
Introduction to Computer Graphics
main concepts and methods - II

Universidade de Aveiro

Departamento de Electrónica,

Telecomunicações e Informática

Beatriz Sousa Santos University of Aveiro, 2024

(Wikipedia)

• Computer Graphics main tasks

• Geometric Primitives

• Geometric transformations

• 2D and 3D visualization

• Projections

Topics

33

CG Main Tasks

• Modeling

– Construct individual models / objects

– Assemble them into a 2D or 3D scene (using transformations)

• Rendering

– Generate final images:

– How is the scene illuminated?

– What are the materials of the objects?

– Where is the observer? How is he/she looking at the scene?

• Animation

– Static vs. dynamic scenes

– Movement and / or deformation

4

Geometric Primitives

• Simple primitives Examples:

– Points

– Line segments

– Polygons

• Geometric primitives

– Parametric curves / surfaces

– Cubes, spheres, cylinders, etc.

https://threejs.org/manual/#en/primitives

https://threejs.org/manual/#en/primitives

• Create 2D / 3D scenes from simple primitives

• OpenGL and variants …
– Rendering

– No modeling or interaction facilities

• Direct 3D – Microsoft

• VTK
– 3D CG + Image processing + Visualization

• Three.js

• Vulkan …

Computer Graphics APIs

5

• Cross-browser JavaScript library/API used to create and display
animated 3D computer graphics in a web browser.

• Uses WebGL

Three.js

https://threejs.org/

https://threejs.org/

7

Geometric Primitives – three.js examples

const width = 8; // ui: width

const height = 8; // ui: height

const depth = 8; // ui: depth

const geometry = new THREE.BoxGeometry(width, height, depth);

const radius = 6; // ui: radius

const height = 8; // ui: height

const radialSegments = 16; // ui: radialSegments

const geometry = new THREE.ConeGeometry(radius, height, radialSegments);

const radius = 7; // ui: radius

const widthSegments = 12; // ui: widthSegments

const heightSegments = 8; // ui: heightSegments

const geometry = new THREE.SphereGeometry(radius, widthSegments,

heightSegments);

https://threejs.org/manual/#en/primitives

https://threejs.org/manual/#en/primitives

• Open-source, freely available software system for 3D computer graphics,
modeling, image processing, volume rendering, scientific visualization.

• Is designed to be platform agnostic

VTK

https://vtk.org/

https://vtk.org/

3D visualization pipeline
(coordinate transformations)

9

(Hearn & Baker, 2004)MC - Modelling coordinates

WC – World coordinates

VC – Viewing coordinates

PC – Projection coordinates

NC – Normalized coordinates

DC – Display coordinates

• We will start by 2D transformations and viewing a 2D scene

and then generalize to 3D

• Main operations represented as point transformations

– Basic transformation matrices

– Homogeneous coordinates

– Matrix multiplication and composed transformations

2D and 3D visualization pipeline

10

Basic 2D Transformations

11

p = (x, y) → original point

p’ = (x’, y’) → transformed point

• Basic transformations:

- Translation

- Scaling

- Rotation Vector notation

x

P =

y

x’

P’ =

y’

Complex transformations may be expressed as a composition of these

Translation

• It is necessary to specify translations in x and y

transformation matrix

x

P =

y

x’

P’ =

y’

tx

T =

ty

P´ = P + T

x’ = x + tx y’ = y + ty

12

Translation

13

• It is a rigid body transformation (it does not deform the object)

- To apply a translation to a
line segment we need only to
transform the end points

- To apply a translation to a
polygon we need only to
transform the vertices

(Hearn & Baker, 2004)

Rotation

14

• To apply a 2D rotation we need to specify:

- a point (center of rotation)
(xr , yr)

- a rotation angle θ (the convention is: positive -> counter-
clockwise)

- the simplest case is a rotation
around the origin (0,0)

Positive rotation

Rotation around the origin

15

• The simplest case:

r cos (Φ + θ)

r sin (Φ + θ)

Polar coordenates of the original point:
x = r cos Φ

y = r sin Φ

Replacing:

x’ = x cos Θ – y sin Θ

y´ = x sin Θ + y cos Θ

x’= r cos (Φ + Θ) = r cos Φ cos Θ – r sin Φ sin Θ

y’= r sin (Φ + Θ) = r cos Φ sin Θ + r sin Φ cos Θ

2D Rotation in matrix notation

16r cos (Φ + θ)

r sin (Φ + θ)

x’= r cos (Φ + Θ) = r cos Φ cos Θ – r sin Φ sin Θ

y’= r sin (Φ + Θ) = r cos Φ sin Θ + r sin Φ cos Θ

cos(α+β) = cos α cos β − sin α sin β

cos (α−β) = cos α cos β + sin α sin β

Reminder:

Scaling

x’ = x . sx

y’ = y . sy

• Modifies the size of an object; we need to specify scaling factors:
sx and sy

Trasformation matrix

P’ = S . P

Transforming a square into a
larger square applying a

scaling sx=2, sy=2

(Hearn & Baker, 2004)

• Matrix representation

– Homogeneous coordinates !!

– Concatenation = Matrix products

• Complex transformations ?

– Decompose into a sequence of basic transformations

2D Transformations
(composed)

18

Homogeneous coordinates

19

• Most applications involve sequences of transformations

• For instance:

- visualization transformations involve a sequence of
translations and rotations to render an image of a scene

- animations may imply that an object is rotated and
translated between two consecutive frames

• Homogeneous coordinates provide an efficient way to
represent and apply sequences of transformations

• It is possible to combine in a matrix the multiplying and
additive terms if we use 3x3 matrices

• All transformations may be represented by multiplying
matrices in homogenous coordinates

• Each point is now represented by 3 coordinates

(x, y) → (xh, yh, h), h = 0

x = xh / h y = yh / h

(x.h, y.h, h)

• The simplest way: h=1 ! 20

2D Translation
(in homogeneous coordinates)

21

(Hearn & Baker, 2004)

One more row and column
(but not many more operations…)

Now, translation is applied by matrix multiplication

2D Rotation around (0,0)
(in homogeneous coordinates)

22

r cos (Φ + θ)

r sin (Φ + θ)

x’= r cos (Φ + Θ) = r cos Φ cos Θ – r sin Φ sin Θ

y’= r sin (Φ + Θ) = r cos Φ sin Θ + r sin Φ cos Θ

2D Scaling
(in homogeneous coordinates)

23(Hearn & Baker, 2004)

(sx = sy)

(sx ≠ sy)

- Now all basic transformations are
applied by multiplication!
- We may concatenate multiple matrices

Concatenation of two translations

24

Concatenation of two scaling transformations

25

Arbitrary Rotation
(around any point)

26

Translation + Rotation + Inverse Translation
(to the origin) (around the origin) (to the initial position)

(Hearn & Baker, 2004)

Arbitrary Scaling

27

Translation + Scaling + Inverse Translation

(Hearn & Baker, 2004)

Order is important !

28

(Hearn & Baker, 2004)

Results may be different if transformations are applied in a different order!

a) Translation + rotation b) Rotation + translation

• Define a 2D scene in the world coordinate system

• Select a clipping window in the XOY plane

– The window contents will be displayed

• Select a viewport in the display

• The viewport displays the contents of the clipping window

The case of viewing 2D scenes

window-to-viewport-transformation-in-computer-graphics-with-implementation/

Note: Clipping window

and viewport are the

traditional terms in CG

29

https://www.geeksforgeeks.org/window-to-viewport-transformation-in-computer-graphics-with-implementation/

World Coordinates xw

yw

World ---> display

Display Coordinates x

y

Viewport

Clipping Window

Coordinate mapping

31

World Coordinates Screen coordinates

Clipping Window Viewport

Objects inside the clipping window are mapped to the viewport (the area on

the screen where they will be displayed).

Home work:

Compute (x,y) given (xw, yw)

(Hearn & Baker, 2004)

Coordinate mapping

32

World Coordinates Screen coordinates

Clipping Window Viewport

(x,y) given (xw, yw) :

xw – xwmin = x – xmin

xwmax – xwmin xmax - xmin
yw – ywmin = y – ymin

ywmax – ywmin ymax - ymin

Coordinate mapping

33

If the aspect ratio is not the same in both situations the result
is distortion

(Hearn & Baker, 2004)

World Coordinates x

y

World -> screen

Screen Coordinates x

y

The aspect ratio is
not the same in x
and y: distortion!

• Translation

• Scaling

3D Transformations
(in homogeneous coordinates)

35

x

P = y

z

x’

P’ = y’

z’

A 3D point in vector notation

3D Rotation
(in homogeneous coordinates)

36

• Rotation around each one of the
coordinate axis

• Positive rotations are CCW (counter
clock wise)!!

(Hearn & Baker, 2004)3D coordinate system in CG

y

x

z

Rotation around ZZ’

37

The z coordinate is
maintained

Rotation around XX’

38

(Hearn & Baker, 2004)

Rotation around YY’

39

(Hearn & Baker, 2004)

Other useful 3D Transformations

40

• Shears

• Reflections

Shear in ZZ’

Transformations in three.js

https://threejs.org/docs/#api/math/Matrix4

https://threejs.org/docs/#api/math/Matrix4

3D Viewing

45

(Hearn & Baker, 2004)

• Position and orientation

• Lens

• Image size

• Orientation of image plane

Camera specification

46

(Angel, 2012)

• Where is the observer / the camera ?

– Position ?

– Close to the 3D scene ?

– Far away ?

• How is the camera/observer looking at the scene ?

– Orientation ?

• How to represent as a 2D image ?

– Projection ?

3D Viewing
(2D representation of a 3D scene)

47

• Instantiate models of the scene

– Position, orientation, size

• Establish viewing parameters

– Camera position and orientation

• Compute illumination and shade polygons

• Perform clipping

• Project into 2D

• Rasterize

3D visualization pipeline

48

Parallel Projection Perspective Projection

(allows measures) (more realistic images)

Projection (from 3D to 2D)

49

2D representations of a 3D scene may be done in different ways (in CG

geometric planar projections are used: straight projectors/planar viewing plane)

https://www.britannica.com/science/projection-geometry

https://www.britannica.com/science/projection-geometry

Planar geometric
projections

https://www.javatpoint.com/computer-

graphics-projection

https://www.javatpoint.com/computer-graphics-projection

Parallel Projection Perspective Projection

Projections

51

Examples of resulting
representation on the
viewing plane

(Hearn & Baker, 2004)

projection
center

Parallel
projectors
(projection
center at
infinity)

Parallel Projections

52

Orthographic /
Axonometric projection

Oblique projection

Orthographic/ Multiview projection

(Hearn & Baker, 2004)

Parallel projections are widely used in architecture

• Front elevation

• Floor plan

Allowing distance
measures

https://www.cadpro.com/easy-home-building-floor-plan-software/

https://www.cadpro.com/easy-home-building-floor-plan-software/

Perspective Projections

54

Foreshortening indicates a
perspective projection

Approximate representation as a scene is

seen by the eye

Object's dimensions along the line of sight appear

shorter than its dimensions across the line of sight
https://en.wikipedia.org/wiki/Perspective_(graphical)

https://en.wikipedia.org/wiki/Perspective_(graphical)

Perspective Projections

55

One vanishing point perspective projection

Two vanishing points perspective projection

(Hearn & Baker, 2004)

Orthographic vs
perspective camera

in Three.js

• Projection matrices

• Homogeneous coordinates

• Concatenation through matrix multiplication

• Don’t worry !

• Graphics APIs implement usual projections !

How to represent/apply projections?

57

How to apply Projections?

58

• Also by matrix multiplication

Example: Matrix of the orthographic projection on the xy plane
in homogeneous coordinates:

y

xz

zz coordinates are discarded

Example of a more complex projection matrix

59

Compute the matrix to obtain a view allowing to make
measures on the triangle face of the object.
The vertices of the face are:

P1 = (1, 0.5, 1)

P2 = (0.5, 1, 1)

P3 = (1, 1, 0.5)

P1

P3P2Hint:
- What is the type of projection that
allows to make measures?
- Find the rotations needed …

Resulting matrix:

60

2/√6 -1/ √6 -1/ √6 0

0 1/ √2 -1/ √2 0

0 0 0 0

0 0 0 1

M final =

• Clipping window on the projection plane

• View volume (frustum) in 3D

How to limit what is observed and represented ?

61

Clipping

window

Near Clipping plane

Far Clipping plane

(Hearn & Baker, 2004)

Parallel projection Perspective projection

Examples using Three.js

https://threejs.org/

https://threejs.org/

https://threejs.org/examples/#webgl_camera

Projections

https://threejs.org/examples/#webgl_camera

Clipping (and shadows)

https://threejs.org/examples/#webgl_clipping

https://threejs.org/examples/#webgl_clipping

65

var scene = new THREE.Scene();

var camera = new THREE.PerspectiveCamera(75,

window.innerWidth / window.innerHeight, 0.1, 1000);

var renderer = new THREE.WebGLRenderer();

renderer.setSize(window.innerWidth, window.innerHeight);

document.body.appendChild(renderer.domElement);

Thee.js first example

1. Defining the scene, the camera and where the scene is rendered

66

var geometry = new THREE.BoxGeometry(1,1,1);

var material = new THREE.MeshBasicMaterial({

color: 0x00ff00 });

var cube = new THREE.Mesh(geometry, material);

scene.add(cube);

camera.position.z = 5;

2.Creating an object and camera position

function render() {

requestAnimationFrame(render);

renderer.render(scene, camera);

}

render();

cube.rotation.x += 0.1;

cube.rotation.y += 0.1;

3. Scene rendering

4. Scene animation

var material = new THREE.MeshPhongMaterial({

ambient: '#006063',

color: '#00abb1',

specular: '#a9fcff',

shininess: 100

});

Adding lights and shading

• S. Marschner, P. Shirley, Fundamentals of Computer Graphics, 5th

ed., A K Peters/CRC Press, 2021

Fundamentals of Computer Graphics, 5th Edition (oreilly.com)

• D. Hearn and M. P. Baker, Computer Graphics with OpenGL, 3rd

Ed., Addison-Wesley, 2004

• E. Angel and D. Shreiner, Introduction to Computer Graphics, 6th

Ed., Pearson Education, 2012

• Hughes, J., A. Van Dam, et al., Computer Graphics, Principles and
Practice, 3rd Ed., Addison Wesley, 2013

Hughes/Computer Graphics, 3/E (oreilly.com)

Some reference books

72

https://learning.oreilly.com/library/view/fundamentals-of-computer/9781000426359/
https://learning.oreilly.com/library/view/hughes-computer-graphics-3-e/9780133373721/

