(C) : C ∈ C(G)}, (6)

where C(G) is the set of all symmetric n× n matrices for which
(C)ij = 1 if i = j or ij 6∈ E(G) and the entries corresponding to
adjacent vertices are free to choose.

¥ On the other hand, the Lovász’s Sandwich Theorem, states the
very useful property:

Theorem[Lovász, 1986]
For every graph G,

α(G) ≤ ϑ(G) ≤ χ̄(G),

where χ̄(G) denotes the minimum number of cliques
covering V (G).
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Relations with the Lovász’s ϑ-function (cont.)

¥ Let G be a non null p-regular graph, τ = −λmin(AG) and
CG = êêT − υG(τ)

τ AG (then CG ∈ C(G)).

1. If x∗ is optimal for (PG(τ)) then CGx∗ = υG(τ)x∗.

2. α(G) ≤ ϑ(G) ≤ υG(τ) = λmax(CG).

3. α(G) = ϑ(G) = υG(τ) if and only if there exists a
(0, τ)-regular set.

¥ According to (Luz, 2003), for every graph G

τ ≥ −λmin(AG) ⇒ υG(τ) ≥ ϑ(G).

Therefore, when τ ≥ −λmin(AG), α(G) = ϑ(G) = υG(τ) if and
only if τ ≤ |NG(v) ∩ S| ∀v 6∈ S.
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Final remarks and open problems

¥ When τ ∈]1,−λmin(AG)[, if α(G) = υG(τ) (from the
Karush-Khun-Tucker conditions) we may conclude that for
every maximum stable set S of G

τ ≤ |NG(v) ∩ S| ∀v 6∈ S. (7)

However, despite the existence of graphs G with a maximum
stable set S for which the condition (??) is fulfilled but the
equality υG(τ) = α(G) does not holds, remains open to know:

(1) if the condition (??), with τ ∈]1,−λmin(AG)[, fulfilled for
every maximum stable set S of G is sufficient to obtain the
equality

υG(τ) = α(G).
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Final remarks and open problems (cont.)

¥ It is proved that an adverse graph G ∈ Q if and only if
∃S ⊂ V (G) which is (0, τ)-regular, with τ = −λmin(AG).
However,

(2) it is open to know the complexity of the recognition of
(0, τ)-regular sets, with τ = −λmin(AG), in adverse graphs
G.

¥ Several families of graphs in which the Q-graphs can be
recognized in polynomial-time were introduced, as it was the
case of bipartite graphs, dismantlable graphs, threshold graphs,
(C4, P5)-free graphs and (claw, P5)-free graphs.
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Final remarks and open problems (cont.)

¥ According to (Cardoso, 2003) the recognition of Q-graphs
which are line graphs of forests can be done also in
polynomial-time. However,

(3) there are many other families of graphs (as it is the case of
claw-free graphs) in which it is not known if the Q-graphs
are polynomial-time recognizable;

(4) furthermore, it is an open problem to know if there exists
an adverse graph without convex-QP stability number, even
when the graph is claw-free;

(5) another interesting question is about the characterization of
hereditary claw-free graphs G with Dilworth number less
than |V (G)| (note that if such family there exists then the
Q-graphs belonging to it are polynomial-time recognizable).
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3. Brandstädt, A. and V. V. Lozin. A note on α-redundant vertices in

graphs. Discrete Applied Mathematics, 108 (2001):301–308.

4. Cardoso, D. M. Convex Quadratic Programming Approach to the

Maximum Matching Problem. Journal of Global Optimization, 21

(2001):91–106.

5. Cardoso, D. M. and C. J. Luz. Extensions of the Motzkin-Straus Result on

the Stability Number of Graphs. Cadernos de Matemática, Departamento
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