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Motivation

Fermat’s Last Theorem
The only solutions (a, b, c) to the equation

xn + yn + zn = 0, a, b, c ∈ Z, n ≥ 3

satisfy abc = 0.

Theorem (Wiles, Taylor–Wiles)
All semistable elliptic curves over Q are modular.



Weierstrass equations

Elliptic curves are a special kind of plane cubic curves, which are
commonly described using Weierstrass equations.

Definition
An elliptic curve E defined over a field K is a non-singular plane
cubic given by an equation of the form

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6,

where a1, a2, a3, a4, a6 ∈ K. This is a Weierstrass equation.
The homogenisation of E is

Y 2Z + a1XYZ + a3YZ = X 3 + a2X 2Z + a4XZ 2 + a6Z 3

and its unique point at infinity is ∞ = [0 : 1 : 0].



The group law

P

Q

P ∗Q

P ⊕Q

Theorem
Let E be an elliptic curve defined over a field K. Then, E (K ) is an
abelian group under the operation ⊕, with identity ∞ = [0 : 1 : 0].



The Mordell-Weil theorem

Theorem (Mordell-Weil)
Let E/Q be an elliptic curve.

Then the abelian group E (Q) is finitely generated, i.e.,

E (Q) ≃ Zr ⊕ E (Q)tors,

where r ≥ 0 is the rank of E (Q), and E (Q)tors is finite.

Question: Does this mean that in practice we can determined
E (Q)? By “determine” we mean find the abstract group
structure, i.e. find the structure of E (Q)tors and r .

We will start by studying the torsion part E (Q)tors.



Torsion subgroup: The Lutz-Nagell Theorem

We have an easy process to compute points of order 2.

How about points of finite order > 2 ?

Theorem (Lutz-Nagell)
Let E over Q be an elliptic curve given by an integral short
Weierstrass equation

Y 2 = X 3 + AX + B, A, B ∈ Z, ∆ = −4A3 − 27B2

If P = (x , y) ∈ E (Q) has finite order, then
1. the coordinates x , y ∈ Z, and
2. either y = 0 or y2 | ∆E .

Corollary
The torsion subgroup E (Q)tors is finite.



Torsion subgroup: The Lutz-Nagell Theorem

Example
Consider E : Y 2 = X 3 + 4 satisfying ∆ = −27(4)2 = −3(12)2.

If P = (x , y) has finite order then, either y = 0 or |y | | 12, hence

y ∈ {0,±1,±2,±3,±4,±6,±12}.

|y | 0 1 2 3 4 6 12
y2 0 1 4 9 16 36 144

y2 − 4 −4 −3 0 5 12 32 140
x − − 0 − − − −

So the only two possibilities are P = (0, 2) or −P = (0,−2).

One checks 2P = −P so P has order 3 (the line y = 2 intersects E
at P with multiplicity 3, so P + P + P = 0).



Torsion subgroup: The Lutz-Nagell theorem

Example
Let E be given by Y 2 = X 3 + 8, with ∆ = −27 · 82 = −3(24)2.

If P = (x , y) has finite order then y = 0 or |y | | 24.

|y | 0 1 2 3 4 6 12 24
y2 0 1 4 9 16 36 144 576

y2 − 8 −8 −7 −4 1 8 28 136 568
x −2 − − 1 2 − − −

For y = 0, one gets T = (−2, 0) which has order 2.

For y = 3, we get P = (1, 3) satisfying 2P = (−7/4,−13/8).

Since 2P is not integral, it cannot have finite order.

For y = 4, we get Q = (2, 4) yielding 2Q = (−7/4, 13/8) = −2P,
hence Q is not of finite order.



Reduction modulo p



Reduction mod p

Consider an elliptic curve E/Q given by an integral short
Weierstrass equation

E : Y 2 = X 3 + AX + B, A, B ∈ Z.

We can reduce the coefficients A, B modulo p to get a curve

E : Y 2 = X 3 + AX + B, A, B ∈ Fp.

This may be a singular curve and not an elliptic curve.



Reduction mod p
Example
Let E/Q be the curve

Y 2 = X 3 + 20, ∆E = −283352

(a) Let p = 7. The reduced curve is the elliptic curve

E/F7 : Y 2 = X 3 + 6

(b) Let p = 5. The reduced curve is the singular curve

E/F5 : Y 2 = X 3

(c) Let p = 3. The reduced curve is the singular curve

E/F3 : Y 2 = X 3 − 1 = (X − 1)3



Reduction mod p

Fortunately, getting singular curves after reduction happens only
for finitely many primes.

Lemma
Let E/Q be an elliptic curve given by an integral equation
Y 2 = X 3 + AX + B. Then for all primes p ∤ ∆E , the reduced curve
E is an elliptic curve over Fp.

Proof.
The discriminant ∆E = −16(4A3 + 27B2) ∈ Z is non-zero.

The discriminant of E is ∆E = ∆E (mod p) which is 0 ∈ Fp if and
only if p | ∆E .

Therefore, for all p ∤ ∆E we have that E is an elliptic curve.



Reduction mod p

Definition
Let E/Q be an elliptic curve given by an integral model.
Let p be a prime.
We say that E has good reduction at p if p ∤ ∆E .
If E/Q is given by a minimal model (i.e. |∆E | minimal) and it
does not have good reduction at p, then it has bad reduction at p.

Example
(1) Let n ≥ 1 be an integer, and En : Y 2 = X 3 − n2X the
congruent number curve associated to n.

The discriminant of En is ∆ = 64n6. Therefore E has good
reduction at p for all prime p ∤ 2n.

(2) The curve E : Y 2 = X 3 + c, with c ∈ Z has discriminant
∆ = −2433c2. So it has good reduction at p if p ∤ 6c.



Reduction mod p

“Definition”
▶ The conductor NE of E measures the arithmetic complexity

of E ; we compute it using Tate’s algorithm;
▶ E has multiplicative reduction at p if and only if p∥NE .
▶ E has additive reduction at p if and only if p2 | NE .
▶ A prime p is a prime of good reduction when p ∤ NE .
▶ We say that E is semistable if NE is squarefree, i.e., all

primes of bad reduction are of multiplicative reduction.



Reduction mod p

Theorem
Let E/Q be an elliptic curve, and p a prime of good reduction.
Then there is a well defined reduction map

rp : E (Q)→ E (Fp)
P 7→ P

which is a group homomorphism whose kernel does not contain
points with rational coordinates. Furthermore, rp is injective on
torsion points, i.e.,

ker(rp) ∩ E (Q)tors = {∞}.

In particular,
#E (Q)tors | #E (Fp).



Reduction mod p

Example
Let E : Y 2 = X 3 + 4, with ∆ = −432 = −24 · 33. Then E has
good reduction at any prime p ≥ 5.
Reduction mod 5 gives E : Y 2 = X 3 − 1.

x 0 1 −1 2 −2
x3 0 1 −1 −2 2

x3 − 1 −1 0 −2 2 1
y ±2 0 − − ±1

E (F5) = {∞, (1, 0), (0,±2), (−2,±1)}.

So #E (F5) = 6, hence #E (Q)tors = 1, 2, 3 or 6.
We see there are no points of order 2.
We already know P = (0, 2) has order 3.
So E (Q)tors is a group of order 3 generated by P.



Reduction mod p

Example
Let E : Y 2 = X 3 + 8, with ∆ = −27 · 82. Then E has good
reduction at all primes p ≥ 5.
The point T = (−2, 0) is a 2-torsion point on E.
For the prime p = 5, we find

E 5(F5) = {∞, (1,±2), (2,±1), (−2, 0)}.

So #E 5(F5) = 6 and #E (Q)tors | 6.
Since #E (Q)tors is a multiple of 2, it must be 2 or 6.
Looking at other primes, we find
▶ p = 7⇝ #E 7(F7) = 12, no information as 6 | 12;
▶ p = 11⇝ #E 11(F11) = 12, no information as 6 | 12;
▶ p = 13⇝ #E 13(F13) = 16; since 6 ∤ 16 it follows that

E (Q)tors = ⟨T ⟩ has order 2.



Reduction mod p

Example
Let E be the curve given by Y 2 = X 3 + 18X + 72 satisfying

∆ = −4(18)3 − 27(72)2 = −25 · 33 · 7 = −(223)2(2 · 7)

Using Lutz-Nagell’s Theorem to look for torsion points would
require us to check 13 values of y .

Instead, we use reduction mod 5 and 11, obtaining

#E 5(F5) = 5 #E 11(F11) = 8,

which implies that
E (Q)tors = {∞}.



Torsion subgroup : Mazur theorem

Theorem (Mazur)
The only possible torsion subgroups of E (Q) are

Z/nZ for 1 ≤ n ≤ 10 and n = 12
Z/2Z⊕ Z/2nZ for 1 ≤ n ≤ 4.



The Birch and Swinnerton-Dyer
Conjecture (BSD)



The Birch and Swinnerton-Dyer Conjecture

Let E be an elliptic curve defined over Q.

The Mordell-Weil Theorem asserts that E (Q) is finitely generated.

More precisely,
E (Q) ∼= E (Q)tors × Zr ,

where r is the rank of E .

Question: Does this mean that in practice we can determined
E (Q)? By “determine” we mean find the abstract group
structure, i.e. find the structure of E (Q)tors and r .

The torsion subgroup can be computed thanks to the result of
Mazur, combined with the Lutz-Nagell Theorem.

The rank r , however, remains highly mysterious.



The Birch and Swinnerton-Dyer Conjecture

For example, it is unclear whether given a positive integer r there
exists a curve E such that rank(E ) = r .
The experts opinion on this has not been constant over the years.
Recent work due to Park–Poonen–Voight–Wood conjectures that
the possible set of ranks is bounded and that there are only finitely
many E with rank above 21.
The highest established rank known to date is 20. It belongs to a
curve discovered by Elkies-Klagsbrun in 2020.
The current record is a curve with rank at least 28 due to Elkies,
but this is proved only conditionally to the Generalized Riemman
Hipothesis.
Since the mid 60s, much effort has gone into understanding ranks
of elliptic curves, leading to one of the most influential conjectures
in number theory, namely the Birch and Swinnerton-Dyer
Conjecture.



The Birch and Swinnerton-Dyer Conjecture
Let E/Q be an elliptic curve with discriminant ∆E

Let p be a prime.
Let Ep be the reduction of E modulo p.
If p is a prime of good reduction, Ep is an elliptic curve over Fp.
In that case, we define the trace of Frobenius at p by

ap = p + 1−#Ep(Fp).

Theorem (Hasse’s Inequality)
Let q = pk be a prime power and E/Fq be an elliptic curve. Then

|#E (Fq)− (q + 1)| ≤ 2√q.

In particular, for q = p, we get

|ap| ≤ 2√q.



The Birch and Swinnerton-Dyer Conjecture
For primes p of good reduction we defined

ap = p + 1−#Ep(Fp).

Extend the definition of ap to the primes of bad reduction:

ap :=


0 if E has additive reduction at p,
1 if E has split multiplicative reduction at p,
−1 if E has non-split multiplicative reduction at p.

Definition
Let E be an elliptic curve defined over Q with minimal
discriminant ∆. The L-series attached to E is defined by

L(E , s) :=
∏
p|∆

(
1− app−s)−1 ∏

p∤∆

(
1− app−s + p1−2s

)−1
.



The Birch and Swinnerton-Dyer Conjecture

Definition
Let E be an elliptic curve defined over Q.
The L-series attached to E is defined by

L(E , s) :=
∏
p|∆

(
1− app−s)−1 ∏

p∤∆

(
1− app−s + p1−2s

)−1
.

This product converges for s ∈ C s.t. ℜ(s) ≥ 3/2, and has a
meromorphic continuation to the whole complex plane.

In fact, it makes sense to evaluate L(E , s) at s = 1, although the
above formula does not apply. This is a corollary of modularity!!



The Birch and Swinnerton-Dyer Conjecture

The following is the weak version of BSD, which was formulated in
the mid 60s based on numerical evidence gathered using EDSAC,
one of the early computers available at Cambridge University.

Conjecture (Birch–Swinnerton-Dyer)
Let E/Q be an elliptic curve, and let r = rank(E ). Then,
(i) L(E , 1) = 0 if and only if r > 0.
(ii) If L(E , 1) = 0, then r = ords=1L(E , s), the order of vanishing

of L(E , s) at s = 1.

The central rôle played by this conjecture in the arithmetic theory
of elliptic curve is highlighted by the fact that it is one of the
Millennium Prize Problems of the Clay Mathematical Institute.



The Birch and Swinnerton-Dyer Conjecture

Example (Congruence number curve for n = 1)
One can show that E : Y 2 = X 3 − X has rank r = 0.

By evaluating the L-series of this curve to several digit precision
using Sage or Magma , we see that

L(E , 1) = 0.655514388573...,

which is consistent with the BSD Conjecture.

Example (Congruence number curve for n = 5)
One can show that E : Y 2 = X 3 − 25X has rank r = 1.

The L-series of this curve computed to several digit precision is

L(E , 1) = 0.00000000000....



Galois representations attached to
elliptic curves



The n-torsion representation
Let E : Y 2 = X 3 + AX + B be an elliptic curve, with A, B ∈ Q.

For σ ∈ Gal(Q/Q) and P = (x , y) ∈ E (Q), set

σ(P) = (σ(x), σ(y)).

Since σ : Q→ Q is a ring homomorphism (hence is Q-linear),

σ(y2) = σ(x3 + Ax + B) ⇐⇒ σ(y)2 = σ(x)3 + Aσ(x) + B

because σ(A) = A and σ(B) = B. Hence

P ∈ E (Q) =⇒ σ(P) ∈ E (Q).

Moreover,

(τσ)(P) = τ(σ(P)) ∀τ, σ ∈ Gal(Q/Q).

So, this defines an action of Gal(Q/Q) on E (Q).



The n-torsion representation

Furthermore, Gal(Q/Q)-action sends lines to lines.

So it is compatible with the group structure on E .

In particular, Gal(Q/Q) preserves the subgroup E [n].

Fix a basis of E [n]: same as to giving an isomorphism

E [n] ∼= (Z/nZ)× (Z/nZ).

Then, the action of Gal(Q/Q) gives rise to a group homomorphism

ρE ,n : Gal(Q/Q)→ Aut(E [n]) ∼= GL2(Z/nZ).

called the n-torsion Galois representation attached to E .



The n-torsion representation

Since GL2(Z/nZ) is finite it follows that the ker(ρE ,n) is normal of
finite index inside Gal(Q/Q). Moreover,

σ ∈ ker(ρE ,n) ⇐⇒ Pσ = P for all P ∈ E [n]

Thus, letting Kn = K (E [n]), we have

ker(ρE ,n) = Gal(Q/Kn)

therefore

Im(ρE ,n) ≃ Gal(Q/Q)/ Gal(Q/Kn) ≃ Gal(Kn/Q)



The 2-torsion representation

Let y2 = f (x) = x3 + ax2 + bx + c be an elliptic curve over Q.

We have E [2] = {∞, P1, P2, P3} where Pi = (θi , 0) and θi are the
roots of f . We have P3 = P1 ⊕ P2 and

K2 := Q(E [2]) = Q(θ1, θ2, θ3).

If θi are all in Q then K2 = Q and ρE ,2 is trivial.

Suppose, θ1 ∈ Q and θ2, θ3 /∈ Q. Then

f (x) = (x − θ1)(x2 + ux + v), K2 = Q(θ2) = Q(θ3) = Q(
√

d)

where d = u2 − 4v is not a square in Q.

We will write ρE ,2 with respect to the basis {P1, P2}.



The n-torsion representation

We will write ρE ,2 with respect to the basis {P1, P2}.

Let σ ∈ Gal(Q/Q). If σ(
√

d) =
√

d then

σ(P1) = P1, σ(P2) = P2, ρE ,2(σ) =
(

1 0
0 1

)
∈ GL2(F2).

If σ(
√

d) = −
√

d then σ swaps θ2 and θ3hence

σ(P1) = P1, σ(P2) = P3 = P1⊕P2, ρE ,2(σ) =
(

1 1
0 1

)
∈ GL2(F2).

Therefore,

Im(ρE ,2) =
{(

1 0
0 1

)
,

(
1 1
0 1

)}
≃ Z/2Z ≃ Gal(Q(

√
d)/Q).



Galois representations attached to elliptic curves
If f is irreducible with discriminant ∆f not a square in Q× one can
show that

Im(ρE ,2) ≃ GL2(F2) ≃ S3.

If f is irreducible with discriminant ∆f a square in Q× one can
show that

Im(ρE ,2) =
{(

1 0
0 1

)
,

(
1 0
1 1

)
,

(
1 1
1 0

)}
≃ Z/3Z ≃ A3 ⊂ S3.

Theorem
Suppose that E/Q has a n-torsion point P defined over Q. Then
with respect to a bases of the form {P, Q}, we have

Im(ρE ,n) ⊂
(

1 ∗
0 ∗

)



Recall the conductor of an elliptic curve.

“Definition”
▶ The conductor NE of E measures the arithmetic complexity

of E ; we compute it using Tate’s algorithm;
▶ E has multiplicative reduction at p if and only if vp(NE ) = 1.
▶ E has additive reduction at p if and only if vp(NE ) ≥ 2.
▶ A prime p is a prime of good reduction when E mod p is

an elliptic curve; in this case we have p ∤ NE .
▶ We say that E is semistable if NE is squarefree, i.e., all

primes of bad reduction are of multiplicative reduction.

Recall also that for a prime ℓ ∤ NE of good reduction we have
defined the trace of Frobenius at ℓ by

aℓ(E ) = (ℓ + 1)−#E (Fℓ).



Galois representations attached to E .

Definition
Let ρ be a representation of GQ = Gal(Q/Q) and let p be a prime.
We say that ρ is unramified at p if ρ(Ip) = 1 where Ip ⊂ GQ is an
inertia subgroup at p. We say it is ramified otherwise.

Theorem
Let E/Q be an elliptic curve and p a prime. Then the p-torsion
representation

ρE ,p : Gal(Q/Q)→ GL2(Fp)

is unramified at all primes ℓ ∤ pNE .
Moreover, for ℓ ∤ pNE we have

1. Tr(ρE ,p(Frobℓ)) ≡ aℓ(E ) (mod p);
2. det(ρE ,p(Frobℓ)) ≡ ℓ (mod p),

where Frobℓ is a Frobenius element at ℓ.



Mazur’s Irreducibility Theorem

Theorem (Mazur)
Let p ≥ 5 be a prime and E an elliptic curve defined over Q.
Suppose that

1. E is semistable;
2. the 2-torsion points E [2] are defined over Q.

Then, the Galois representation ρE ,p is irreducible.

Here irreducible means that the image of ρE ,p cannot be
conjugated in GL2(Fp) into a subgroup of upper triangular matrices(

∗ ∗
0 ∗

)
⊂ GL2(Fp).



p-adic representations attached to E
Fix a prime p and consider the pn-torsion sequence:

E [p] [p]←− E [p2] [p]←− E [p3]←− ...

taking the inverse limit we have the Tate module at p

Tp(E ) = lim
←−n
{E [pn]} ∼= Zp ⊕ Zp.

From the compatibility of the action of GQ with [p] we have an
action on Tp(E ). Since Aut(E [pn]) and GL2(Z/pnZ) are
isomorphic we also have

Aut(Tp(E )) ∼→ GL2(Zp),

hence there is a continuous homomorphism

ρE ,p : GQ → GL2(Zp) ⊂ GL2(Qp).

Moreover, reduction modulo p leads to

ρE ,p = ρE ,p (mod p).



p-adic representations attached to E

Theorem
Let E/Q be an elliptic curve and p a prime number.
The Galois representation

ρE ,p : GQ → GL2(Zp) ⊂ GL2(Qp)

arising on the Tate module of E is irreducible.
Moreover, it is unramified at all primes ℓ ∤ pNE .
For each ℓ ∤ pNE the characteristic polynomial of ρE ,p(Frobℓ) is

x2 − aℓ(E )x + ℓ,

where Frobℓ be a Frobenius element at ℓ. In particular,

aℓ(E ) = Tr(ρE ,p(Frobℓ))

is the trace of Frobenius.


