\\====================================================================== \\ Ellenberg. q = conductor character attached to K/Q. bound1(p,q)=3*30*(400/399)^3*exp(2*Pi)/p^3*q^2; E1(p,q)= {local(Sigma); Sigma=q^2/2/Pi; 16/3*q^2*Pi^2*log(p)/exp(p^2/4/Pi/Sigma/log(p)) } E2(p,q)=8/9*Pi^3*zeta(7/2)^2*q^4/p^3*log(p)^2 E3(p,q)=8*zeta(3/2)^2*Pi^2*q^2/p*log(p)*exp(-p^2/q^2/log(p^2)); E4(p,q)= {local(Sigma); Sigma=q^2/2/Pi; 16*Pi^3*(2/Pi*eulerphi(q)*6*log(p)^2/p^2+Sigma/2*log(p^2)/p*(zeta(3/2)^2-sum(i=1,p^2,sigma(i,0)/sqrt(i^3))))} DJ(p)=1280*Pi^2*log(p)^2/p^2+1536/3*Pi^2*log(p)/p*(zeta(3/2)^2-sum(i=1,p,sigma(i,0)/sqrt(i^3))) E5(p,q,bd)= {local(Sigma,A,B,C); Sigma=sigma(q,0)/2/Pi; A=2/Pi*sigma(q,0); B=Sigma/6*p^2*log(p^2); 16*Pi^3*sum(i=1,bd,min(A*log(p^2*i)/p^2/i,B*sigma(p^2*i,0)/p^3/sqrt(i^3))) } F(p,q)= {local(Sigma); Sigma=q^2/2/Pi; 4*Pi*exp(-Pi/Sigma/p^2/log(p))-E4(p,q)-E3(p,q)-E2(p,q)-E1(p,q)-bound1(p,q)} F2(p,q,m)=2*sqrt(3)*sqrt(m)*sigma(m,0)/(1-exp(-2*Pi/q/sqrt(p)))*(4*Pi+16*zeta(3/2)^2*Pi^2/sqrt(p^3)) Bd2(p,q)=1/(p^2-1)*F2(p,q,p) Bd3(p,q)=p/(p^2-1)*F2(p,q,1) \\====================================================================== \\ This is the script to compute the bound. q = conductor K/Q. The first p where the output is posiive is the right answer. EllenbergBound(p,q)=F(p,q)-1/(p^2-1)*F2(p,q,p)-p/(p^2-1)*F2(p,q,1)