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• Computer Graphics main tasks

• Geometric Primitives

• Geometric transformations

• 2D and 3D visualization

• Projections

Topics
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CG Main Tasks

• Modeling

– Construct individual models / objects

– Assemble them into a 2D or 3D scene (using transformations)

• Rendering

– Generate final images:

– How is the scene illuminated?

– What are the materials of the objects?

– Where is the observer? How is he/she looking at the scene?

• Animation

– Static vs. dynamic scenes

– Movement and / or deformation
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Geometric Primitives

• Simple primitives                            Examples:

– Points

– Line segments

– Polygons

• Geometric primitives

– Parametric curves / surfaces

– Cubes, spheres, cylinders, etc.

https://threejs.org/manual/#en/primitives

https://threejs.org/manual/#en/primitives


• Create 2D / 3D scenes from simple primitives

• OpenGL and variants …
– Rendering

– No modeling or interaction facilities

• Direct 3D – Microsoft

• VTK
– 3D CG + Image processing + Visualization

• Three.js

• Vulkan …

Computer Graphics APIs
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• Cross-browser JavaScript library/API used to create and display 
animated 3D computer graphics in a web browser. 

• Uses WebGL

Three.js

https://threejs.org/

https://threejs.org/
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Geometric Primitives – three.js examples

const width = 8; // ui: width 

const height = 8; // ui: height 

const depth = 8; // ui: depth 

const geometry = new THREE.BoxGeometry(width, height, depth);

const radius = 6;  // ui: radius

const height = 8;  // ui: height

const radialSegments = 16;  // ui: radialSegments

const geometry = new THREE.ConeGeometry(radius, height, radialSegments);

const radius = 7;  // ui: radius

const widthSegments = 12;  // ui: widthSegments

const heightSegments = 8;  // ui: heightSegments

const geometry = new THREE.SphereGeometry(radius, widthSegments, 

heightSegments);

https://threejs.org/manual/#en/primitives

https://threejs.org/manual/#en/primitives


• Open-source, freely available software system for 3D computer graphics, 
modeling, image processing, volume rendering, scientific visualization. 

• Is designed to be platform agnostic

VTK

https://vtk.org/

https://vtk.org/


3D visualization pipeline
(coordinate transformations)
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(Hearn & Baker, 2004)MC - Modelling coordinates

WC – World coordinates

VC – Viewing coordinates

PC – Projection coordinates

NC – Normalized coordinates

DC – Display coordinates



• We will start by 2D transformations and viewing a 2D scene 

and then generalize to 3D

• Main operations represented as point transformations

– Basic transformation matrices

– Homogeneous coordinates

– Matrix multiplication and composed transformations

2D and 3D visualization pipeline
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Basic 2D Transformations
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p = (x, y)  → original point

p’ = (x’, y’)  → transformed point

• Basic transformations:

- Translation

- Scaling 

- Rotation Vector notation

x 

P =        

y

x’

P’ =        

y’

Complex transformations may be expressed as a composition of these



Translation

• It is necessary to specify translations in x and y

transformation matrix

x 

P =        

y

x’ 

P’ =        

y’

tx

T =        

ty

P´ =  P + T 

x’ = x + tx y’ = y + ty

12



Translation
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• It is a rigid body transformation (it does not deform the object)

- To apply a translation to a 
line segment we need only to 
transform the end points

- To apply a translation to a 
polygon we need only to 
transform the vertices

(Hearn & Baker, 2004)



Rotation
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• To apply a 2D rotation we need to specify:

- a point (center of rotation) 
(xr , yr )

- a rotation angle θ (the convention is: positive -> counter-
clockwise)

- the simplest case is a rotation 
around the origin (0,0)

Positive rotation



Rotation around the origin
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• The simplest case:

r cos (Φ + θ)

r sin (Φ + θ)

Polar coordenates of the original point:
x = r cos Φ

y = r sin Φ

Replacing:

x’ = x cos Θ – y sin Θ

y´ = x sin Θ + y cos Θ

x’= r cos (Φ + Θ) = r cos Φ cos Θ – r sin Φ sin Θ

y’= r sin (Φ + Θ) = r cos Φ sin Θ + r sin Φ cos Θ



2D Rotation in matrix notation

16r cos (Φ + θ)

r sin (Φ + θ)

x’= r cos (Φ + Θ) = r cos Φ cos Θ – r sin Φ sin Θ

y’= r sin (Φ + Θ) = r cos Φ sin Θ + r sin Φ cos Θ

cos(α+β) = cos α cos β − sin α sin β

cos (α−β) = cos α cos β + sin α sin β

Reminder:



Scaling

x’ =  x . sx

y’ =  y . sy

• Modifies the size of an object; we need to specify scaling factors: 
sx and sy

Trasformation matrix

P’ = S . P

Transforming a square into a 
larger square applying a 

scaling sx=2, sy=2

(Hearn & Baker, 2004)



• Matrix representation

– Homogeneous coordinates !!

– Concatenation = Matrix products

• Complex transformations ?

– Decompose into a sequence of basic transformations

2D Transformations
(composed)
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Homogeneous coordinates
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• Most applications involve sequences of transformations 

• For instance:

- visualization transformations involve a sequence of 
translations and rotations to render an image of a scene

- animations may imply that an object is rotated and 
translated between two consecutive frames

• Homogeneous coordinates provide an efficient way to 
represent and apply sequences of transformations



• It is possible to combine in a matrix the multiplying and 
additive terms if we use 3x3 matrices

• All transformations may be represented by multiplying 
matrices in homogenous coordinates

• Each point is now represented by 3 coordinates

( x, y )     → (xh, yh, h), h = 0

x = xh / h       y = yh / h

( x.h, y.h, h)

• The simplest way: h=1 ! 20



2D Translation
(in homogeneous coordinates)
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(Hearn & Baker, 2004)

One more row and column
(but not many more operations…)

Now, translation is applied by matrix multiplication



2D Rotation around (0,0)
(in homogeneous coordinates)
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r cos (Φ + θ)

r sin (Φ + θ)

x’= r cos (Φ + Θ) = r cos Φ cos Θ – r sin Φ sin Θ

y’= r sin (Φ + Θ) = r cos Φ sin Θ + r sin Φ cos Θ



2D Scaling
(in homogeneous coordinates)

23(Hearn & Baker, 2004)

(sx = sy)

(sx ≠ sy)

- Now all basic transformations are 
applied by multiplication!
- We may concatenate multiple matrices



Concatenation of two translations
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Concatenation of two scaling transformations
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Arbitrary Rotation
(around any point)
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Translation +           Rotation              +    Inverse Translation
(to the origin)    (around the origin) (to the initial position)

(Hearn & Baker, 2004)



Arbitrary Scaling
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Translation + Scaling + Inverse Translation

(Hearn & Baker, 2004)



Order is important !
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(Hearn & Baker, 2004)

Results may be different  if transformations are applied in a different order!

a)  Translation + rotation                                 b)  Rotation +  translation



• Define a 2D scene in the world coordinate system

• Select a clipping window in the XOY plane

– The window contents will be displayed

• Select a viewport in the display 

• The viewport displays the contents of the clipping window 

The case of viewing 2D scenes

window-to-viewport-transformation-in-computer-graphics-with-implementation/

Note: Clipping window 

and viewport are the 

traditional terms in CG
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https://www.geeksforgeeks.org/window-to-viewport-transformation-in-computer-graphics-with-implementation/


World Coordinates xw

yw

World ---> display

Display Coordinates  x

y

Viewport

Clipping Window



Coordinate mapping
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World Coordinates Screen coordinates

Clipping Window                      Viewport

Objects inside the clipping window are mapped to the viewport (the area on 

the screen where they will be displayed).

Home work:

Compute (x,y)  given (xw, yw)

(Hearn & Baker, 2004)



Coordinate mapping
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World Coordinates Screen coordinates

Clipping Window                      Viewport

(x,y)  given (xw, yw) :

xw – xwmin        =         x – xmin

xwmax – xwmin             xmax - xmin
yw – ywmin        =         y – ymin

ywmax – ywmin             ymax - ymin



Coordinate mapping
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If the aspect ratio is not the same in both situations the result 
is distortion

(Hearn & Baker, 2004)



World Coordinates x

y

World -> screen  

Screen Coordinates x

y

The aspect ratio is 
not the same in x 
and y: distortion!



• Translation

• Scaling

3D Transformations
(in homogeneous coordinates)
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x 

P =   y    

z

x’ 

P’ =   y’    

z’

A 3D point in vector notation



3D Rotation
(in homogeneous coordinates)
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• Rotation around each one of the 
coordinate axis

• Positive rotations are CCW (counter 
clock wise)!!

(Hearn & Baker, 2004)3D coordinate system in CG

y

x

z



Rotation around ZZ’
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The z coordinate is 
maintained



Rotation around XX’

38

(Hearn & Baker, 2004)



Rotation around YY’
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(Hearn & Baker, 2004)



Other useful 3D Transformations
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• Shears

• Reflections

Shear in ZZ’



Transformations in three.js

https://threejs.org/docs/#api/math/Matrix4

https://threejs.org/docs/#api/math/Matrix4






3D Viewing
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(Hearn & Baker, 2004)



• Position and orientation

• Lens

• Image size

• Orientation of image plane

Camera specification

46

(Angel, 2012)



• Where is the observer / the camera ?

– Position ?

– Close to the 3D scene ?

– Far away ?

• How is the camera/observer looking at the scene ?

– Orientation ?

• How to represent as a 2D image ?

– Projection ?

3D Viewing
(2D representation of a 3D scene)

47



• Instantiate models of the scene

– Position, orientation, size

• Establish viewing parameters

– Camera position and orientation

• Compute illumination and shade polygons

• Perform clipping

• Project into 2D

• Rasterize

3D visualization pipeline

48



Parallel Projection Perspective Projection

(allows measures)        (more realistic images)

Projection (from 3D to 2D)
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2D representations of a 3D scene may be done in different ways (in CG 

geometric planar projections are used: straight projectors/planar viewing plane)

https://www.britannica.com/science/projection-geometry

https://www.britannica.com/science/projection-geometry


Planar geometric 
projections

https://www.javatpoint.com/computer-

graphics-projection

https://www.javatpoint.com/computer-graphics-projection


Parallel Projection Perspective Projection

Projections
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Examples of resulting  
representation on the 
viewing plane

(Hearn & Baker, 2004)

projection 
center

Parallel 
projectors 
(projection 
center at 
infinity)



Parallel Projections
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Orthographic / 
Axonometric projection

Oblique projection

Orthographic/ Multiview projection

(Hearn & Baker, 2004)



Parallel projections are widely used in architecture

• Front elevation

• Floor plan

Allowing distance 
measures

https://www.cadpro.com/easy-home-building-floor-plan-software/

https://www.cadpro.com/easy-home-building-floor-plan-software/


Perspective Projections
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Foreshortening indicates a 
perspective projection

Approximate representation as a scene is 

seen by the eye 

Object's dimensions along the line of sight appear 

shorter than its dimensions across the line of sight
https://en.wikipedia.org/wiki/Perspective_(graphical)

https://en.wikipedia.org/wiki/Perspective_(graphical)


Perspective Projections
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One vanishing point perspective projection

Two vanishing points perspective projection 

(Hearn & Baker, 2004)



Orthographic vs
perspective camera

in Three.js



• Projection matrices

• Homogeneous coordinates 

• Concatenation through matrix multiplication

• Don’t worry ! 

• Graphics APIs implement usual projections !

How to represent/apply projections?
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How to apply Projections?
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• Also by matrix multiplication

Example: Matrix of the orthographic projection on the xy plane 
in homogeneous coordinates:

y

xz

zz coordinates  are discarded 



Example of a more complex projection matrix
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Compute the matrix to obtain a view allowing to make 
measures on the triangle face of the object.
The vertices of the face are:

P1 = (1, 0.5, 1)

P2 = (0.5, 1, 1)

P3 = (1, 1, 0.5)

P1

P3P2Hint: 
- What is the type of projection that 
allows to make measures?
- Find the rotations needed …



Resulting matrix:
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2/√6     -1/ √6     -1/ √6       0

0         1/ √2     -1/ √2       0

0             0            0          0

0             0            0          1

M final =



• Clipping window on the projection plane

• View volume (frustum) in 3D

How to limit what is observed and represented ?
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Clipping 

window

Near Clipping plane

Far Clipping plane

(Hearn & Baker, 2004)

Parallel projection                                          Perspective projection



Examples using Three.js

https://threejs.org/

https://threejs.org/


https://threejs.org/examples/#webgl_camera

Projections

https://threejs.org/examples/#webgl_camera


Clipping (and shadows) 

https://threejs.org/examples/#webgl_clipping

https://threejs.org/examples/#webgl_clipping
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var scene = new THREE.Scene();

var camera = new THREE.PerspectiveCamera( 75, 

window.innerWidth / window.innerHeight, 0.1, 1000 );

var renderer = new THREE.WebGLRenderer();

renderer.setSize( window.innerWidth, window.innerHeight );

document.body.appendChild( renderer.domElement );

Thee.js first example

1. Defining the scene, the camera and where the scene is rendered
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var geometry = new THREE.BoxGeometry(1,1,1);

var material = new THREE.MeshBasicMaterial( { 

color: 0x00ff00 } ); 

var cube = new THREE.Mesh( geometry, material ); 

scene.add( cube ); 

camera.position.z = 5;

2.Creating an object and camera position



function render() {

requestAnimationFrame(render);

renderer.render(scene, camera);

}

render();

cube.rotation.x += 0.1;

cube.rotation.y += 0.1;

3.  Scene rendering

4.  Scene animation



var material = new THREE.MeshPhongMaterial({

ambient: '#006063',

color: '#00abb1',

specular: '#a9fcff',

shininess: 100

});

Adding lights and shading
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Some reference books
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https://learning.oreilly.com/library/view/fundamentals-of-computer/9781000426359/
https://learning.oreilly.com/library/view/hughes-computer-graphics-3-e/9780133373721/

