Universytet im. Adama Mickiewicza
Poznań, January 2004

Graphs with convex-QP stability number

Domingos M. Cardoso
(Universidade de Aveiro)

Summary

- Introduction.
- The class of \mathcal{Q}-graphs.
- Adverse graphs and (k, τ)-regular sets.
- Analysis of particular families of graphs.
\square Relations with the Lováz's ϑ-function.
- Final remarks and open problems.

Introduction

Let us consider the simple graph

$$
G=(V, E)
$$

of order n, where $V=V(G)$ is the set of nodes and $E=E(G)$ is the set of edges.
A_{G} will denote the adjacency matrix of the graph G and $\lambda_{\min }\left(A_{G}\right)$ the minimum eigenvalue of A_{G}.
It is well known that if G has at least one edge, then $\lambda_{\min }\left(A_{G}\right) \leq-1$. Actually

- $\lambda_{\min }\left(A_{G}\right)=0$ iff G has no edges,
$\square \lambda_{\min }\left(A_{G}\right)=-1$ iff G has at least one edge and every component complete,
$\square \lambda_{\min }\left(A_{G}\right) \leq-\sqrt{2}$ otherwise.

Introduction (cont.)

A graph G is $\left(H_{1}, \ldots, H_{k}\right)$-free if G contains no copy of the graphs H_{1}, \ldots, H_{k}, as induced subgraphs.
\square In particular, G is H-free if G has no copy of H as an induced subgraph.

- A claw-free graph is a $K_{1,3}$-free graph.

Let us define the quadratic programming problem $\left(P_{G}(\tau)\right)$:

$$
v_{G}(\tau)=\max \left\{2 \hat{e}^{T} x-x^{T}\left(\frac{1}{\tau} A_{G}+I_{n}\right) x: x \geq 0\right\}
$$

with $\tau>0$.

If $x^{*}(\tau)$ is an optimal solution for $\left(P_{G}(\tau)\right)$ then

$$
0 \leq x^{*}(\tau) \leq 1
$$

Introduction (cont.)

$$
\forall \tau>0 \quad 1 \leq v_{G}(\tau) \leq n
$$

The fucntion $\left.v_{G}:\right] 0,+\infty[\mapsto[1, n]$ has the following properties:
$\square \forall \tau>0 \quad \alpha(G) \leq v_{G}(\tau)$.
$\square 0<\tau_{1}<\tau_{2} \Rightarrow v_{G}\left(\tau_{1}\right) \leq v_{G}\left(\tau_{2}\right)$.

- $v_{G}(1)=\alpha(G)$.

■ If $\tau^{*}>0$, then the following are equivalent.
$-\exists \bar{\tau} \in] 0, \tau^{*}\left[\right.$ such that $v_{G}(\bar{\tau})=v_{G}\left(\tau^{*}\right) ;$
$-v_{G}\left(\tau^{*}\right)=\alpha(G) ;$
$-\forall \tau \in] 0, \tau^{*}\left[x^{*}(\tau)\right.$ is not spurious;
$\left.-\forall \tau \in] 0, \tau^{*}\right] v_{G}(\tau)=\alpha(G)$.
$\square \forall U \subset V(G) \forall \tau>0 \quad v_{G-U}(\tau) \leq v_{G}(\tau)$.

Introduction (cont.)

Figure 1: A graph G with $\lambda_{\min }\left(A_{G}\right)=-2$ and $v_{G}(2)=$ $\alpha(G)=4$.

Introduction (cont.)

Figure 2: Function $v_{G}(\tau)$, where G is the above graph.

The class of \mathcal{Q}-graphs

\square The graphs G such that $v_{G}\left(-\lambda_{\min }\left(A_{G}\right)\right)=\alpha(G)$ are called graphs with convex- $Q P$ stability number where $Q P$ means quadratic program.

- The class of these graphs will be denoted by \mathcal{Q} and its elements called \mathcal{Q}-graphs.
- Since the components of the optimal solutions of $\left(P_{G}(\tau)\right)$ are between 0 and 1 , then $v_{G}(\tau)=\alpha(G)$ if and only if $\left(P_{G}(\tau)\right)$ has an integer optimal solution.

Theorem[Luz, 1995]
If G has at least one edge then $G \in \mathcal{Q}$ if and only if, for a maximum stable set S (and then for all),

$$
\begin{equation*}
-\lambda_{\min }\left(A_{G}\right) \leq \min \left\{\left|N_{G}(i) \cap S\right|: i \notin S\right\} \tag{1}
\end{equation*}
$$

The class of \mathcal{Q}-graphs (cont.)

There exists an infinite number of graphs with convex- $Q P$ stability number.

Theorem[Cardoso, 2001]
A connected graph with at least one edge, which is nor a star neither a triangle, has a perfect matching if and only if its line graph has convex-QP stability number.

As immediate consequence, we have the following corollary.
Corollary[Cardoso, 2001]
If G is a connected graph with an even number of edges then $L(L(G))$ has convex-QP stability number.

The class of \mathcal{Q}-graphs (cont.)

There are several famous \mathcal{Q}-graphs.

- The Petersen graph P, where $\lambda_{\text {min }}\left(A_{P}\right)=-2$ and $\alpha(P)=v_{P}(2)=4$.
■ The Hoffman-Singleton graph $H S$, where $\lambda_{\text {min }}\left(A_{H S}\right)=-3$ and $\alpha(H S)=v_{H S}(3)=15$.
■ If the fourth graph of Moore M_{4} there exists with $\alpha\left(M_{4}\right)=400$, as it is expected, then it is a \mathcal{Q}-graph.

■ Additionally, taking into account (??), graphs defined by the disjoint union of complete subgraphs and complete bipartite graphs are trivial examples of \mathcal{Q}-graphs.

The class of \mathcal{Q}-graphs (cont.)

Additional examples of \mathcal{Q}-graphs

Figure 3: Graph G such that $\lambda_{\text {min }}\left(A_{G}\right)=-2$ and $v_{G}(2)=$ $3=\alpha(G)$.

Figure 4: Graph G such that $\lambda_{\min }\left(A_{G}\right)=-3$ and $v_{G}(3)=$ $12=\alpha(G)$.

The class of \mathcal{Q}-graphs (cont.)

- A graph belongs to \mathcal{Q} if and only if each of its components belongs to \mathcal{Q}.

■ Every graph G has a subgraph $H \in \mathcal{Q}$ such that $\alpha(G)=\alpha(H)$.
■ If $G \in \mathcal{Q}$ and $\exists U \subseteq V(G)$ such that

$$
\alpha(G)=\alpha(G-U)
$$

then $G-U \in \mathcal{Q}$.
■ If $\exists v \in V(G)$ such that

$$
v_{G}(\tau) \neq \max \left\{v_{G-\{v\}}(\tau), v_{G-N_{G}(v)}(\tau)\right\},
$$

with $\tau=-\lambda_{\text {min }}\left(A_{G}\right)$, then $G \notin \mathcal{Q}$.

The class of \mathcal{Q}-graphs (cont.)

■ Consider that $\exists v \in V(G)$ such that

$$
v_{G-\{v\}}(\tau) \neq v_{G-N_{G}(v)}(\tau)
$$

and $\tau=-\lambda_{\min }\left(A_{G}\right)$.

1. If $v_{G}(\tau)=v_{G-\{v\}}(\tau)$ then

$$
G \in \mathcal{Q} \text { iff } G-\{v\} \in \mathcal{Q}
$$

2. If $v_{G}(\tau)=v_{G-N_{G}(v)}(\tau)$ then

$$
G \in \mathcal{Q} \text { iff } G-N_{G}(v) \in \mathcal{Q}
$$

The class of \mathcal{Q}-graphs (cont.)

- Assuming that

$$
\tau_{1}=-\lambda_{\min }\left(A_{G}\right)>-\lambda_{\min }\left(A_{G-U}\right)=\tau_{2}
$$

with $U \subset V(G)$. Then

$$
\begin{aligned}
& v_{G}\left(\tau_{1}\right)=v_{G-U}\left(\tau_{2}\right) \Rightarrow G \in \mathcal{Q} \\
& v_{G}\left(\tau_{1}\right)>v_{G-U}\left(\tau_{2}\right) \Rightarrow G \notin \mathcal{Q} \text { or } U \cap S \neq \emptyset
\end{aligned}
$$

for each maximum stable set S of G.

Adverse graphs and (k, τ)-regular sets

- Using the above results, we may recognize if a graph G is (or not) a \mathcal{Q}-graph, unless an induced subgraph $H=G-U$ (where $U \subset V(G)$ can be empty) is obtained, such that

$$
\begin{align*}
\tau= & \lambda_{\min }\left(A_{G}\right)=\lambda_{\min }\left(A_{H}\right) \tag{2}\\
& v_{G}(\tau)=v_{H}(\tau) \tag{3}\\
\forall v \in V(H) \quad & \lambda_{\min }\left(A_{H}\right)=\lambda_{\min }\left(A_{H-N_{G}(v)}\right) \tag{4}\\
\forall v \in V(H) \quad & v_{H}(\tau)=v_{H-N_{G}(v)}(\tau) \tag{5}
\end{align*}
$$

■ A subgraph H of G without isolated vertices, for which the conditions (??)-(??) are fulfilled is called adverse.

Adverse graphs and (k, τ)-regular sets (cont.)

Figure 5: Adverse graph G, with $\lambda_{\min }\left(A_{G}\right)=-2$ and $v_{G}(2)=\alpha(G)=5$.

Adverse graphs and (k, τ)-regular sets (cont.)

\square Based in the above results, a procedure which recognizes if a graph G is (or not) in \mathcal{Q} or determines an adverse subgraph can be implemented.

- A subset of vertices $S \subset V(G)$ is (k, τ)-regular if induces in G a k-regular subgraph and $\forall v \notin S$

$$
\left|N_{G}(v) \cap S\right|=\tau
$$

■ The maximum stable sets of the graphs of figures $1, ? ?$ and ?? are $(0,2)$-regular and the maximum stable set of the graph of figure ?? is $(0,6)$-regular.

Adverse graphs and (k, τ)-regular sets (cont.)

- The Petersen graph P includes the (0,2)-regular set $S=\{1,2,3,4\}$ and the (2,1)-regular sets $T_{1}=\{1,2,5,7,8\}$ and $T_{2}=\{3,4,6,9,10\}$.

Figure 6: The Petersen graph.
■ $L(P)$ includes the $(0,2)$-regular set $\{\{1,9\},\{5,6\},\{2,10\}$, $\{4,8\},\{3,7\}\}$ (a perfect matching) and the (0,1)-regular set $\{\{5,6\},\{9,10\},\{7,8\}\}$ (a perfect induced matching).

Adverse graphs and (k, τ)-regular sets (cont.)

Theorem

Let G be adverse and $\tau=-\lambda_{\min }\left(A_{G}\right)$. Then $G \in \mathcal{Q}$ if and only if $\exists S \subset V(G)$ which is $(0, \tau)$-regular.

Theorem

Let G be p-regular, with $p>0$. Then $G \in \mathcal{Q}$ if and only if $\exists S \subset V(G)$ which is $(0, \tau)$-regular, with $\tau=-\lambda_{\min }\left(A_{G}\right)$.

Theorem[Thompson, 1981]
Let G be a p-regular graph and $x(S)$ the characteristic vector of $S \subset V(G)$. Then S is (k, τ)-regular if and only if

$$
\left(\hat{e}-\frac{p-(k-\tau)}{\tau} x(S)\right) \in \operatorname{Ker}\left(A_{G}-(k-\tau) I_{n}\right)
$$

where \hat{e} is the all-ones vector.

Analysis of particular families of graphs

There are several families of graphs in which we can recognise (in polynomial-time) \mathcal{Q}-graphs.

1. Bipartite graphs

- Since the minimum eigenvalue of a connected bipartite graph G is simple, then $\exists v \in V(G)$ such that $\lambda_{\min }\left(A_{G}\right)<\lambda_{\min }\left(A_{G-\{v\}}\right)$.

2. Dismantlable graphs

- The one-vertex graph is dismantlable. A graph G with at least two vertices is dismantlable if $\exists x, y \in V(G)$ such that $N_{G}[x] \subseteq N_{G}[y]$ and $G-\{x\}$ is dismantlable

Theorem

Given a graph G and $\tau>1$, if $\exists p, q \in V(G)$ such that $N_{G}[q] \subseteq N_{G}[p]$ then $v_{G}(\tau)>v_{G-N_{G}(p)}(\tau)$.

Analysis of particular families of graphs (cont.)

3. Graphs with low Dilworth number

- Given two vertices $x, y \in V(G)$, if $N_{G}(y) \subseteq N_{G}[x]$ then we say that the vertices x and y are comparable (according to the vicinal preorder). The Dilworth number of a graph G, $\operatorname{dilw}(G)$, is the largest number of pairwise incomparable vertices of G.

Theorem

Let G be a not complete graph. If $\operatorname{dilw}(G)<\omega(G)$ then G is not adverse.

A threshold graph has Dilworth number equal to 1 .

Analysis of particular families of graphs (cont.)

4. $\left(C_{4}, P_{5}\right)$-free graphs

Theorem

Let G be a graph and $\tau>1$. If $\exists p q \in E(G)$ such that

$$
v_{G}(\tau)=v_{G-N_{G}(p)}(\tau)=v_{G-N_{G}(q)}(\tau)
$$

then $p q$ belongs to $a C_{4}$ or p and q are the midpoints of a P_{4}. Combining the above theorem with a result obtained from (Brandstädt and Lozin, 2001), where it is stated that "if a graph is (banner, P_{5})-free then any midpoint of a P_{4} is α-redundant", the next theorem follows.

Theorem

Let G be a graph without isolated vertices, for which the equalities (??) hold, with $\tau>1$. If G is $\left(C_{4}, P_{5}\right)$-free, then

$$
\forall v \in V(G) \quad \alpha(G)=\alpha(G-\{v\})
$$

Analysis of particular families of graphs (cont.)

5. Claw-free graphs

Theorem

Let G be a claw-free graph and $\tau>1$. If $\exists p q \in E(G)$ such that p and q are not the midpoints of a P_{4} and

$$
v_{G}(\tau)=v_{G-N_{G}(p)}(\tau)=v_{G-N_{G}(q)}(\tau)
$$

then neither p nor q are α-critical.

Theorem

Let G be a (claw, $\left.P_{5}\right)$-free graph without isolated vertices. If G is adverse then $\forall v \in V(G) \alpha(G)=\alpha(G-\{v\})$.

Theorem
Let G be a claw-free graph and $p, q \in V(G)$ such that $p q \notin E(G)$. If $N_{G}(p) \subseteq N_{G}(q)$ then $\forall v \in N_{G}(p)$

$$
\alpha(G)=\alpha(G-\{v\}) .
$$

Relations with the Lovász's ϑ-function

■ It is well known (Lovász, 1986) that the Lovász's ϑ-number of a graph G of order n, can be obtained from the equality

$$
\begin{equation*}
\vartheta(G)=\min \left\{\lambda_{\max }(C): C \in \mathcal{C}(G)\right\} \tag{6}
\end{equation*}
$$

where $\mathcal{C}(G)$ is the set of all symmetric $n \times n$ matrices for which $(C)_{i j}=1$ if $i=j$ or $i j \notin E(G)$ and the entries corresponding to adjacent vertices are free to choose.
\square On the other hand, the Lovász's Sandwich Theorem, states the very useful property:

Theorem[Lovász, 1986]
For every graph G,

$$
\alpha(G) \leq \vartheta(G) \leq \bar{\chi}(G)
$$

where $\bar{\chi}(G)$ denotes the minimum number of cliques covering $V(G)$.

Relations with the Lovász's ϑ-function (cont.)

- Let G be a non null p-regular graph, $\tau=-\lambda_{\text {min }}\left(A_{G}\right)$ and $C_{G}=\hat{e} \hat{e}^{T}-\frac{v_{G}(\tau)}{\tau} A_{G}\left(\right.$ then $\left.C_{G} \in \mathcal{C}(G)\right)$.

1. If x^{*} is optimal for $\left(P_{G}(\tau)\right)$ then $C_{G} x^{*}=v_{G}(\tau) x^{*}$.
2. $\alpha(G) \leq \vartheta(G) \leq v_{G}(\tau)=\lambda_{\max }\left(C_{G}\right)$.
3. $\alpha(G)=\vartheta(G)=v_{G}(\tau)$ if and only if there exists a $(0, \tau)$-regular set.

■ According to (Luz, 2003), for every graph G

$$
\tau \geq-\lambda_{\min }\left(A_{G}\right) \Rightarrow v_{G}(\tau) \geq \vartheta(G)
$$

Therefore, when $\tau \geq-\lambda_{\min }\left(A_{G}\right), \alpha(G)=\vartheta(G)=v_{G}(\tau)$ if and only if $\tau \leq\left|N_{G}(v) \cap S\right| \forall v \notin S$.

Final remarks and open problems

\square When $\tau \in] 1,-\lambda_{\min }\left(A_{G}\right)\left[\right.$, if $\alpha(G)=v_{G}(\tau)$ (from the Karush-Khun-Tucker conditions) we may conclude that for every maximum stable set S of G

$$
\begin{equation*}
\tau \leq\left|N_{G}(v) \cap S\right| \forall v \notin S \tag{7}
\end{equation*}
$$

However, despite the existence of graphs G with a maximum stable set S for which the condition (??) is fulfilled but the equality $v_{G}(\tau)=\alpha(G)$ does not holds, remains open to know:
(1) if the condition (??), with $\tau \in] 1,-\lambda_{\min }\left(A_{G}\right)[$, fulfilled for every maximum stable set S of G is sufficient to obtain the equality

$$
v_{G}(\tau)=\alpha(G)
$$

Final remarks and open problems (cont.)

\square It is proved that an adverse graph $G \in \mathcal{Q}$ if and only if $\exists S \subset V(G)$ which is $(0, \tau)$-regular, with $\tau=-\lambda_{\min }\left(A_{G}\right)$.
However,
(2) it is open to know the complexity of the recognition of $(0, \tau)$-regular sets, with $\tau=-\lambda_{\min }\left(A_{G}\right)$, in adverse graphs G.

- Several families of graphs in which the \mathcal{Q}-graphs can be recognized in polynomial-time were introduced, as it was the case of bipartite graphs, dismantlable graphs, threshold graphs, $\left(C_{4}, P_{5}\right)$-free graphs and (claw, P_{5})-free graphs.

Final remarks and open problems (cont.)

■ According to (Cardoso, 2003) the recognition of \mathcal{Q}-graphs which are line graphs of forests can be done also in polynomial-time. However,
(3) there are many other families of graphs (as it is the case of claw-free graphs) in which it is not known if the \mathcal{Q}-graphs are polynomial-time recognizable;
(4) furthermore, it is an open problem to know if there exists an adverse graph without convex- $Q P$ stability number, even when the graph is claw-free;
(5) another interesting question is about the characterization of hereditary claw-free graphs G with Dilworth number less than $|V(G)|$ (note that if such family there exists then the \mathcal{Q}-graphs belonging to it are polynomial-time recognizable).

References

1. Barbosa. R., Cardoso, D. M. On regular-stable graphs (2003). To appear in Ars-combinatoria.
2. Brandstädt, A., V. B. Le and J. P. Spinrad. Graph Classes: a survey. SIAM Monographs on Discrete Mathematics and Applications, SIAM, Philadelphia, (1999).
3. Brandstädt, A. and V. V. Lozin. A note on α-redundant vertices in graphs. Discrete Applied Mathematics, 108 (2001):301-308.
4. Cardoso, D. M. Convex Quadratic Programming Approach to the Maximum Matching Problem. Journal of Global Optimization, 21 (2001):91-106.
5. Cardoso, D. M. and C. J. Luz. Extensions of the Motzkin-Straus Result on the Stability Number of Graphs. Cadernos de Matemática, Departamento de Matemática da Universidade de Aveiro, CM01/I-17 (2001): 18 pages.
6. Cardoso, D. M., Rama, P. Equitable bipartions and related results. To appear in Journal of Mathematical Sciences, special volume - Aveiro Seminar on Control, Optimization and Graph Theory 2002, Vol. 20 (2003):1-16.
7. Cardoso, D. M. On graphs with stability number equal to the optimal value of a convex quadratic program. Matemática Contemporânea - a publication of the Brazilian Mathematica Society. To appear.
8. Cardoso, D. M., Delorme, C., Rama. P. On Laplacian eigenvectors and eigenvalues and almost equitable partitions Research Report (2003).
9. Cardoso, D. M., Rama, P. Spectral results on regular graphs with (k, τ)-regular sets. Universidade de Aveiro. Cadernos de Matemtica CM02/I22 (2002): 14 p.
10. Cvetkovic, D. M., M. Doob and H. Sachs. Spectra of graphs. Academic Press, New York, 1979.
11. Doob, M. A Suprising Property of the Least Eigenvalue of a Graph. Linear Algebra and Its Applications, 46 (1982):1-7.
12. Edmonds, J. R. Paths trees and flowers. Canadian Journal of Mathematics, 17 (1965):449-467.
13. Földes, S. and P. L. Hammer. The Dilworth number of a graph. Annals of Discrete Mathematics, 2 (1978):211-219.
14. Garey, M. R. and D. S. Johnson. Computers and Intractability: A guide to the theory of $N P$-completeness. Freeman, San FRancisco, (1979).
15. Godsil, C. D.Algebraic Combinatorics. Chapman \& Hall, New York, (1993).
16. Karp, R. M. Reducibility among combinatorial problems. In: Complexity of Computer Computations, eds. R.E. Miller and J. W. Thatcher, Plenum Press, New York, (1972):85-104.
17. Lovász, L. An Algorithm Theory of Numbers, Graphs and Convexity. Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, (1986).
18. Lozin, V. V. Stability in P_{5} and Banner-free graphs. European Journal of Operations Research - EJOR, 125 (2000):292-297.
19. Lozin, V. V. and D. M. Cardoso. On herditary properties of the class of graphs with convex quadratic stability number. Departamento de Matemática da Universidade de Aveiro. Cadernos de Matemática, CM/I-50 (1999).
20. Luz, C. J. Relating the Lovász theta number with some convex quadratic bounds on the stability number of a graph. Private communication (2003).
21. Luz, C. J. An upper bound on the independence number of a graph computable in polynomial time. Operations Research Letters, 18
(1995):139-145.
22. Luz, C. J. and D. M. Cardoso. A generalization of the Hoffman-Lovász upper bound on the independence number of a regular graph. Annals of Operations Research, 81 (1998):307-319.
23. Minty, G. J. On maximal independent sets of vertices in claw-free graphs. Journal of Combinatory Theory, B 28 (1980):284-304.
24. Motzkin, T. S. and E. G. Straus. Maxima for graphs and a new proof of a theorem of Turán. Canadian Journal of Mathematics, 17 (1965):533-540.
25. Sbihi, N. Algorithme de recherche d'un stable de cardinalité maximum dans un graphe sans étoile. Discrete Mathematics, 29 (1980): 53-76.
26. Telle, J. A. Characterization of domination-type parameters in graphs.

Proceedings of 24th Southeastern International Conference on Combinatorics, Graph Theory and Computing - Congressus Numerantium, 94 (1993): 9-16.
27. Thompson, D. M. Eigengraphs: constructing strongly regular graphs with block designs. Uitilitas Math., 920 (1981): 83-115.

