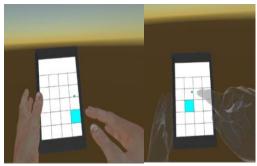


Evaluation in VR and AR examples



Realidade Virtual e Aumentada 2023

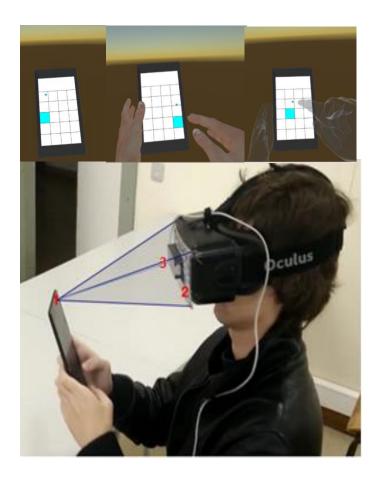
Beatriz Sousa Santos

I - Studying the effect of hand-avatars in a immersive VE using a tablet as input device for a selection task

Motivation

- Mobile devices have already been used as input to perform interactions in VEs
- Literature suggests their usage as input devices is viable and presents benefits
- The effect of using avatars in this situation is still an open issue

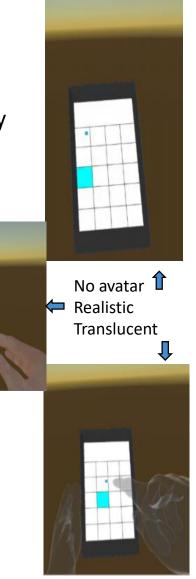
Luís Afonso, Paulo, Dias, Carlos Ferreira, Beatriz Sousa Santos, "Effect of Hand-Avatar in a Selection Task Using a Tablet as Input Device in an Immersive Virtual Environment". *IEEE Symposium on 3D User Interfaces (3DUI2017)*, Los Angeles, March 2017.


https://ieeexplore.ieee.org/document/7893364

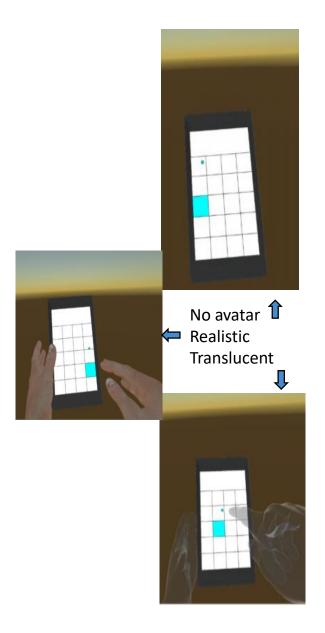
I - Studying the effect of hand-avatars in a immersive VE using a tablet as input device for a selection task

• Task:

 Selecting as fast as possible a highlighted button from a group of 25 buttons on the virtual tablet screen


- Experimental Setup:
- Oculus + Tablet + Leap Motion
- Unity + Vuforia
- Tablet front camera (1) tracking
- AR marker on the Oculus (2)
- Leap Motion (3) mounted on Oculus providing hands tracking

- Hypothesis (Ho):
- All conditions concerning hand avatar have similar usability (performance and opinion)
- Independent variable: type of hand avatar (3 experimental conditions):
- No hand avatar
- Realistic hand avatar
- Translucent hand avatar
- Dependent variables:


performance and opinion:

- Task completion time (seconds)
- Selection errors: number of incorrect buttons pressed
- Opinion (Likert-like scale)
- Experimental design: within-groups (all participants used the three experimental conditions in different order to compensate for learning)

• Experimental procedure:

- Briefing about the experiment
- Familiarization with the setup
- Selecting 25 buttons
- Using three experimental conditions
- Questionnaire
- Participants:
- 55 students performed the tasks
- 52 answered the questionnaire (4 females; aged 19 to 28 years) (30 had never used VR before)
- Statistical analysis:
- Non parametric tests (Friedman) due to:
 - non normality of time and error data
 - ordinal nature of questionnaire data

Hand representation experiment questionnaire

- 1. User ID: _____
- 2. What is your age? _____
- 3. What is your gender?
 Genale
 Male
- 4. Have you used Virtual Reality before? □ Yes
 - D No
- 5. Dominant hand:

C Right

□ Left

- 6. How often do you use smartphone/tablet devices:
 - Never D-O-O-O Regularly
- 7. Please rank the three modes by preference: No Hands (1) _______ Realistic Hands (2) ______ Transparent Hands (3) ______
- 8. Explain why the mode [1/2/3] was your favorite:

9. How much physical fatigue did you experience in your arms while interacting with the environment?

None C-C-C-C Extreme

No Hand Representation 10. The task was (1 difficult, 5 easy) to perform. Difficult D=D=D=D=D Easy 11. I felt like I was able to interact with the tablet the way I wanted to. Strongly Disagree D=D=D=D=D Strongly Agree Realistic Hand Representation 12. The task was (1 difficult, 5 easy) to perform. Difficult D=D=D=D=D=D Easy 13. I felt like I was able to interact with the tablet the way I wanted to. Strongly Disagree D=D=D=D=D Easy 14. I felt as if the virtual representation of the hand moved just like I wanted it to. Strongly Disagree D=D=D=D=D Strongly Agree

Transparent Hand Representation


- The task was (1 difficult, 5 easy) to perform. Difficult O-O-O-O Easy
- I felt as if the virtual representation of the hand moved just like I wanted it to.

18. Comments and/or suggestions about the equipment or the environment:

Main results concerning performance

Total task time and errors:

- Participants were faster but made more errors when there was no avatar
- Translucent avatar was the condition with less errors
- Friedman tests rejected the equality hypothesis -> differences are significant

Main results concerning preference and opinion (median values) (ordinal data in a Lickert-like scale of 5 levels)

Question (scale)	No avatar	Real. avatar	Trans. avatar
(number of 1 st)	18	9	25
Q1- Preference (number of 2 nd)	16	25	18
(number of 3 rd)	18	18	9
Q2- The task was (1 difficult 5 easy) to perform	3.5	3	4
Q3-I felt like I was able to interact with the tablet the way I wanted to (1 Strongly Disagree 5 Strongly Agree)	3	3	3
Q4- I felt as if the hand avatar moved just like I wanted it to (1 Strongly Disagree 5 Strongly Agree)	NA	3	3.5

All differences were statistically significant (ordinal data -> Friedman test)

Conclusions of the study

The results of our study suggest that:

- An avatar may increase usability
- It does not need to be very realistic (in line with previous work regarding avatars in immersive VEs)
- The hands-representation provides feedback; however:
 - it may occlude the virtual screen,
 - and become distracting as a consequence of tracking inaccuracies
- The translucent avatar provides feedback not occluding
- Accurate tracking is crucial

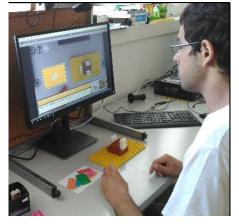
Future work

- Improve tracking
- Continue to explore the influence of the hands avatar, e.g.:
 - with other types of mobile devices,
 - to perform different tasks in VEs,
 - using other non-realistic (e.g. robot or cartoon-like) avatars

- Assembly requires more than ever new ways to improve efficiency
- AR has been used to enhance environments and influence UX
- AR-based methods can support users in assembly procedures
- More user studies are needed

João Bernardo Alves, Bernardo Marques, Carlos Ferreira, Paulo Dias, Beatriz Sousa Santos, "Comparing Augmented Reality visualization methods for assembly procedures", *Virtual Reality*, June, 2021 <u>https://link.springer.com/article/10.1007/</u> s10055-021-00557-8

- Evaluate three different **AR-based methods**
 - mobile AR,
 - indirect AR,
 - see-through HMD
- User study/controlled experiment to assess
 - performance,
 - mental/physical workload,
 - preferences



• H₀ = all methods lead to similar user performance and acceptance

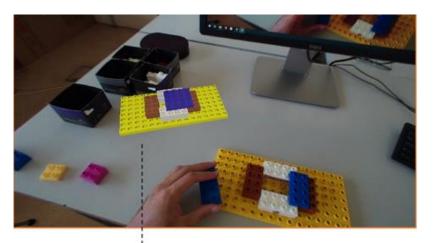
Three experimental conditions (independent/input variables):

Mobile

Indirect

HMD

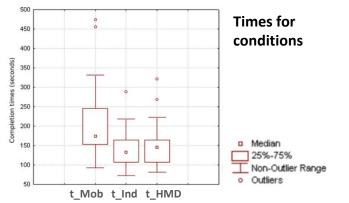
- Experimental design: Within Groups (condition order randomized)
- Dependent (output) variables:
 - Performance (times and types of errors)
 - mental/physical workload
 - Preferences/opinion
- Secondary variables:
 - order in using the conditions
 - demographic data
 - previous experience with AR and assembly


• Tasks:

Assembly of 18 Lego blocks in 18 step-by step 3D instructions

• Analysis:

EDA, non-parametric tests multivariate analysis


• Thirty participants

Virtual model

Types of errors for conditions

Condition	Errors			
	E_Color	E_Location	E_shape	
Mob	0	9	15	
Ind	0	1	7	
HMD	3	16	3	

- Main results
 - all methods may support users
 - no "best method" concerning performance and preferences
 - insights on the strengths and weaknesses of each method
 - suggesting guidelines for specific use cases

- Future work
 - Improve the methods to overcome technical limitations

- Further study with more:

- complex tasks to better differentiate among methods

- realistic settings (noise, illumination, movement, ...)