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Abstract. Convolution type operators with symmetry appear naturally in
boundary value problems for elliptic PDEs in symmetric or symmetrizable
domains. They are defined as truncations of translation invariant operators
in a scale of Sobolev-like spaces that are convolutionally similar to subspaces
of even or odd functionals. The present class, as a basic example, is closely
related to the Helmholtz equation in a quadrant, where a possible solution
is “symmetrically” extended to a half-plane. Explicit factorization methods
allow the representation of resolvent operators in closed analytic form for
a large class of boundary conditions including the two-impedance and the
oblique derivative problems. Moreover they allow fine results on the regular-
ity and asymptotic behavior of the solutions.
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1. Introduction

Let r, s ∈ R. We consider operators of the form

T = r+AΦ : Hr,c(R) → Hs(R+) (1.1)

where r+ denotes the restriction operator to R+, AΦ = F−1Φ · F : Hr → Hs

stands for a convolution (translation invariant) operator that is invertible of order
r − s, i.e.,

λs−rΦ ∈ GL∞(R) (1.2)
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where λ(ξ) = (ξ2 + 1)1/2, ξ ∈ R, GL∞(R) denotes the group of invertible elements
in L∞(R) and F denotes the one-dimensional Fourier transformation (we also call
the Fourier symbol Φ to be invertible of order r − s or briefly r − s-invertible
in this case). Moreover Hr = Hr(R), Hs(R+) denote the common (fractional)
Sobolev or Bessel potential spaces and Hr,c(R) is a subspace of Hr functionals
that is convolutionally similar to the subspace of even functionals Hr,e(R) or of
odd functionals Hr,o(R), i.e.,

Hr,c(R) = P r,c Hr = S−1P e/oS Hr ⊂ Hr (1.3)

where S = AΨ is invertible of a certain order q ∈ R and

P e/o =
1

2
(I ± J) , Jf(x) = f(−x) , x ∈ R. (1.4)

Operators (1.1) are referred to as convolution type operators with symmetry
(CTOS). They appear in certain applications, briefly discussed in Section 7. There
we meet more particular Fourier symbols, finitely generated by symbols of differen-
tial operators, which are rational functions, and the square root of the Helmholtz
operator symbol, traditionally denoted by t(ξ) = (ξ2−k2)1/2 with a wave number
k with positive imaginary part and a vertical branch cut connecting k and −k via
infinity. This leads to the fact that the “lifted” Fourier symbols (see Section 2)
of the operators in question are Hölder continuous with respect to the two-point
compactification R̈ = R ∪ {+∞} ∪ {−∞} and such that (in the normal case)

λs−rΦ , λ−qΨ ∈ GCµ(R̈) (1.5)

where µ ∈]0, 1[. Therefore, the constructive part of this paper will be carried out
for symbols from this class.

In the special case of Ψ ≡ 1 and r = s = 0, i.e., P r,c = P e or P r,c = P o, the
operator T is equivalent to a Wiener-Hopf plus/minus Hankel operator

W ±H = r+AΦ(I ± J)`0 : L2(R+) → L2(R+) (1.6)

where several of the present results are known or easily obtained from the existing
literature such as [3, 4, 10, 16]. In particular the direct factorization method was
obtained in [10] including small regularity results for W ±H : Hr(R+)→ Hs(R+)
where r ∈]− 1/4, 3/4[ or ]− 3/4, 1/4[ depending on the ± sign. Namely, the even
and odd extension operators `e = (I+J)`0 : Hr(R+)→ Hr(R) and `o = (I−J)`0 :
Hr(R+) → Hr(R), respectively, are continuous and left invertible by restriction
r+ if and only if r belongs to the mentioned interval (see [10], Section 2). Here we
turn to consider general orders r, s ∈ R by choosing Hr,c(R) as domain of T .

A crucial point is that the projectors P e/o in (1.4) are continuous in all spaces
Hs = Hs(R) , s ∈ R. Sometimes we need to indicate the space order writing

P s,e/o : Hs → Hs,e/o = {u ∈ Hs : Ju = ±u}

domP s,e/o = Hs , imP s,e/o = Hs,e/o .
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However, the projectors `er+ , `
or+ are needed, as well, exactly in the spaces of

orders mentioned before, namely in so-called intermediate spaces that play a de-
ciding role in our factorization method, because they project onto spaces with
symmetry along the space Hs

− = {u ∈ Hs : suppu ⊂ R−} (in contrast to P e/o).
The main results are summarized in the following:

Theorem 1.1. Let T be given by (1.1) with the assumptions (1.2)–(1.4). Further
let

Υ0 = λs−Υλq−r = λs−ΦΨ−1λq−r ∈ GCµ(R̈)

ω = 1
2πi

∫
R d log Υ0

(1.7)

where λ−(ξ) = ξ − i, ξ ∈ R.

I. The following conditions are equivalent:

(i) T is normally solvable,
(ii) T is Fredholm,
(iii) T is one-sided invertible,
(iv) <e(ω)± 1

4 /∈ Z , respectively, corresponding with the e/o case,
(v) Υ admits a so-called “asymmetric generalized factorization” (see Section 3).

II. In the last case, a formula for a generalized inverse of T is given in terms of
the factorization, which can be obtained explicitly in closed analytic form.

III. In the opposite case, T can be normalized by “minimal image normalization”
(see Section 5) replacing the image space by a dense subspace (with continuous
embedding) such that the normalized operator gains properties I (i)-(iii) and II.

The proof of this main theorem is divided into several parts, prepared and
presented in the following sections 2–5 (together with further details). Part III is
of particular interest in applications. It often appears in the most important weak
formulations of basic boundary value problems (looking for H1 solutions) where
boundary conditions of mixed type are given [33] or where the boundary contains
conical points, see [10], for instance. These problems are often normalized (to
become well-posed or Fredholm) by imposing certain “compatibility conditions”
between the given data and changing the data space topology consequently. This
normalization method is here directly reflected by the so-called “minimal image
normalization” of the derived CTOS. It moreover helps to discover suitable com-
patibility conditions in complicated situations (see examples in Section 7). The
method was introduced for Wiener-Hopf operators in [29] and for CTOS in [10] in
the case of r = s = 0 and Ψ ≡ 1, hence extended here for CTOS of the form (1.1).

Section 6 is devoted to questions of regularity of the solutions of operator
equations in the sense that the solution belongs to a Bessel potential space of
higher order. This is particularly interesting for the applications briefly considered
in Section 7.

Finally it should be mentioned that the exposition of this article focuses
a standard situation considered as a prototype of possible applications. Various
generalizations and open problems are addressed in the last section.
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2. Lifting and shifting

We say that two bounded linear operators in Banach spaces T and U are equivalent,
if T = EUF with linear homeomorphisms E and F . It is clear that equivalent
operators are simultaneously invertible or Fredholm and (generalized) inverses can
be computed from each other provided E,F and their inverses are known.

Let us recall the well-known Bessel potential operators given by

Λs = Aλs = F−1λs · F : Hr → Hr−s

Λs± = Aλs± = F−1λs± · F : Hr → Hr−s (2.1)

where λ(ξ) = (ξ2 + 1)1/2 , λ±(ξ) = ξ ± i and r, s ∈ R, cf. [13, 19, 29]. The last two
have the following mapping properties (or support invariance properties):

Λs+H
r
+ = Hr−s

+ ,

Λs−H
r
− = Hr−s

− ,
(2.2)

Hr
± being the Hr subspaces of functionals supported on R±. In terms of operator

identities: If P
(s)
1 is a projector in Hs onto Hs

+ and P
(s)
2 is a projector in Hs along

Hs
− (s ∈ R), then we have

Λs+ P
(r)
1 = P

(r−s)
1 Λs+ P

(r)
1 ,

P
(r−s)
2 Λs− = P

(r−s)
2 Λs− P

(r)
2 .

(2.3)

Also Λs has invariance properties according to its even symbol, which can be
interpreted analogously:

Lemma 2.1. For r, s ∈ R and P r,c given by (1.3) the following holds:

ΛsHr,e/o = Hr−s,e/o,

Λs P r,c = P r−s,c Λs P r,c.
(2.4)

Proof. This is a consequence of the fact that Λs and P e/o interchange (taking into
account convenient space orders), in combination with the facts that translation
invariant operators commute and that the Fourier transformation commutes with
the reflection operator J and therefore with the projectors P e/o, as well. �

Theorem 2.2. Let T be given by (1.1) and Φ0 = λs−Φλ−r , Υ = ΦΨ−1 , Υ0 =
λs−Υλq−r. The following four operators are equivalent:

T = r+AΦ : Hr,c(R) → Hs(R+),

T0 = r+AΦ0
: H0,c(R) → H0(R+),

U = r+AΥ : Hr−q,e/o(R) → Hs(R+),

U0 = r+AΥ0 : H0,e/o(R) → H0(R+).

(2.5)

Herein the case e/o corresponds with the case in (1.3). H0,e(R+) coincides with
L2,e(R+) etc.
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Proof. For systematic calculations it is convenient to argue that each of the four
operators is equivalent to an operator that has the form of a general Wiener-Hopf
operator [12, 32]. For instance

T = r+AΦ ∼ P
(s)
2 AΦ| imP r,c : Hr,c(R) → imP

(s)
2 , (2.6)

in brief T ∼ W = P2A|P1X where A ∈ L(X,Y ) , X = Hr , Y = Hs , P1 =

P r,c , P2 = P
(s)
2 .

Now the preceding formulas imply

T ∼ P
(s)
2 AΦ| imP r,c

∼ P
(0)
2 Λs−P

(s)
2 AΦP

r,cΛ−r| imP 0,c

= P
(0)
2 Λs−AΦ Λ−r| imP 0,c

= P
(0)
2 AΦ0

| imP 0,c

∼ T0.

(2.7)

Furthermore

T ∼ P
(s)
2 AΦ| imP r,c

∼ P
(s)
2 AΦS

−1| imP r−q,e/o

= P
(s)
2 AΦA

−1
Ψ | imP r−q,e/o

= P
(s)
2 AΦΨ−1 | imP r−q,e/o

∼ U

= r+Λ−s− ` U0 Λr−q

∼ U0,

(2.8)

where ` denotes any extension from Hs(R+) to Hs. The rest of the proof is evident.
�

The operator T0 is said to be the lifted operator accompanying T and U0

is called the lifted operator accompanying U , cf. [29] for instance and [15] for
further studies. As mentioned in the beginning of this section, it follows that all
these operators are simultaneously invertible or Fredholm (with the same defect
numbers) etc.

In contrast to the lifted operators we also consider the shifted operators ac-
companying T0 and U0, namely we define, for any δ ∈ R

Tδ =

{
RstT0 : Hδ,c(R)→ Hδ(R+) , δ > 0
ExtT0 : Hδ,c(R)→ Hδ(R+) , δ < 0

(2.9)

Uδ =

{
RstU0 : Hδ,c(R)→ Hδ(R+) , δ > 0
ExtU0 : Hδ,c(R)→ Hδ(R+) , δ < 0

(2.10)



6 L.P. Castro and F.-O. Speck

where Rst stands for the restriction (in both domain and image) and Ext for the
continuous extension of the mentioned operator to the indicated spaces, see [29]
for analogous notation in a different context.

Similarly one can also define shifted operators accompanying T (and U , re-
spectively), needed only later in Section 6, and briefly written in the form

T (δ) = RstT : Hr+δ,c(R)→ Hs+δ(R+) (2.11)

if δ > 0 or ExtT if δ < 0 etc. It is clear that these operators are bounded. Note
that RstT is unique by definition (provided T maps the proposed subspace into
the proposed image space), but ExtT is not unique in general (see the example
of zero extension `0 in [18], for orders smaller than −1/2).

The Fredholm property of T (δ) will be discussed later in case of more special
symbols that admit a certain factorization.

Remark 2.3. We decided to put the operator T defined in (1.1) into the center of
our studies instead of the equivalent operator U , because of its relevance in the
applications as briefly shown in Section 7.

3. Asymmetric generalized factorization and its consequences

First we generalize a definition from [10] (where the order of Φ was zero). Weighted
Lebesgue spaces appear such as L2(R, ρ), the spaces of measurable functions φ :
R → C with ρφ ∈ L2(R) where ρ is a given weight function, i.e., measurable
and not vanishing almost everywhere. Similarly L2,e/o(R, ρ) and L2

−(R, ρ) denote

functions with ρφ ∈ L2,e/o(R) and ρφ ∈ L2
−(R) , respectively.

Definition 3.1. An invertible symbol Φ of order r−s (see (1.2)) admits an asymmet-
ric generalized factorization with respect to (L2(R, λr), L2(R, λs),Π1,Π2), where
Π1 ∈ L(L2(R, λr)) is a projector onto L2,e/o(R, λr) and Π2 ∈ L(L2(R, λs)) is a
projector along L2

−(R, λs−), in brief AGF and written as

Φ = Φ− ζ
κ Φe , (3.1)

if (j) κ ∈ Z, ζ(ξ) = (ξ − i)/(ξ + i) for ξ ∈ R, furthermore (jj)

Φ− ∈ L2
−(R, λs−2

− ), Φ−1
− ∈ L2

−(R, λ−s−1
− ),

Φe ∈ L2,e(R, λ−r−1), Φ−1
e ∈ L2,e(R, λr−2)

for the ‘‘e-case"

Φ− ∈ L2
−(R, λs−1

− ), Φ−1
− ∈ L2

−(R, λ−s−2
− ),

Φe ∈ L2,e(R, λ−r−2), Φ−1
e ∈ L2,e(R, λr−1)

for the ‘‘o-case"

(3.2)

and finally (jjj) the operator composed by multiplication operators and the Hilbert
transform SR = F−1 sgn(·) · F

V = Φ−1
e · SR ζ−κ · SR Φ−1

− · : L2
+(R, λs)→ L2(R, λr) (3.3)

is bounded (as a composition of unbounded operators, extended from a dense
subspace). The number κ in (3.1) is called factorization index of the AGF of Φ.
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As in the case of Toeplitz and Wiener-Hopf operators [4, 10, 23] the factor
spaces (to which Φ− etc. belong) are the closures of the spaces of sufficiently
decreasing rational functions without poles in the closed lower half-plane C− =
{ξ ∈ C : =m(ξ) ≤ 0} or of those which are even, respectively, due to the weighted
L2 norm.

For convenience we put Ae = F−1Φe ·F , A− = F−1Φ− ·F and C = F−1ζκ ·F .
In general Ae : Hr → L2 and A− : L2 → Hs are unbounded operators whilst
C : L2 → L2 is bounded. The domains of the factors are such that

AΦ = A−CAe : D1 → D → D → D2 (3.4)

splits in the sense of bijective mappings where

D1 = D(Ae)

D2 = D(A−1
− ) (3.5)

D = imAe|D1
= imA−1

− |D2
,

D1, D2 and D are dense in L2 and the restrictions of C±1, `e/or+ : D → D are
well-defined.

Remark 3.2. An AGF (3.1) defines a Wiener-Hopf factorization through the in-
termediate space (FIS) Z = L2(R) in the sense of [36]. The resulting factorization
(3.4) defines a FIS, as well. That means, in a general setting, a boundedly invert-
ible linear operator A ∈ L(X,Y ) in Banach spaces X,Y admits a FIS with respect
to X,Y and two projectors P1 ∈ L(X) and P2 ∈ L(Y ) if

A = A− C A+ (3.6)

: Y ← Z ← Z ← X

where the factors A± and C possess the following properties: They are linear and
boundedly invertible in the above setting with an additional Banach space Z called
intermediate space. Further there is a projector P ∈ L(Z) such that

A+P1X = PZ , A−QZ = Q2Y (3.7)

with Q = IZ − P and such that C ∈ L(Z) splits the space Z twice into four
subspaces with

Z =

PZ︷ ︸︸ ︷
X1 +̇ X0 +̇

QZ︷ ︸︸ ︷
X2 +̇ X3

↓ C ↙↘ ↓ (3.8)

= Y1 +̇ Y2︸ ︷︷ ︸
PZ

+̇ Y0 +̇ Y3︸ ︷︷ ︸
QZ

where C maps each Xj onto Yj , j = 0, 1, 2, 3, i.e., the complemented subspaces
X0, X1, ..., Y3 are images of corresponding projectors p0, p1, ..., q3, namely X0 =
p0Z = C−1QCPZ , X1 = p1Z = C−1PCPZ, ..., Y3 = q3Z = CQC−1QZ.
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A± are called strong WH factors and C is said to be a cross factor, acting
from a space Z onto the same space Z as a bounded linear operator. This kind of
factorization avoids the use of unbounded factors.

Theorem 3.3. Let T be given by (1.1) and let Υ = ΦΨ−1 admit an AGF with

respect to P1 = P r,e/o and P2 = P
(s)
2 with factorization index κ ∈ Z. Then T is

Fredholm with analytical index Ind T = −κ and a reflexive generalized inverse of
T is given by

T− = P r−q,cS−1 V |
imP

(s)
2

= S−1 P e/oA−1
e `cr+C

−1`cr+A
−1
− | imP

(s)
2

= AΨ−1

1

2
(I ± J)A−1

e `cr+Aζ−κ`
cr+A

−1
− | imP

(s)
2

(3.9)

where `c stands for `e/o in the corresponding case of P r,e/o, respectively. Moreover
T is one-sided invertible and its defect numbers read

α(T ) = dim kerT = max{0,−κ} , β(T ) = codim imT = max{κ, 0} . (3.10)

Proof. Note that `cr+ = `e/or+ and P e/o have the same images, but different
kernels (in L2 and in Hδ, |δ| < 1/2, r+ being bounded and left invertible by
`0). It is important that `cr+ maps onto L2,e/o along L2

− (and not along L2,o/e).
With the techniques of Section 2 it is not difficult to verify that T T− T = T and
T− T T− = T−, i.e., that (3.9) represents a reflexive generalized inverse of T (cf.
details in the proof of Theorem 3.2 in [10] for the case of r = s = 0). Further
T ∼ U0 by (2.8), (2.9) for which the remaining results are known [10]. �

Corollary 3.4. The operators T, T0, U, U0 have all the same properties mentioned
in Theorem 1.1. There kernels and complements of their images are explicitly
represented by use of the formulas in Section 2 and in [10], Section 4: For instance,
if κ < 0:

ker r+C`
er+ = F−1 span {λ−2, λ−4, . . . , λ2κ}

= `eF−1 span {λ−1
+ , . . . , λκ+} . (3.11)

Remark 3.5. The choice of weights in (3.2) looks somehow arbitrary. As we see
later (in Proposition 4.6), it is strongly motivated by the present symbol class (1.5)
and the theory of Toeplitz operators [4, 23]. See also [10] for “small orders” of r
and s.

4. Constructive factorization

Constructive AGF is based upon some knowledge about the Φ-factorization [23]
(alias generalized factorization [31] or Wiener-Hopf factorization [4]) of bounded
measurable functions φ ∈ GL∞ in L2 and the equivalence of an AGF of ψ with
another kind of factorization, the so-called antisymmetric factorization [3, 10, 16]

of a related function G = ψψ̃−1. To this end we need two well-known definitions.
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Definition 4.1. A function ψ ∈ GL∞ admits a Φ-factorization in L2 if

ψ = ψ− ζ
κ ψ+ (4.1)

where κ ∈ Z, furthermore

ψ±1
− ∈ L2

−(R, λ−1
− ) , ψ±1

+ ∈ L2
+(R, λ−1

+ ), (4.2)

and finally
V = A−1

+ `0r+Aζ−κ`0r+A
−1
− : L2 → L2 (4.3)

is bounded (as a composition of unbounded operators, extended from a dense
subspace).

Definition 4.2. If κ = 0 in one of the foregoing factorizations we call it a canonical

factorization. If moreover, in a canonical Φ-factorization (4.1), ψ+ = ψ̃−
−1

where

ψ̃− = Jψ−, this factorization is said to be antisymmetric.

Now we are in the position to carry out the effective factorization of invert-
ible scalar symbols which are most relevant in the applications mentioned before,
namely elements of the algebra of Hölder continuous functions on R̈ = [−∞,+∞]:

Cµ(R̈) =

{
φ ∈ Cµ(R) : φ(±∞) = lim

ξ→±∞
φ(ξ) exist and (4.4)

φ(ξ)− φ(±∞) = O
(
|ξ|−µ

)
as ξ → ±∞

}
, µ ∈]0, 1[ .

In the case of φ(+∞) = φ(−∞) we write φ ∈ Cµ(Ṙ). The subclasses of invertible

elements are denoted by GCµ(R̈) and GCµ(Ṙ), respectively. The following result
is known from [10]. We give a sketch of the proof because it contains the technical
details of the method that are needed in practice.

Proposition 4.3. Let φ ∈ GCµ(R̈) where µ ∈]0, 1[ and define

ω =
1

2πi

∫
R
d log φ . (4.5)

Further let

<e(ω)± 1

4
/∈ Z (4.6)

where the sign corresponds with the `e/`o case. Then φ admits an AGF (see Defi-
nition 3.1) given by the following formulas:

κ = max
{
z ∈ Z : z ≤ <e(ω)± 1

4

}
ψ = ζ−ω φ−1(+∞) φ

ψ̃ = Jψ

φ− = λ
2(ω−κ)
− exp

{
P− log

(
ψψ̃−1

)}
φe = ζ−κφ−1

− φ ,

(4.7)

where P− = 1
2 (I − SR).
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Proof. We write φ in the form

φ(ξ) = φ(+∞)

(
ξ − i
ξ + i

)ω
ψ(ξ) , ξ ∈ R (4.8)

where ψ ∈ GCµ(Ṙ) with vanishing winding number. Precisely, let ω = σ + iτ ∈ C
with real and imaginary parts given by

σ =
1

2π

∫
R
d arg φ , τ =

1

2π
log

∣∣∣∣φ(−∞)

φ(+∞)

∣∣∣∣ . (4.9)

Now we follow an idea of Basor and Ehrhardt [3, 10] from the theory of
Toeplitz plus Hankel operators and consider the function

G = ψ ψ̃−1. (4.10)

It has the same properties as ψ before plus the (anti–) symmetry property G̃−1 =
G. Thus it admits a canonical anti–symmetric factorization

G = G−G+ = G−G̃
−1
− (4.11)

where G± ∈ GCµ±(Ṙ).
By the help of (4.10) and (4.11) we obtain an AGF of ψ, putting

ψ = ψ−ψe = G−ψe . (4.12)

Here ψe is even since this fact is equivalent to

ψe = ψ̃e

ψG−1
− = ψ̃ G̃−1

−

ψ ψ̃−1 = G− G̃
−1
−

(4.13)

which was our factorization (4.12) of (4.11). The factors of ψ in (4.13) belong to

GCµ(Ṙ). Therefore φ has an AGF if and only if ζω admits an AGF.
Now let (4.6) be satisfied, thus we can write

ω = σ + iτ = κ+ η + iτ (4.14)

where κ ∈ Z and η ∈] − 1/4, 3/4[ in the case `c = `e, that will be treated first.
Considering

ζω = λ
2(ω−κ)
− ζκ(λ−λ+)

κ−ω
(4.15)

= λ
2(η+iτ)
− ζκλ−2(η+iτ)

we have an AGF with respect to `e: the factors belong to the spaces mentioned in
(3.2) and the operator V in (3.3) corresponding with (4.15) is bounded. This is a
consequence of the fact that, due to (4.15),

Cω = F−1ζω · F = C−CCe : L2 → H2η → H2η → L2 (4.16)

is a composition of boundedly invertible operators where 2η ∈] − 1/2, 3/2[, such
that `er+ is bounded in H2η. I.e., the factors C−, C, Ce are bijections with respect
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to the spaces mentioned in (4.16). The combination with (4.8) and (4.12) yields
an AGF of φ.

The case `c = `o runs analogously with

η ∈]− 3/4, 1/4[ and therefore 2η ∈]− 3/2, 1/2[ .

�

Corollary 4.4. Under the same assumptions as before, the AGF of φ yields bounded
operator factorizations of the multiplication operator φ·, of the convolution opera-
tor A = F−1φ·F and of the Wiener-Hopf plus Hankel operator T = r+A`

e through
an intermediate space Z which is a weighted L2 space or corresponding Sobolev
space, respectively. More precisely, we have a commutative diagram of bijective
multiplication operators

φ ·
L2(R) → L2(R)

φe· ↓ ↑ φ−·
L2(R, λ−2η) → L2(R, λ−2η)

ζκ·

(4.17)

and, correspondingly written as bounded operator factorization

A = A−CAe : L2 → H2η → H2η → L2 , (4.18)

a so-called asymmetric factorization through an intermediate space (AFIS) [10]
(this notation was used in the special case where the “plus factor” in a FIS of a
convolution operator has an even symbol whilst the “minus factor” possesses the
common properties, see also [7, 36]). Consequently we have a splitting of T into
bounded operators, as well, namely

T = r+A−` (r+C`
e) r+Ae`

e (4.19)

: L2(R+)← H2η(R+)← H2η(R+)← L2(R+)

(where the extension ` : H2η(R+)→ H2η is arbitrary, e.g. ` = `e or ` = `o).

Furthermore the intermediate space Z = H2η in (4.19) has the following
properties, for all possible choices of ω,

C = ζκ· ∈ L(Z) for all κ ∈ Z
`er+ ∈ L(Z) .

(4.20)

Finally, denoting the L2 functions with rational Fourier images by R̂0 = R̂∩L2(R),
we have

`er+R̂0 ⊂
dense

`er+Z . (4.21)
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Theorem 4.5. Let T be given by (1.1) with the assumptions (1.2)–(1.4). Further
let

Υ0 = λs−Υλq−r = λs−ΦΨ−1λq−r ∈ GCµ(R̈)

ω = 1
2πi

∫
R d log Υ0 .

(4.22)

Then the following conditions are equivalent:

(i) T is Fredholm,
(ii) <e(ω)± 1

4 /∈ Z , respectively, corresponding with the e/o case,

(iii) Υ admits an AGF (3.1) with respect to P1 = P r−q,e/o and P2 = P
(s)
2 ,

and, moreover,

(iii′) AΥ0
admits an AFIS (4.18) through the space Z = H2η where 2η ∈]−1/2, 3/2[

or 2η ∈ ]− 3/2, 1/2[, respectively, η being given by (4.14).

Further the factorization of Ψ is unique up to constant factors in Ψ− and Ψe

(inverse to each other).

Proof. From Theorem 2.2 we know that the Fredholm property of T is equivalent to
the Fredholm property of U0, which corresponds with the case where r = s = 0 and
Ψ ≡ 1. In this special case the result is known, see [10], Proposition 4.2. Hence the
equivalence of the mentioned items extends to the general situation, by application
of the results of Theorem 2.2. The last statement is known from Wiener-Hopf
factorization, to which the present operators are related by (4.11). �

The foregoing results gave us the motivation for the definition 3.1 of an AGF.
We underline this by the following:

Proposition 4.6. Let ψ ∈ GCµ(R̈). Then ψ admits a canonical AGF with r = s = 0

(in the sense of Definition 3.1) if and only if G = ψψ̃−1 admits an antisymmetric
canonical Φ-factorization in L2.

Proof. Sufficiency: Let G = G−G+ be an antisymmetric canonical Φ-factorization

of G = ψψ̃−1, i.e., G+ = G−1
− . Then we obtain an AGF of ψ as in (4.10)–(4.15):

ψ = ψ− ψe = G− ψe, (4.23)

i.e., ψ− = G− and ψe = G−1
− ψ. Hence we have to show that ψe is even. This fact

is equivalent to

ψe = ψ̃e

ψG−1
− = ψ̃ G̃−

−1

ψ ψ̃−1 = G− G̃−
−1

(4.24)

which is true by assumption. The factors obviously belong to the right classes.

Necessity: Let ψ = ψ− ψe be a canonical AGF and consider G = ψ ψ̃−1 =

G−G+ where we put G− = ψ−. Then we have to show that G+ = G̃−
−1

, i.e., we
have an antisymmetric factorization of G. This follows from

G+ = ψ−1
− ψ ψ̃−1 = ψ−1

− ψ− ψe ψ̃e
−1
ψ̃−
−1

= G−1
− . (4.25)
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Again the factors obviously belong to the right classes. �

Now we are in the position to organize the proof of Theorem 1.1:

Proof of Theorem 1.1. First we see that T ∼ U0 by Theorem 2.2. Second we
know from Proposition 4.6 that an AGF of the Fourier symbol Υ0 ∈ GCµ(R̈) of

U0 implies a generalized factorization of G = Υ0Υ̃0

−1
which is asymmetric (see

(4.11)) and vice versa, an asymmetric generalized factorization of G implies an
AGF of Υ0.

With the help of G we have from [10] that the following conditions are equiv-
alent:

(i) U0 is normally solvable,
(ii) U0 is Fredholm,
(iii) U0 is one-sided invertible,
(iv) <e(ω)± 1

4 /∈ Z , respectively, corresponding with the e/o case,
(v) Υ0 admits an AGF.

Translating this back into the corresponding properties of T and Υ by The-
orem 2.2 and Definition 3.1, we come to the list of equivalent properties in Part I
of Theorem 1.1.

Part II is the main content of Theorem 3.3.
Part III is a summary of the main results of the following section. �

5. Normalization

Now we tackle the critical case of Theorem 1.1 where condition (iv) is violated and
T is not Fredholm in the considered space setting. First we recall two definitions
from [10, 29].

Definition 5.1. Let X, Y be Banach spaces, S ∈ L(X,Y ) a bounded linear operator
which is not normally solvable, i.e., imS is not closed. If there is another Banach
space Y1 such that

Y1 ⊂
dense

Y , Y1 6= Y , imS ⊂ Y1 (5.1)

and
≺
S = RstS : X → Y1 (5.2)

is normally solvable, then
≺
S is called a minimal image normalization of S.

Definition 5.2. For any s ∈ C consider the modified Bessel potential space
≺
Hs (R+) = r+A

−s−1/2
λ−

H
−1/2
+ = r+A

−s−1/2
λ−

A
1/2
λ+
L2

+ (5.3)

equipped with the norm induced by H
−1/2
+ , namely by

‖ψ‖≺
Hs(R+)

= ‖`0ϕ‖H−1/2 , ϕ = r+A
s+1/2
λ−

`ψ (5.4)
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where `ψ ∈ H<e(s) is any extension of ψ ∈ H<e(s)(R+).

Remark 5.3. The modified Bessel potential spaces can be seen in a similar way
as the common spaces of Bessel potentials as being the images of certain Bessel
potential operators:

Hs(R+) = r+A
−s
λ−
L2

+ for s ∈ R . (5.5)

In the special cases of s = ±1/2 we have
≺
Hs (R+) = H̃±1/2(R+), the dense

subspaces of H±1/2(R+) of functionals extensible by zero into H±1/2(R), equipped

with the norm induced by H
±1/2
+ (which carries the norm of H±1/2 as a closed

subspace). See [20, 22] for properties of the spaces H̃s(Ω) in general.

Now we assume the following situation in (1.1):

T = r+AΦ : Hr,c(R)→ Hs(R+)

Υ0 = λs−ΦΨ−1λq−r ∈ GCµ(R̈)

ω = 1
2πi

∫
R d log Υ0 = κ+ η + iτ

κ ∈ Z , τ ∈ R

η =

{
− 1

4 for `c = `e

− 3
4 for `c = `o .

(5.6)

Proposition 5.4. If (5.6) is satisfied, then T is not normally solvable but

α(T ) = dim kerT = max{0,−κ} <∞

β(T ) = dimHs(R+)/clos imT = max{0, κ} <∞ .
(5.7)

Proof. We know from Theorem 2.2 that T ∼ U0. Hence let us first normalize U0

with the method of [10] which runs as follows. Consider the shifted operators as
defined in (2.9):

Uδ = r+AΥ0
`c : Hδ(R+)→ Hδ(R+) (5.8)

for δ ∈] − 1/2, 1/2[ as a restriction (δ > 0) or continuous extension (δ < 0) of
U0. The lifted shifted operators Uδ, 0 of Uδ due to Theorem 2.2 are Fredholm: they
satisfy (5.1) up to the last condition where we have

ηδ, 0 =



δ − 1
4 for δ > 0, `c = `e

δ − 3
4 for δ > 0, `c = `o

δ + 3
4 for δ < 0, `c = `e

δ + 1
4 for δ < 0, `c = `o .

(5.9)



Convolution Type Operators with Symmetry 15

Further κδ, 0 = κ for δ > 0 and κδ, 0 = κ + 1 for δ < 0. A monotony argument
yields, for δ ∈]0, 1/2[,

kerUδ ⊂ kerU ⊂ kerU−δ

imUδ ⊂ imU ⊂ imU−δ

−κδ, 0 = indUδ = indU = −κ = indU−δ − 1 = −κ−δ, 0 + 1 .

(5.10)

With the help of Theorem 2.2 we obtain (5.7): It is clear that the equivalence rela-
tion T ∼ U0 transfers all the mentioned properties, because it implies isomorphic
kernels and co-kernels as well as isomorphic images and quotients domT/ kerT ∼=
domU0/ kerU0. �

Theorem 5.5. Under the assumptions (5.1) an image normalization of T is given
by

≺
T = RstT : Hr,c(R) →

≺

Hs+iτ(R+) . (5.11)

The formulas (5.7) extend to

α(
≺
T ) = α(T ) = max{0,−κ}

β(
≺
T ) = β(T ) = max{0, κ} ,

(5.12)

i.e.,
≺
T is a Fredholm operator. A generalized inverse of

≺
T is obtained by continuous

extension of a generalized inverse of Tδ : Hr+δ,c(R)→ Hs+δ(R+) for δ ∈]0, 1/2[,
given by the formulas

≺
T− = ExtT−δ :

≺
Hs (R+) → Hr,c(R)

T−δ = T−δ, 0 : Hs+δ(R+) → Hr+δ,c(R) .

(5.13)

Herein T−δ, 0 is given by Theorem 3.3 (substituting there T− by T−δ, 0).

Proof. Again the result is obtained by reduction to U0, normalization of U0 and
by the fact that the equivalence relation transfers the properties in question and
generates corresponding formulas. See details in the previous proof. �

6. Regularity properties of solutions

In this section we consider the operator T as given by (1.1) in a scale of Bessel
potential spaces, i.e., the shifted operators T (δ) given by (2.11) accompanying T .
If there is an AGF of Υ = ΦΨ−1, we may apply Theorem 3.3 to T (δ) and obtain
an immediate result, remarkably for even values of δ:
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Theorem 6.1. Let T be given by (1.1) and T (δ) defined by (2.11). Further let
Υ = ΦΨ−1 admit an AGF with factorization index κ ∈ Z. Then T (δ) is Fredholm
for all δ ∈ 2Z with analytical index indT (δ) = −κ− δ/2. A generalized inverse of
T (δ) is given by formula (3.9) where the factorization of Υ is replaced by:

Υ = (λ−δ− Υ−) ζκ+δ/2 (Υeλ
δ). (6.1)

Proof. If Υ = Υ− ζ
κ Υe is an AGF of Υ = ΦΨ−1 with respect to P1 = P r,e/o

and P2 = P
(s)
2 , then (6.1) represents an AGF of Υ with respect to P1 = P r+δ,e/o

and P2 = P
(s+δ)
2 provided δ ∈ 2Z. This is because ζδ/2 = λδ−λ

−δ, the new factors
belong to the corresponding weighted L2 spaces (3.2) in Definition 3.1 and the
composed operator corresponding to (3.3) is bounded. The last conclusion is a
consequence of the lifting method. Therefore we can apply Theorem 3.3 replacing
r by r + δ and s by s+ δ. �

Corollary 6.2. As before let T be given by (1.1), T (δ) defined by (2.11) and let
Υ = ΦΨ−1 admit an AGF with factorization index κ ∈ Z.
I. Then the shifted operator T (δ) is invertible for δ = −2κ, left invertible for
δ = m− 2κ , m ∈ N and right invertible for δ = m− 2κ , m ∈ −N. In these cases
indT (δ) = −m.
II. If Υ0 = λs−ΦΨ−1λq−r ∈ GCµ(R̈), then T (δ) is invertible for orders δ ∈
]−2κ− 3/2,−2κ+ 1/2[ in the e-case and for δ ∈]−2κ− 1/2,−2κ+ 3/2[ in the
o-case, respectively. T (δ) is left invertible for δ ∈]m− 2κ− 3/2,m− 2κ+ 1/2[,
m ∈ N in the e-case and for δ ∈]m− 2κ− 1/2,m− 2κ+ 3/2[, m ∈ N in the o-
case, respectively. T (δ) is right invertible for δ ∈]m − 2κ − 3/2,m − 2κ + 1/2[,
m ∈ −N in the e-case and for δ ∈]m − 2κ − 1/2,m − 2κ + 3/2[, m ∈ −N in the
o-case, respectively. Otherwise T (δ) is not normally solvable.

Definition 6.3. Let T be given by (1.1), g ∈ Hs(R+) and δ > 0. Then a solution
f ∈ Hr,c(R) of the equation

T f = g (6.2)

is said to be (r + δ)-regular if f ∈ Hr+δ(R).

Proposition 6.4. Let T be given by (1.1), δ > 0 and g ∈ Hs+δ(R+). Further let
T (δ)− be a generalized inverse of T (δ) (as given in Theorem 6.1, e.g.). Then a
solution f ∈ Hr,c(R) of the equation (6.2) is (r + δ)-regular if and only if

T T (δ)−g = g . (6.3)

Proof. By assumption T (δ) T (δ)− T (δ) = T (δ), i.e., T (δ) T (δ)− is a projector onto
imT (δ). If f ∈ Hr,c(R) is a solution of the equation (6.2) in Hr+δ(R), it is a
solution of T (δ) f = g and therefore T (δ) T (δ)−g = g which can be also written
as (6.3). The inverse conclusion holds obviously, as well. �

Under certain conditions, the projector T (δ) T (δ)− can be formulated in terms
of the factors of an AGF of Υ as follows:



Convolution Type Operators with Symmetry 17

Proposition 6.5. Let T be given by (1.1), δ ∈ 2Z , δ > 0 and g ∈ Hs+δ(R+).
Further let Υ = Υ− ζ

κ Υe be an AGF with respect to (L2(R, λr), L2(R, λs),Π1,Π2)
(see Definition 3.1). Moreover let δ ≥ −2κ (such that T (δ) is left invertible, see
Theorem 3.3). Then a solution f ∈ Hr,c(R) of the equation (6.2) is (r+ δ)-regular
if and only if

r+Aφ−1 `cr+Aφ `g = g (6.4)

where `g is any extension of g in Hs+δ(R) and

φ = Υ−1
− ζ−κλδ .

Proof. We simplify the projector in (6.3):

T (δ) T (δ)−= r+AΦΨ−1 P e/oAΨ|Hr+δ
A−1

Ψ P e/o Λ−δ A−1
e `cr+ C

−1Aζ−δ/2 `
cr+A

−1
− Λδ−| imP

(s+δ)
2

= r+A−Aζκ Ae P
e/oAλ−δ A−1

e `cr+Aζ−κ−δ/2 `
cr+A

−1
− Aλδ− | imP

(s+δ)
2

= r+A−Aζκ Aλ−δ `cr+Aζ−κ−δ/2 `
cr+A

−1
− Aλδ− | imP

(s+δ)
2

= r+A−Aζκ Aλ−δ `cr+Aζ−κ−δ/2 A
−1
− Aλδ− | imP

(s+δ)
2

.

This coincides with the projector in (6.4) because φ is a “minus factor”, i.e.
r+Aφ|H(s+δ)

−
= 0 or r+Aφ = r+Aφ`r+ for any extension `. �

Similarly as in Corollary 6.2 one can extend the previous results to further
orders δ ∈ R (instead of only δ ∈ 2Z) if the symbols are Hölder continuous.

Corollary 6.6. Let T be given by (1.1), Υ0 = λs−ΦΨ−1λq−r ∈ GCµ(R̈) and ω =
1

2πi

∫
R d log Υ0 (cf. Theorem 4.3). Moreover let T (δ) be defined by (2.11), and as-

sume δ > 0 , <e(ω) + δ ± 1
4 /∈ Z in the e/o-case, respectively.

Then, a solution f of the equation (6.2) is r+δ-regular if and only if (6.3) is
fulfilled. Under the conditions of Corollary 6.2, part II, it gains the form of (6.4).

Remark 6.7. In the exceptional cases where T (δ) is not normally solvable, we
obtain regularity results after normalization by the help of Section 5.

7. Applications

A class of canonical problems of diffraction theory [24] leads to the study of the
following very basic BVPs for the Helmholtz equation in a quadrant, briefly written
as

Au(x) = (∆ + k2)u(x) =

(
∂2

∂x2
1

+
∂2

∂x2
2

+ k2

)
u(x) = 0 in Q1

B1u(x) =

(
αu+ β

∂u

∂x2
+ γ

∂u

∂x1

)
(x) = g1(x) on Γ1 (7.1)

B2u(x) =

(
α′u+ β′

∂u

∂x1
+ γ′

∂u

∂x2

)
(x) = g2(x) on Γ2 ,
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where e.g. Q1 denotes the first (open) quadrant in R2 bordered by the coordinate
semi-axes Γ1 = {x = (x1, x2) ∈ R2 : x1 ≥ 0, x2 = 0} and Γ2 = {x = (x1, x2) ∈
R2 : x1 = 0, x2 ≥ 0}; cf. Figure 1.

Γ1

Γ2

B2u = g2

B1u = g1

���������

U
U
U
U
U
U
U
U
U
U
U

Q1

Figure 1. The geometry of the BVPs for the Helmholtz equation
in a quadrant.

These have been extensively investigated and partly solved in weak formula-
tion, i.e., looking for u ∈ H1(Q1) for any given gj ∈ Hsj (Γj), sj = ±1/2 (j = 1, 2)
[10, 11] provided the boundary operators are of “normal type”, i.e., certain Fourier
symbols do not degenerate (where the case of sj = +1/2 corresponds with a Dirich-
let condition).

Also questions concerning small regularity (i.e., u ∈ H1+ε(Q1), ε ∈ [0, 1/2[)
were answered, but not yet studied for higher values of ε. Those investigations
were based upon the generalized inversion of certain operator matrices of the form

T =

(
T1 K1

K2 T2

)
(7.2)

where T1, T2 are CTOS (or Wiener-Hopf plus/minus Hankel operators) of the
present form acting in trace spaces H±1/2+ε(R+) and K1,K2 are certain Fourier
integral operators, causing some complications.

Here we present a new approach for the explicit solution of the BVPs (7.1),
valid also for more general problems, that is based upon symmetry which yields
equivalent reduction to scalar CTOS and includes normalization and regularity re-
sults. Moreover the method is simpler and more transparent. The case of Dirichlet
conditions will be omitted for simplicity, however can be tackled analogously.

Definition 7.1. Let H1(Ω) denote the space of weak solutions of the Helmholtz
equation in a domain Ω ⊂ R2 such as the first quadrant Q1 or the upper half-
plane Q12 equipped with the H1-norm. Further let H1+ε(Ω) = H1(Ω)∩H1+ε(Ω).
Then the operator

L = (B1, B2)
T

: H1(Q1)→ H−1/2(Γ1)⊕H−1/2(Γ2) (7.3)

is referred to as the operator associated with the BVP (7.1). L(ε) stands for the
shifted operator (cf. Section 2, formula (2.11)) in the spaces of smoother functions:
L(ε) : H1+ε(Q1)→ H−1/2+ε(Γ1)⊕H−1/2+ε(Γ2) , ε > 0.
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Moreover, L0 denotes the operator associated with the semi-homogeneous
BVP (7.1) where g2 = 0, i.e.,

L0 = RstB1 :
{
u ∈ H1(Q1) : B2u = 0

}
→ H−1/2(Γ1) . (7.4)

L
(ε)
0 is defined analogously. From now on the half-lines Γj will be identified with

R+, if their is no risk of misunderstanding.

It is clear that the BVPs are well-posed, if and only if the corresponding
associated operators are boundedly invertible.

Note that (in the present case of sj = −1/2 or sj + ε ∈] − 1/2, 1/2[) the
boundary operators can be understood as Bj = r+Aσj `0 T0,Γj , where the Fourier
symbols of Aσj (also called pre-symbols of Bj) play a crucial role:

σ1 = α− βt+ γϑ , σ2 = α′ − β′t+ γ′ϑ , (7.5)

with t(ξ) = ξ2 − k2 , ϑ(ξ) = iξ , ξ ∈ R (and the identification of Γj with R+), see
[10]. Further we shall need the companion operators B∗j of Bj with pre-symbols

σ1∗ = α− γt+ βϑ , σ2∗ = α′ − γ′t+ β′ϑ , (7.6)

i.e., where the role of the two variables is exchanged (in comparison with σ1 and
σ2, respectively).

The consideration of a “lifted operator” of L (in the sense of Theorem 2.2)
seems not convenient in the present situation, since the representation of Bessel
potential operators for the quarter-plane is rather complicated, see [14, 15].

Definition 7.2. Two operators acting in Banach spaces are called equivalent after
extension (EAE), in brief S ∼∗ T [1, 2], if there are Banach spaces Z1, Z2 and linear
homeomorphisms E,F such that(

S 0
0 IZ1

)
= E

(
T 0
0 IZ2

)
F. (7.7)

Properties of this kind of relationship are described in [2, 8, 21, 38]. In the
present context it is most important that an EAE relationship implies that the
two operators have isomorphic kernels and isomorphic co-kernels, hence are only
simultaneously Fredholm, one-sided invertible etc. A formula for a generalized
inverse of S or T implies a formula for a generalized inverse of the other, provided
E,F or E−1, F−1, respectively, are known.

Proposition 7.3. Let L and L0 be given as before and B2 : H1(Q1)→ H−1/2(Γ2)

be right invertible. Then L
∗∼ L0.

Proof. This result is known from a general operator setting, see Theorem 3.2 in
[35]. In the present context, if R is a right inverse of B2, i.e. B2R = I|H−1/2(Γ2),
then an EAE relation between L and L0 can be written as

L =

(
B1

B2

)
=

(
I|H−1/2(Γ1) B1|X1

0 B2|X1

)(
B1|X0

0
0 I|X1

)(
P
Q

)
(7.8)
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where we put P = I−RB2 , Q = RB2 which are continuous projectors in H1(Q1),
X0 = kerB2 = imP = kerQ , X1 = imQ = kerP . �

Corollary 7.4. In this situation, if L0 is generalized invertible by L−0 , i.e.,

L0 L
−
0 L0 = L0,

then L is generalized invertible, as well, and a generalized inverse of L follows
from (7.8) by the reverse order law (cf. [35], Theorem 4.5):

L− = (P , Q)

(
L−0 0
0 I|X1

) (
I|H−1/2(Γ1) −B1|X1

R
0 R

)
or

L−
(
g1

g2

)
= L−0 (g1−B1Rg2) + Rg2 , (g1, g2) ∈ H−1/2+ε(Γ1)⊕H−1/2+ε(Γ2) .

Surely, if L0 is invertible, then L−0 coincides with L−1
0 , and the formula represents

the resolvent operator (inverse of (7.3)).

Proposition 7.5. Let B2 be given as in (7.1) and its Fourier symbol σ2 = α′−β′t+
γ′ϑ be invertible of order 1. Then the following holds:

I. The boundary operator B
(ε)
2 : H1+ε(Q1) → Hε−1/2(R+) is right invertible for

all ε ≥ 0.

II. L(ε) ∗∼ L
(ε)
0 for all ε ≥ 0.

Proof. I. It is well-known that, for every s > 0, there exists a continuous extension
operator `s : Hs(R+) → Hs(R) which is left invertible by restriction r+, for
instance Λ−s− `0r+Λs−` where `ϕ is any extension of ϕ ∈ Hs(R+) in Hs(R) (which
exists by definition of the space Hs(R+)). Now consider

Rε ϕ(x1, x2) = F−1
ξ 7→x2

e−t(ξ)x1 σ−1
2 (ξ) ̂`ε−1/2ϕ(ξ) , (x1, x2) ∈ Q1 . (7.9)

It is easy to verify that Rε is a bounded linear operator, acting from Hε−1/2(R+)

into H1+ε(Q1) and, moreover, that B2R
ε = I|Hε−1/2(R+). Since B

(ε)
2 is a bounded

linear operator, we obtain the first result.
II. The operator matrix identity (7.8) holds for the shifted operators, as well. This
implies the second statement. �

Definition 7.6. The following problem is referred to as a BVP with symmetry for
the Helmholtz equation in the upper half-plane of R2 (see Figure 2):

Au(x) = (∆ + k2)u(x) =

(
∂2

∂x2
1

+
∂2

∂x2
2

+ k2

)
u(x) = 0 in Q12

B1u(x) =

(
αu+ β

∂u

∂x2
+ γ

∂u

∂x1

)
(x) = g1(x) on Γ1 (7.10)

B2u(x) =

(
α′u+ β′

∂u

∂x1
+ γ′

∂u

∂x2

)
(x) = 0 on Γ2 .

Here we are looking for u ∈ H1(Q12) for any given g1 ∈ H−1/2(Γ1).
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Γ1

B2u = 0

B1u = g1

�������������������

Q12

Figure 2. The geometry of the BVP with symmetry for the
Helmholtz equation in the upper half-plane.

The name “BVP with symmetry” is motivated by the subsequent results:

Lemma 7.7. Let u ∈ H1(Q12), B2 be defined as before and Aσ2∗ be invertible of
order 1. Then the following statements are equivalent:

(i) B2u = 0 ,

(ii) A−1
σ2∗

P eAσ2∗ u0 = 0 where u0 is the trace of u on the boundary line x2 = 0,

(iii) A−1
σ2∗

P eAσ2∗ u0,a = 0 , a ≥ 0 where u0,a is the trace of u on any line x2 = a.

Proof. We know that the Dirichlet problem for the Helmholtz equation in the
upper half-plane is well-posed and explicitly solved by the formula

u(x1, x2) = KD,Q12
u0 = F−1

ξ 7→x1
e−t(ξ)x2 û0(ξ) , (x1, x2) ∈ Q12 (7.11)

provided u0 = g ∈ H1/2(R) is given on x2 = 0, see [26, 33], for instance. Now
condition (i) implies:

B2 u(0, x2) = F−1
ξ 7→x1

σ2∗(ξ) e−t(ξ)x2 û0(ξ)|x1=0 = 0 , x2 ∈ R+

1√
2π

∫ +∞

−∞
e−iξx1−t(ξ)x2 Âσ2∗u0(ξ) dξ|x1=0 = 0 , x2 ∈ R+

A−tx2
Aσ2∗ û0(ξ) = 0 , x2 ∈ R+ .

Since t is an even function, this is possible only for an odd functional Âσ2∗u0 and
therefore only if Aσ2∗u0 is odd (cf. [11], Lemma 3.4), i.e., (ii) is satisfied.

The inverse conclusion ((ii) yields (i)) is obvious from the same calculation.
Hence, a representation formula for u ∈ H1(Q12) satisfying B2u = 0 on Γ2 is

given by

u(x1, x2) = KB2∗,Q12
h = F−1

ξ 7→x1
e−t(ξ)x2 Ŝ−1h(ξ) , (x1, x2) ∈ Q12 (7.12)

S = Aσ2∗ , h ∈ H−1/2,o .

This implies (iii) and the inverse conclusion holds by similar arguments as before.
�
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Corollary 7.8. A weak solution of the Helmholtz equation in Q12 satisfies the con-
dition B2u = 0 in (7.10) if and only if

S−1 P o S u(·, x2) = u(·, x2) , x2 ∈ [0,∞[ (7.13)

where S = Aσ2∗ .

Let us write this subspace as H1,c(Q12) = {u ∈ H1(Q12) : S−1P eSu = 0}.
The operator associated with (7.10) is referred to as L0,c, the shifted operators by

L
(ε)
0,c : H1+ε,c(Q12)→ Hε−1/2(R+) , ε ≥ 0 . (7.14)

Theorem 7.9. Let L,L0, L0,c be the operators associated with the BVPs defined

before (see (7.3), (7.4), (7.14)) where Aσ2∗ is invertible of order 1, and let L(ε),

L
(ε)
0 , L

(ε)
0,c denote the shifted operators for ε > 0. Then we have

L
∗∼ L0 ∼ L0,c ∼ T = r+AΥ : H−1/2,o → H−1/2(R+) ,

(7.15)

L(ε) ∗∼ L
(ε)
0 ∼ L

(ε)
0,c ∼ T (ε) = Rst r+AΥ : Hε−1/2,o → Hε−1/2(R+)

where Υ = σ1σ
−1
2∗ and all relations are explicitly computed from the preceding

formulas.

Proof. The first relation in both lines of (7.15) results from a combination of
the statements of Proposition 7.3 and Proposition 7.4. Furthermore Corollary 7.7
implies that there is a projector onto H1,c(Q12):

Π = S−1 P o S : H1(Q12)→ H1,c(Q12) .

Therefore
L0 rQ1 = L0,c , L0 = L0,c Π `

where rQ1 denotes the restriction of u ∈ H1,c(Q12) to domL0 (see (7.4)) and `
denotes any extension from domL0 to H1(Q12). This yields the second relation
in the first line of (7.15) and in the second line, as well, by restriction.

The third relation is finally a consequence of (7.9), (7.11), both admitting
parameters ε ≥ 0, which yield:

T S T0,∂Q12 = L0,c , T = L0,cKD,Q12 S
−1

where T0,∂Q12 is the trace operator acting into H1/2(∂Q12) , ∂Q12 = {(x1, x2) ∈
R2 : x2 = 0}. �

Theorem 7.10. Let the assumptions of Theorem 7.9 be satisfied, moreover let Υ0 =

λ
−1/2
− Υλ1/2 ∈ GCµ(R̈) and put ω = 1

2πi

∫
R d log Υ0 . Then the following holds:

I. L is invertible (the BVP (7.1) is well-posed) if and only if <e(ω) ∈]− 3
4 ,

1
4 [ .

II. L is Fredholm if and only if <e(ω)− 1
4 /∈ Z .

III. The following conditions are equivalent:

(i) L is normally solvable,
(ii) L is generalized invertible,
(iii) L is one-sided invertible,
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(iv) L is Fredholm (cf. II).

IV. In the last case, an explicit formula for a generalized inverse L− of L is given by
(3.9) and the formulas behind (7.15) representing in case I the so-called resolvent
operator of the BVP: u = L−1(g1, g2).

V. If <e(ω)− 1
4 ∈ Z, L can be normalized by minimal image normalization in the

sense of Definition 5.1 by Theorem 5.5 and the relations of Theorem 7.8.

Proof. All statements follow from the previous results, by recalling the correspond-
ing properties of T with the help of Section 4 and transferring the corresponding
properties from T to L with the help of Theorem 7.9. �

Corollary 7.11. Regularity results for the solution of the foregoing BVPs in the
scale of Bessel potential spaces are obtained from Section 5 considering L(ε) and
the operators in the second line of (7.15) with analogous conclusions as in the case
of ε = 0 before.

Remark 7.12. Looking at Theorem 7.9 we find an alternative way to the solu-
tion, provided Aσ1∗ is invertible of order 1 (instead of or additional to Aσ2∗ being
invertible of order 1), namely if

Υ−1
∗ = (σ1 σ

−1
2∗ )−1
∗ = σ2 σ

−1
1∗ (7.16)

admits an AGF alternatively or additionally. In the last case, we have the following:

Proposition 7.13. Consider the BVP (7.1) where both σj and both σj∗ are invertible
of order 1. Then the problem is well-posed (i.e., L is boundedly invertible), if and
only if the two symbols Υ = σ1 σ

−1
2∗ and Υ−1

∗ = σ2 σ
−1
1∗ admit canonical AGFs with

respect to H−1/2 and P o.

Proof. In brief, this is a consequence of Theorem 7.10, together with Theorem 3.4
of [35] which tells us, in an abstract setting (applicable to the present situation),
that both semi-homogeneous problems (corresponding with g1 = 0 and g2 = 0,
respectively) have to be well-posed. �

Remark 7.14. In various basic applications the assumptions of Proposition 7.13
are not satisfied in the intuitive space setting, but normalization (in the above
sense) helps to come to a well-posed problem, as shown in the subsequent exam-
ples. Regularity results are possible under certain smoothness and compatibility
conditions for the data. This discussion will be continued in a future publication
about the efficient solution of further canonical BVPs. Now we expose only few
details to demonstrate the relevance and efficiency of the method.

Example. The two-impedance problem is characterized by (7.1) with boundary
conditions (

∂

∂n
+ ipj

)
u = gj ∈ H−1/2(R+) , j = 1, 2 , (7.17)
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where ∂
∂n denotes the normal derivative (directed to the interior of Q1) and the

coefficients are specified as α = ip1 , α
′ = ip2 , β = β′ = 1 , γ = γ′ = 0. Hence we

study the operator T of (7.15) with

Υ(ξ) = σ1(ξ)σ−1
2∗ (ξ) =

ip1 − t(ξ)
ip2 + ϑ(ξ)

= −i t(ξ)− ip1

ξ − p2
, ξ ∈ R . (7.18)

The physically more relevant case is =mpj > 0, see [26], Section 5 and loc. cit.
In this case both σj and both σj∗ are invertible of order 1, σ1 is even and σ2∗ is
“minus type”. I.e., we have a factorization

AΥ = A− Ae = Aσ−1
2∗

Aσ1 (7.19)

: H−1/2 ←− H−3/2 ←− H−1/2 .

Now, this is not an AGF because of the order of the middle space. However,

considering the shifted operator T
(ε)
0 , ε ∈]0, 1[, it becomes a canonical AGF (or

FIS as mentioned in Corollary 4.4):

AΥ = A− Ae = Aσ−1
2∗

Aσ1
(7.20)

: Hε−1/2 ←− Hε−3/2 ←− Hε−1/2

and T
(ε)
0 is boundedly invertible for these values of the parameter ε, directly by

our factorization method.

Therefore we have all the foregoing consequences including the well-posedness
of the BVP and explicit solution for these values of ε ∈]0, 1[, in coincidence with
results of [11], Section 4 (derived less directly).

Moreover we obtain regularity results as described in Section 6, the represen-
tation (6.1) of a generalized inverse of T (δ) for δ ∈]m− 1/2,m+ 3/2[ , m ∈ N from
Corollary 6.2 (o-case) and normalization results for δ ∈ 1/2+2N easily taken from
Section 5.

In the case of =mp2 < 0, the symbol σ2∗ is “plus type” and the factorization
(7.19) has to be modified according to the following AGFs

ξ − p2 = (ξ + p2)−1 (ξ2 − p2
2) ,

σ−1
2∗ = i (ξ − p2)−1 = i (ξ + p2) (ξ2 − p2

2)−1 ,

σ1 σ
−1
2∗ = (t− ip1) i (ξ − p2)−1 = i (ξ + p2)

t− ip1

ξ2 − p2
2

. (7.21)

Surprisingly or not, the same orders appear in the factors as in (7.19) and lead to
the same conclusions about well-posedness of the BVP etc. as before. Comparing
with [11], pp. 16-21, we found here a method that is more efficient and far-reaching
(in view of regularity and normalization).

The compatibility condition on the data gj , which is necessary to make the
problem normally solvable in the case ε = 0 can also be derived by consideration
of the following example.
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Example. The Neumann problem can be regarded as a special case of the previous
one with p1 = p2 = 0. Here both symbols σj∗ are not invertible of order 1 and
the present method fails, at least if we try to apply it directly. On the other hand,
the basic results are known [10, 25]: L as defined in (7.3) is not normally solvable,
its image is not closed, a compatibility condition on the data is necessary for the
solution, namely

g1 + g2 ∈ H̃−1/2(R+) , (7.22)

which is a dense, proper subspace of H−1/2(R+). The operator is normalized by
a corresponding change of the image space, in the sense of Section 5. The shifted
operators L(ε) are boundedly invertible for ε ∈]0, 1[ and do not need any additional
condition [10]. Considering higher values of ε we meet the situation described in
Section 5. Thus similar results as before come out by analogy using the fact that
the operator associated with the BVP satisfies relations of the kind (7.15) after
normalization. Concrete results for ε ≥ 1 will be described in detail in a separate
paper.

The compatibility condition for the two-impedance problem in the case ε = 0
coincides with (7.22), because the data g1, g2 of (7.17) differ from the normal

derivatives only by terms in H1/2(R+) which is a subspace of H̃−1/2(R+) [28].

Example. In the oblique derivatives problem we have α = α′ = 0 , (β, γ), (β′, γ′) ∈
R2 indicating directions of the oblique derivatives of u given on Γ1 and Γ2, respec-
tively. The operator T of (7.15) has a Fourier symbol

Υ(ξ) = σ1(ξ)σ−1
2∗ (ξ) =

βt+ iγξ

γ′t+ iβ′
, ξ ∈ R . (7.23)

It is not difficult to find the parameters where Υ0 = λ
−1/2
− Υλ1/2 ∈ GCµ(R̈) and

to carry out the conditions of Section 4 for an AGF etc.

In brief, this class of symbols allows a more direct application of the present
method with all the consequences outlined in the foregoing part. Actually, for
different parameters, there appear operators L which are invertible or Fredholm
and one-sided invertible with index ±1, or non-normally solvable, see a detailed
discussion in [11], Section 6. Here we have the possibility to obtain regularity and
normalization results including the discovery of necessary compatibility conditions
directly from the theoretical part. We summarize this technique as follows.

First we characterize the oblique derivative problems which are of normal
type, but not normally solvable, i.e., the Fourier symbol (7.23) does not degenerate,
but the image of the associated operator L (analogously Lε, ε > 0) is not closed.
So is the situation for the related operators L0, L0,c and T , as well, according to
Theorem 7.9. In view of Definition 7.1 and Corollary 7.4 the reduced equation
(due to the semi-homogeneous problem) reads

L0 u0 = g0 = g1 −B1Rg2 for u0 ∈ H1(Q1) with B2u0 = 0
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where R is given by (7.9) for instance. Theorem 7.9 gives us the equivalent sym-
metrized equation

L0,c v = L0 rQ1
v = g0 for v ∈ H1,c(Q12)

and, moreover, an equivalent equation where the (unlifted) CTOS appears:

T w = L0,cKD,Q12
S−1 w = g0 for w = S T0,∂Q12

v ∈ H−1/2,o .

Now we can apply Theorem 7.9 and Theorem 7.10 to conclude:

• For the critical case <e(ω) − 1
4 ∈ Z the operators L,L0, L0,c, T are not nor-

mally solvable;
• They are simultaneously normalized replacing T defined in (7.15) by

T≺ = Rst r+AΥ : H−1/2,o → H̃−1/2(R+)

with a restricted image and using the relations (7.15) for the other operators;
• In case of <e(ω) = 1

4 the problem becomes well-posed if we restrict the image
space by the compatibility condition

g0 = g1 −B1Rg2 ∈ H̃−1/2(R+) .

Herein we have B1 = F−1 σ1 · F , σ1 = α− β t(ξ) + γ ϑ(ξ) and may choose a
right inverse R from (7.9) as

Rg2(x1, x2) =
1

2π

∫
R
e−iξx2−t(ξ)x1 σ−1

2 (ξ) ̂̀og2(ξ) dξ , (x1, x2) ∈ Q1

with an odd extension of g2 ∈ H−1/2(R+) to `og2 ∈ H−1/2(R), which allows
further interpretation of the compatibility condition;
• In the critical case <e(ω) − 1

4 ∈ Z \ {0} we furthermore obtain one-sided
invertible operators after normalization and analogous results in spaces of
higher regularity (ε > 0).

8. Further results and open problems

In this section we like to mention some possibilities of future research in continu-
ation of the present work. The first part is devoted to straightforward ideas, the
second to vague extensions, the third is directed towards open problems.

8.1. Variants and generalizations

The results of this paper can be generalized in various directions by analogy to
existing research about related classes of operators. So matrix operators with ele-
ments in Hp,s,W p,s etc. gives a large field of possible extensions, see [6, 9]. However
its usefulness in applications is not yet clear.

Applications in higher dimensions such as 3D wedge diffraction problems can
be tackled and are interesting from the applications’ point of view as in the case
of Sommerfeld diffraction problems, cf. [37].

Other BVPs can be considered where the Helmholtz equation is replaced by
other elliptic PDEs or systems such as the Lamé equations [27].
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Asymptotic of solutions can be studied as in [30].

8.2. Further possible connected research

BVPs and transmission problems in domains with rectangular configuration can
be reduced or are related to the present class of operators. This may help to solve
multi-media problems of the kind considered in [24].

There are further forms of symmetry, defined via EAE and matrical coupling
relations, which are interesting in applications and may be tackled in combination
with the basic ideas of the present approach, see [2, 34].

In many cases the solution by the present method is (logically) equivalent
to the (generalized) inversion of an operator matrix of the form (7.2), see [11].
The corresponding solution formulas imply correlations for the Fourier integral
operators, cf. formulas involving Hankel operators in [25]. A systematic investiga-
tion could produce new kinds of operator matrix identities and insights from the
operator theoretical point of view. See also the connected Remark 7.14.

Localization techniques [5] may be applied to tackle certain BVPs for elliptic
PDEs and boundary conditions with non-constant coefficients in what concerns
the Fredholm property and normalization of such problems.

8.3. Open problems

We end up by giving a list of consequent open problems:

• To which extend does Proposition 4.6 hold for larger symbol classes than
GCν(R̈)?
• Is it true that the Fredholm property of T0 implies that Υ is invertible? A

similar result is known for Toeplitz operators and WHOs [23].
• Is there a Coburn-like lemma [4]: If T is given by (1.1) and Υ is invertible of

order r − s, then T is one-sided invertible?
• To which extend does the shifting process transfer generalized inverses (cf.

Theorem 4.5), if the symbol is not Hölder continuous?
• What about problems in cones different from Q1, for instance rational angles,

cf. [17, 18]?
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