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Abstract. We investigate properties of the kernels (and cokernels) of Wiener-Hopf plus and minus
Hankel operators on variable exponent Lebesgue spaces. Constructive operator identities are used in
view to describe those kernels upon the consideration of auxiliary operators. Moreover, a Coburn-
Simonenko type theorem is obtained for Wiener-Hopf plus and minus Hankel operators in the frame-
work of variable exponent Lebesgue spaces.

1 Introduction

Convolution type operators [3, 6, 12] arise in a great diversity of applied problems and are useful in
a significant amount of different areas of science. Having on their structure a convolution, this can
be reflected on the definition of those operators in different ways. Moreover, the convolution itself
can be defined in a large amount of varieties, but having always a factorization property associated
with a certain integral transform [5, 21, 22, 31]. For the classical convolution case, it is clear that
such transform is the Fourier transform, and that the corresponding factorization property ends with
the product of the two Fourier transforms of the elements initially used in the convolution. Anyway,
now-a-days different convolutions are known and considered in a great diversity of situations and
associated with different integral transforms (e.g. like the fractional Fourier transform, Hankel and
Hartley type transforms); cf. [4, 5, 21, 22, 23, 31].
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Not rarely, the convolution type operators that arise in the applications appear not isolated but,
instead, multiplied by other types of operators. Even if sometimes those other operators are very
simple ones, their multiplications by the convolution type operators change significantly the final
structural properties of the resulting operators (e.g., their Fredholm and invertibility properties, as
well as the structure of their inverses and the corresponding solutions of the equations characterized
by them); see [15, 16, 17, 20].

That is the case e.g. in the theory of classical convolution operators firstly defined within some
spaces on the real line, which afterwards are truncated to the half-line, and known as Wiener-Hopf
operators; or even the previous ones composed with the reflection operator (and therefore giving rise
to a Hankel type operator). For the last two types of operators, it also occurs that algebraic sums of
those again have special invertibility properties and are also very important in some applications. This
is the case in the phenomena of wave diffraction by configurations which exhibit certain symmetries,
and where Wiener-Hopf plus Hankel and Wiener-Hopf minus Hankel (i.e. Wiener-Hopf-Hankel) op-
erators appear in a very natural manner.

The classes of Wiener-Hopf plus and minus Hankel operators that initially appear in those wave
diffraction problems are considered within a framework of Bessel potential (or Sobolev) spaces; see
[7, 8, 9]. Anyway, a lifting procedure is possible to be done in the smoothness of the spaces so that the
initial operators are related with new Wiener-Hopf plus and minus Hankel operators acting already
between classical Lebesgue spaces.

Having in our disposal the recent huge development in variable exponent Lebesgue spaces [19],
a corresponding research has been also started on the analysis of the properties of several types of
operators within the framework of variable exponent Lebesgue spaces (cf. [14, 24, 26, 27]), in contrast
with the previous knowledge of their properties when considered on the classical Lebesgue space.

In some cases, concrete applications are already known for such more global framework of vari-
able exponents. This is the case e.g. in the modeling of so-called electrorheological fluids [30],
thermo-rheological fluids [1] and image processing [13]. In some other cases, the research is just
being moved by the natural search for a larger mathematical formal knowledge.

Having all that in mind, in the present paper we will analyse certain invertibility properties of
Wiener-Hopf plus Hankel and Wiener-Hopf minus Hankel operators in the framework of variable
exponent Lebesgue spaces [10, 11]. Namely, after introducing, in the next section, the formal defini-
tion of those operators and spaces, as well as known results of some of their associated operators, in
Section 3 we will analyse the kernel of those operators with the help of certain auxiliary operators. To
this end, we will use several operator identities between that operators in analysis. In Section 4, we
deduce a Coburn-Simonenko type theorem [18] for Wiener-Hopf plus Hankel and Wiener-Hopf mi-
nus Hankel operators on variable exponent Lebesgue spaces (which basically describes an alternative
result in the dimensions of theirs kernels and cokernels).

2 Definitions and basic results

Let p : R→ [1,∞] be measurable a.e. finite function. We denote by Lp(·)(R) the set of all complex-
valued functions f on R such that

Ip(·)

(
f
λ

)
:=

∫
R

∣∣∣∣ f (x)
λ

∣∣∣∣p(x) dx < ∞

for some λ > 0. This set becomes a Banach space when equipped with the norm
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∥ f∥p(·) := inf
{

λ > 0 : Ip(·)

(
f
λ

)
≤ 1
}
.

The space Lp(·)(R) is precisely what we are refereing as the variable exponent Lebesgue space, since
it generalizes the standard Lebesgue space.

Throughout this paper we will be always assuming that

p− := essx∈R inf p(x)> 1 , p+ := essx∈R sup p(x)< ∞. (2.1)

Under these conditions, the space Lp(·)(R) is separable and reflexive, and its dual space is isomorphic
to Lq(·)(R), where q(·) is the conjugate exponent function defined by

1
p(x)

+
1

q(x)
= 1 (x ∈ R).

Additionally, with condition (2.1) we have that ∥ϕI∥L(Lp(·)(R)) ≤ ∥ϕ∥L∞(R) for a function ϕ ∈ L∞(R),
and where I denotes the identity operator.

We shall denote by Lp(·)(R+) the variable exponent Lebesgue space of complex-valued functions
on the positive half-line R+ = (0,+∞). The subspace of Lp(·)(R) formed by all functions supported
on the closure of R+ is denoted by Lp(·)

+ (R) and Lp(·)
− (R) represents the subspace of Lp(·)(R) formed

by all the functions supported on the closure of R− := (−∞,0).
We will make an extensive use of the Fourier transformation F , defined in the Schwartz space

S(R) of rapidly decreasing functions by

F φ(ξ) :=
∫
R

eiηξφ(η)dη (ξ ∈ R),

and which has an inverse F −1, also given on S(R) by

F −1ψ(η) :=
1

2π

∫
R

e−iηξψ(ξ)dξ (η ∈ R).

Definition 1. (cf. [25, 29]) If 1 < p− ≤ p+ < ∞, a function ϕ ∈ L∞(R) is said to be an Lp(·)-Fourier
multiplier if there is a constant C such that for all f ∈ S(R) we have

∥F −1ϕ ·F f∥p(·) ≤C∥ f∥p(·).

For any Lp(·)-Fourier multiplier ϕ the operator f 7→ F −1ϕ ·F f extends uniquely to a bounded
operator on Lp(·)(R) which will be denoted by W 0

ϕ . The set of all Lp(·)-Fourier multipliers will be
denoted by Mp(·). It is clear that Mp(·) is a unital normed algebra under pointwise operations and the
norm

∥ϕ∥Mp(·)
:= ∥W 0

ϕ ∥L(Lp(·)(R)) = ∥F −1ϕ ·F ∥L(Lp(·)(R)).

We are now in condition to identify in a mathematical way the main objects of this work.
We will consider Wiener-Hopf plus and minus Hankel operators, acting between Lebesgue spaces

with variable exponent p(·), denoted by

Wϕ ±Hϕ : Lp(·)
+ (R)→ Lp(·)(R+),

with Wϕ and Hϕ being Wiener-Hopf and Hankel operators defined by
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Wϕ = r+F −1ϕ ·F , Hϕ = r+F −1ϕ ·F J, (2.2)

respectively. Here, r+ represents the operator of restriction from Lp(·)(R) onto Lp(·)(R+), ϕ is the
so-called Fourier symbol which is assumed to belong to Mp(·), and

J : Lp(·)
+ (R)→ Lp(·)(R)

is the reflection operator given by the rule

Jφ(x) = φ̃(x) = φ(−x)

which throughout the paper will be always defined for even functions p(·) (so that J will therefore be
a bounded operator in those variable exponent Lebesgue spaces).

Under those conditions, the Wiener-Hopf and the Hankel operators, defined in (2.2), are bounded
linear operators.

It is also interesting to remark that the boundedness of a wide variety of operators follows from
the boundedness of the Hardy-Littlewood maximal operator on variable exponent Lebesgue spaces.
Given f ∈ L1

loc(R), we recall that the Hardy-Littlewood maximal operator M is defined by

(M f )(x) := sup
x∈Ω

1
|Ω|

∫
Ω
| f (y)|dy ,

where the supremum is taken over all intervals Ω ⊂ R containing x, and the Cauchy singular integral
operator S is defined by

(S f )(x) :=
1
πi

∫
R

f (τ)
τ− x

dτ ,

where the integral is understood in the principal value sense.

Theorem 1. (cf., e.g., [26, Theorem 2.1.]) Let p : R → [1,∞] be a measurable function satisfying
(2.1). If the Hardy-Littlewood maximal operator M is bounded on Lp(·)(R), then the Cauchy singular
integral operator S is bounded on Lp(·)(R).

The following result states a sufficient condition on p(·) for M to be bounded on Lp(·)(R).

Theorem 2. (cf. e.g. [29, Theorem 2.5.], [19]) Let p : R → [1,∞] satisfy (2.1). In addition, suppose
that there exist constants A0 and A∞ such that p(·) satisfies

|p(x)− p(y)| ≤ A0

− log |x− y|
, |x− y| ≤ 1

2
, (2.3)

and
|p(x)− p(y)| ≤ A∞

log(e+ |x|)
, |x| ≤ |y|. (2.4)

Then, the Hardy-Littlewood maximal operator is bounded on Lp(·)(R).

It is important to stress that the log-Hölder continuity conditions (2.3)-(2.4) are not necessary
conditions for the last purpose. The exponent p(·) can even be discontinuous. In fact, Lerner have
shown in [28] that there exist discontinuous variable exponents p(·) (without limit at infinity) for
which the Hardy-Littlewood maximal operator is bounded on the Lp(·)(R) space. Under conditions
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(2.1), (2.3) and (2.4), from [25] it is also known that Mp(·) is a Banach algebra under pointwise
operations and the norm ∥ · ∥Mp(·)

, and that Mp(·) is continuously embedded into L∞(R).
Let B(R) denote the class of exponents p : R → [1,∞] continuous on R satisfying (2.1), (2.3)

and (2.4) (and therefore with M and S being bounded operators on Lp(·)(R)). Additionally, Be(R)
represents the set of all even functions p(·) ∈ B(R).

Let ℓ0 denote the zero extension operator from the space Lp(·)(R+) into the space Lp(·)
+ (R),

ℓ0 : Lp(·)(R+)→ Lp(·)
+ (R). (2.5)

We will denote by P the canonical projection of Lp(·)(R) onto Lp(·)
+ (R), and its complementary pro-

jection Q := I −P of Lp(·)(R) onto Lp(·)
− (R). We have that

P := ℓ0r+ .

Note that P2 = P and Q2 = Q.
Additionally, we will use the notation P to denote the Riesz projection defined by

P = F ℓ0r+F −1

and denote by Q its complementary projection, Q = I −P .
By analogy with [3, Proposition 2.10], we derive the following relations between Wiener-Hopf

and Hankel operators acting on variable exponent Lebesgue spaces.

Proposition 1. Let ϕ, φ ∈ Mp(·) and p(·) ∈ Be(R). Then

Wϕφ = Wϕℓ0Wφ +Hϕℓ0Hφ̃ (2.6)

Hϕφ = Wϕℓ0Hφ +Hϕℓ0Wφ̃. (2.7)

In what follows, we will also make use of the relations

JQ = PJ, JP = QJ, J2 = I, JW 0
ϕ J =W 0

ϕ̃ .

3 Kernels of Wiener-Hopf-Hankel operators

We will denote by GMp(·) the group of all invertible elements of Mp(·). Let ϕ ∈ GMp(·), p(·)∈ Be(R)
and consider the Wiener-Hopf plus and minus Hankel operators,

Wϕ ±Hϕ : Lp(·)
+ (R)→ Lp(·)(R+).

With some computations, we can obtain an important formula to “associate” these operators with a
(pure) Wiener-Hopf operator. Namely, multiplying Wϕ ±Hϕ on the left by the zero extension operator
ℓ0 : Lp(·)(R+)→ Lp(·)

+ (R), and on the right by the projection P : Lp(·)(R)→ Lp(·)
+ (R), we obtain

ℓ0(Wϕ ±Hϕ)P = P(W 0
ϕ ±W 0

ϕ J)P : Lp(·)(R)→ Lp(·)
+ (R),

where we recall that W 0
ϕ = F −1ϕ ·F .
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To extend these operators to the full Lp(·)(R) space, we use the projection Q : Lp(·)(R)→ Lp(·)
− (R),

obtaining the equivalent after extension [2] operators

PW 0
ϕ P±PW 0

ϕ JP+Q : Lp(·)(R)→ Lp(·)(R).

Again, let I := ILp(·)(R) denote the identity operator on Lp(·)(R). Observe that

PW 0
ϕ P±PW 0

ϕ JP+Q = (I −PW 0
ϕ Q∓PW 0

ϕ JQ)(PW 0
ϕ ±PW 0

ϕ J+Q),

where the operators I −PW 0
ϕ Q∓PW 0

ϕ JQ are invertible (with inverses given by I +PW 0
ϕ Q±PW 0

ϕ JQ,
respectively). Let

Ψ =

[
0 ϕϕ̃−1

−1 ϕ̃−1

]
. (3.1)

We can state the following[
PW 0

ϕ P+PW 0
ϕ JP+Q 0

0 PW 0
ϕ P−PW 0

ϕ JP+Q

]
= A

(
PW 0

ΨP+Q
)

B (3.2)

where A := A1A2 and B are invertible operators with

A1 =
1
2

[
I −PW 0

ϕ Q−PW 0
ϕ JQ 0

0 I −PW 0
ϕ Q+PW 0

ϕ JQ

][
I J
I −J

]
A2 = I +PW 0

ΨQ

B =

[
I 0

W 0
ϕ̃

W 0
ϕ̃

][
I I
J −J

]
,

with inverses given by

A−1
1 =

[
I I
J −J

][
I +PW 0

ϕ Q+PW 0
ϕ JQ 0

0 I +PW 0
ϕ Q−PW 0

ϕ JQ

]
A−1

2 = I −PW 0
ΨQ

B−1 =
1
2

[
I J
I −J

][
I 0
−I W 0

ϕ̃−1

]
=

1
2

[
I − J W 0

ϕ−1J
I + J −W 0

ϕ−1J

]
,

respectively.
Moreover, we can rewrite the operator PW 0

ΨP+Q as a product of two matrix operators. Namely,
for the first component, we have

PW 0
ΨP =

[
PW 0

ϕϕ̃−1
P 0

0 I
Lp(·)
+ (R)

][
0 I

Lp(·)
+ (R)

−I
Lp(·)
+ (R) PW 0

ϕ̃−1
P

]
, (3.3)

where

C :=

[
0 I

Lp(·)
+ (R)

−I
Lp(·)
+ (R) PW 0

ϕ̃−1
P

]
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is invertible with inverse

C−1 =

[
PW 0

ϕ̃−1P −I
Lp(·)
+ (R)

I
Lp(·)
+ (R) 0

]
.

Thus, we can rewrite (3.2) as[
PW 0

ϕ P+PW 0
ϕ JP+Q 0

0 PW 0
ϕ P−PW 0

ϕ JP+Q

]
= A

([
PW 0

ϕϕ̃−1
P 0

0 I
Lp(·)
+ (R)

]
C+Q

)
B. (3.4)

Theorem 3. Let ϕ ∈ GMp(·), p(·) ∈ Be(R) and consider the operators

Wϕ ±Hϕ : Lp(·)
+ (R)→ Lp(·)(R+).

(i) If f ∈ ker Wϕϕ̃−1 , then

(F,G)T :=
1
2

(
PW 0

ϕ̃−1 f + JQW 0
ϕ̃−1 f , PW 0

ϕ̃−1 f − JQW 0
ϕ̃−1 f

)T

∈ ker diag(Wϕ +Hϕ,Wϕ −Hϕ); (3.5)

(ii) If (F,G)T ∈ ker diag(Wϕ +Hϕ,Wϕ −Hϕ), then

f := PW 0
ϕ̃ (F +G)+PW 0

ϕ̃ J(F −G) ∈ kerWϕϕ̃−1 . (3.6)

Moreover, the operators

L1 : kerWϕϕ̃−1 → ker diag(Wϕ +Hϕ,Wϕ −Hϕ),

L2 : ker diag(Wϕ +Hϕ,Wϕ −Hϕ)→ ker Wϕϕ̃−1 ,

defined by the actions in (3.5) and (3.6) are invertible operators satisfying L2 = L−1
1 .

Proof. The result follows from relation (3.4). In fact, from (3.4), if f ∈ kerWϕϕ̃−1 , and consequently

( f ,0)T ∈ ker diag(Wϕϕ̃−1 , I),

then B−1PC−1(( f ,0)T ) belongs to

ker(Wϕ +Hϕ +Q,Wϕ −Hϕ +Q) ∼= ker(Wϕ +Hϕ,Wϕ −Hϕ).

Moreover,

B−1PC−1(( f ,0)T ) =
1
2

(
PW 0

ϕ̃−1P f + JQW 0
ϕ̃−1P f , PW 0

ϕ̃−1P f − JQW 0
ϕ̃−1P f

)T
,

which is equal to 1
2

(
PW 0

ϕ̃−1 f + JQW 0
ϕ̃−1 f , PW 0

ϕ̃−1 f − JQW 0
ϕ̃−1 f

)T
since f ∈ Lp(·)

+ (R). Thus, we obtain
(3.5).

On the other hand, if (F,G)T ∈ ker(Wϕ +Hϕ,Wϕ −Hϕ), then

CPB((F,G)T ) ∈ ker diag(Wϕϕ̃−1 , I).
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Thus,

CPB((F,G)T ) =

[
PW 0

ϕ̃
(F +G)+PW 0

ϕ̃
J(F −G)

−(F +G)+PW 0
ϕ̃−1PW 0

ϕ̃
(F +G)+PW 0

ϕ̃−1PW 0
ϕ̃

J(F −G)

]
∈ ker diag(Wϕϕ̃−1 , I),

which proves (3.6).
Finally, let f and (F,G)T as defined in (3.5) and (3.6). We observe that

CPB(F,G)T = ( f ,0)T ,

which completes the proof.

Proposition 2. Let ϕ ∈ GMp(·), p(·) ∈ Be(R). If f ∈ ker Wϕϕ̃−1 , then

JQW 0
ϕϕ̃−1 f ∈ ker Wϕϕ̃−1

and (JQW 0
ϕϕ̃−1)

2 f = f .

Proof. Let ϕ ∈ GMp(·) (p(·) ∈ Be(R)) and f ∈ kerWϕϕ̃−1 . Then

ℓ0Wϕϕ̃−1(JQW 0
ϕϕ̃−1 f ) = PW 0

ϕϕ̃−1PJQW 0
ϕϕ̃−1 f = JQW 0

ϕ̃ϕ−1QW 0
ϕϕ̃−1 f

= JQW 0
ϕ̃ϕ−1W

0
ϕϕ̃−1 f − JQW 0

ϕ̃ϕ−1PW 0
ϕϕ̃−1 f

= JQ f − JQW 0
ϕ̃ϕ−10

= 0.

Additionally, for any f ∈ kerWϕϕ̃−1 , we have

(JQW 0
ϕϕ̃−1)

2 f = JQW 0
ϕϕ̃−1PJQW 0

ϕϕ̃−1P f = PW 0
ϕ̃ϕ−1QW 0

ϕϕ̃−1 f

= PW 0
ϕ̃ϕ−1W

0
ϕϕ̃−1 f −PW 0

ϕ̃ϕ−1PW 0
ϕϕ̃−1 f = f ,

which completes the proof.

Consider the operator Pϕϕ̃−1 := JQW 0
ϕϕ̃−1P|ker Wϕϕ̃−1 . From Proposition 2,

Pϕϕ̃−1 : ker Wϕϕ̃−1 → ker Wϕϕ̃−1

and
P2

ϕϕ̃−1 = I.

Additionally, P−
ϕϕ̃−1 := (1/2)(I −Pϕϕ̃−1) and P+

ϕϕ̃−1 := (1/2)(I +Pϕϕ̃−1) are complementary projections
generating a decomposition of ker Wϕϕ̃−1 .

For f ∈ ker Wϕϕ̃−1 , let

φ±( f ) :=
1
2
(PW 0

ϕ̃−1 f ± JQW 0
ϕ̃−1 f ).

By Theorem 3, φ±( f ) ∈ ker(Wϕ ±Hϕ).
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Lemma 1. Let ϕ ∈ GMp(·), p(·) ∈ Be(R). For every f ∈ ker Wϕϕ̃−1 , the following relations

(Wϕ̃ +Hϕ̃)φ+( f ) = P+

ϕϕ̃−1 f , (Wϕ̃ −Hϕ̃)φ−( f ) = P−
ϕϕ̃−1 f

hold. The corresponding mapping φ+ : imP+

ϕϕ̃−1 → imP+

ϕϕ̃−1 and φ− : imP−
ϕϕ̃−1 → imP−

ϕϕ̃−1 are injective
operators.

Proof. Let f ∈ ker Wϕϕ̃−1 . We will show that the operator Wϕ̃ +Hϕ̃ maps φ+( f ) into P+

ϕϕ̃−1 f and the

operator Wϕ̃ −Hϕ̃ maps φ−( f ) into P−
ϕϕ̃−1 f .

For the first case, using Proposition 1, we have

ℓ0(Wϕ̃ +Hϕ̃)φ
+( f ) =

1
2
ℓ0(Wϕ̃ℓ0Wϕ̃−1 f +Wϕ̃ℓ0JQW 0

ϕ̃−1 f +Hϕ̃ℓ0Wϕ̃−1 f +Hϕ̃ℓ0JQW 0
ϕ̃−1 f )

=
1
2
(ℓ0Wϕ̃ℓ0Wϕ̃−1 f + ℓ0Wϕ̃PW 0

ϕ−1J f + ℓ0Hϕ̃ℓ0Wϕ̃−1 f + ℓ0Hϕ̃PW 0
ϕ−1J f )

=
1
2
(ℓ0Wϕ̃ℓ0Wϕ̃−1 f + ℓ0Wϕ̃ℓ0Hϕ−1 f + ℓ0Hϕ̃ℓ0Wϕ̃−1 f + ℓ0Hϕ̃ℓ0Hϕ−1 f )

=
1
2
(ℓ0Wϕ̃ϕ̃−1 f + ℓ0Hϕ̃ϕ−1 f )

=
1
2
( f +PW 0

ϕ̃ϕ−1J f )

=
1
2
( f +PJW 0

ϕϕ̃−1 f )

=
1
2
( f + JQW 0

ϕϕ̃−1 f ) = P+

ϕϕ̃−1 f .

The other case is proved analogously.

Proposition 3. Let ϕ ∈ GMp(·), p(·) ∈ Be(R). Then

ker(Wϕ +Hϕ) = φ+( imP+

ϕϕ̃−1),

ker(Wϕ −Hϕ) = φ−( imP−
ϕϕ̃−1)

Proof. Using the invertible operator L1 defined in Theorem 3, we obtain

ker diag(Wϕ +Hϕ,Wϕ −Hϕ) = L1(ker Wϕϕ̃−1),

where
ker Wϕϕ̃−1 = imP+

ϕϕ̃−1+̇ imP−
ϕϕ̃−1 .

Hence,
ker diag(Wϕ +Hϕ,Wϕ −Hϕ) = L1(ker Wϕϕ̃−1) = L1( imP+

ϕϕ̃−1)+̇L1( imP−
ϕϕ̃−1).

Thus, having in mind the definitions of L1, L2, φ+ and φ−, the result follows.

Notice that from the equivalence relation (3.4) we have that if Wϕϕ̃−1 is a Fredholm operator (and
continuing to assume that ϕ ∈ GMp(·) and p(·) ∈ Be(R)), then both operators Wϕ +Hϕ and Wϕ −Hϕ
are Fredholm and it holds the following identity for the Fredholm indices of the related operators:

ind(Wϕ +Hϕ)+ ind(Wϕ −Hϕ) = indWϕϕ̃−1 .

In more detail, and now from Proposition 3, we immediately have the following result for the
dimensions of the kernels of Wϕ +Hϕ and Wϕ −Hϕ.
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Corollary 1. Let ϕ ∈ GMp(·), p(·) ∈ Be(R). Then

dimker(Wϕ +Hϕ) = dim imP+

ϕϕ̃−1 ,

dimker(Wϕ −Hϕ) = dim imP−
ϕϕ̃−1 .

4 Coburn-Simonenko type theorem for Wiener-Hopf-Hankel operators

The following theorem is the analogue of Coburn-Simonenko Theorem for Wiener-Hopf operators on
variable exponent Lebesgue spaces, which states that a nonzero bounded Wiener-Hopf operator has a
trivial kernel or a dense range.

Theorem 4. If ϕ ∈ Mp(·), p(·) ∈ B(R), and if ϕ does not vanish identically, then the kernel of Wϕ in

Lp(·)
+ (R) is trivial or the image of Wϕ is dense in Lp(·)

+ (R).

Proof. First, recall that Wϕ is equivalent after extension [2] to ϕP +Q .
We will show that ϕP +Q is injective on Lp(·)(R) or Q ϕI +P is injective on Lq(·)(R).
Assume the contrary, i.e., assume that there are nonzero f ∈ Lp(·)(R) and g ∈ Lq(·)(R) such that

(ϕP +Q ) f = 0 and (Q ϕI +P )g = 0.

The first identity implies that

f− := Q f ∈ Q Lp(·)(R), f+ := P f ∈ P Lp(·)(R)

and
ϕ f++ f− = 0.

From the second equality, we have that Q ϕg = 0 and P g = 0, whence g+ := ϕg ∈ P Lq(·)(R) and
g− := g ∈ Q Lq(·)(R). Multiplying the equality ϕ f+ =− f− by g we get ϕg f+ =− f−g− and hence,

g+ f+ =− f−g−. (4.1)

The left-hand side of (4.1) belongs to P L1(R) while its right-hand side belongs to Q L1(R). Conse-
quently, g+ f+ = 0 and f−g− = 0. Since g− = g ̸= 0, then f− = 0. It follows that f+ ̸= 0, otherwise,
f = f−+ f+ = 0.

Now, the equality g+ f+ = 0 shows that 0 = g+ = ϕg. Since ϕ ∈ Mp(·)\{0}, we arrive at conclusion
that g = g− = 0, which contradicts the hypothesis.

If ϕP +Q is injective on Lp(·)(R), then Wϕ is injective on Lp(·)(R). On the other hand, if Q ϕI+P
is injective on Lq(·)(R), then C(Q ϕI +P )C is also injective on Lp(·)(R) (where C : φ 7→ φ denote
the operator of complex conjugation in Lp(·)(R)). Since C(Q ϕI +P )C = (ϕP +Q )∗, we infer that
ϕP +Q has a dense range on Lp(·) and thus, Wϕ has a dense range on Lp(·)(R+).

Theorem 5. Let ϕ ∈ GMp(·), p(·) ∈ Be(R), and let T denote any of the operators Wϕ −Hϕ, Wϕ +Hϕ.
Then, at least, one of the spaces ker T or cokerT is trivial.

Proof. If dimker Wϕϕ̃−1 > 0, then the Coburn-Simonenko theorem for Wiener-Hopf operators gives
that

cokerWϕϕ̃−1 = {0}.
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From identity (3.4), we obtain that coker(Wϕ ±Hϕ) = {0}.
On the other hand, assume that kerWϕϕ̃−1 = {0}. Then, the equivalence after extension relation

(3.4) implies that
ker(Wϕ ±Hϕ) = {0}.

Thus, we conclude that the Coburn-Simonenko theorem is valid for Wiener-Hopf plus Hankel,
and Wiener-Hopf minus Hankel operators acting on variable exponent Lebesgue spaces.

Corollary 2. Let ϕ ∈ GMp(·), p(·) ∈ Be(R). If dimkerWϕϕ̃−1 = 0, then ker(Wϕ ±Hϕ) = {0} and if
dimkerWϕϕ̃−1 > 0, then coker(Wϕ ±Hϕ) = {0}.

Proof. This statement is directly derived from the proof of the last result.
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