============================================================================================================================================================== 🔸️d=5: Chi:= function(p) Eps1:=Generators(DirichletGroup(15,CyclotomicField(4))); Eps1:=Eps1[1]*Eps1[2]; Eps2:=Generators(DirichletGroup(20,CyclotomicField(4))); Eps2:=Eps2[1]*Eps2[2]; if KroneckerSymbol(-5,p) eq -1 then f:=order(Eps1(p)); else f:=order(Eps2(p))*2; end if; return f; end function; -------------------------------------------------------------------------------------------------------------------------------------------------------------- G:=DirichletGroup(2^4*3^2*5^2,CyclotomicField(4)); eps:=(Elements(G)[50]); M:=ModularSymbols(eps,2,1); S:=NewSubspace(CuspidalSubspace(M)); new:=NewformDecomposition(S); CM:=FormsWithCM(new); [ 1, 2, 3, 4, 7, 9, 10 ] for i in [1..#new] do if i notin CM then print(DiscardPlace(5,eps,Chi,new,i,13,50)); end if; end for; {@ 2, 5 @} {@ 2, 5 @} Cannot discard the form with parameter: 8 [] Cannot discard the form with parameter: 11 [] Cannot discard the form with parameter: 12 [] Cannot discard the form with parameter: 13 [] {@ 2, 5 @} {@ 2, 5 @} -------------------------------------------------------------------------------------------------------------------------------------------------------------- eps:=Extend(eps,2^4*3^3*5^2); M:=ModularSymbols(eps,2,1); S:=NewSubspace(CuspidalSubspace(M)); new:=NewformDecomposition(S); CM:=FormsWithCM(new); [ 1, 2, 3, 4, 5, 6 ] for i in [1..#new] do if i notin CM then print(DiscardPlace(5,eps,Chi,new,i,13,50)); end if; end for; Cannot discard the form with parameter: 7 [] Cannot discard the form with parameter: 8 [] Cannot discard the form with parameter: 9 [] Cannot discard the form with parameter: 10 [] {@ 2, 5 @} {@ 2, 5 @} {@ 2, 5 @} {@ 2, 3, 5 @} {@ 2, 5 @} {@ 2, 3, 5 @} {@ 2, 3, 5 @} {@ 2, 3, 5 @} {@ 2, 3, 7 @} {@ 2, 5 @} {@ 2, 5 @} {@ 2, 3 @} {@ 2, 3 @} {@ 2, 5 @} ============================================================================================================================================================== 🔸️d=6: Chi:= function(p) if KroneckerSymbol(-6,p) eq -1 then f:=order(KroneckerSymbol(-1,p)*KroneckerSymbol(p,2)*KroneckerSymbol(p,3)); else f:=2*order(KroneckerSymbol(-1,p)*KroneckerSymbol(p,3)); end if; return f; end function; -------------------------------------------------------------------------------------------------------------------------------------------------------------- G:=DirichletGroup(2^8*3^5); eps:=Generators(G)[1]*Generators(G)[3]; M:=ModularSymbols(eps,2,1); S:=NewSubspace(CuspidalSubspace(M)); new:=NewformDecomposition(S); CM:=FormsWithCM(new); > #new; 58 > #CM; 8 > CM; [ 1, 2, 3, 4, 5, 6, 41, 42 ] > for i in [1..51] do for> if i notin CM then for|if> print(DiscardPlace(6,eps,Chi,new,i,1,13)); for|if> end if; for> end for; {@ 2, 3 @} {@ 2, 3 @} {@ 11, 2, 3 @} {@ 11, 2, 3 @} {@ 2 @} {@ 2 @} {@ 2, 3, 5 @} {@ 2, 7 @} {@ 2, 3 @} {@ 2, 3 @} {@ 2, 5 @} {@ 2, 5 @} {@ 11, 2, 3 @} {@ 2, 3 @} {@ 11, 2, 3 @} {@ 2, 3 @} {@ 11, 2, 5 @} {@ 11, 2, 5 @} {@ 11, 2, 5 @} {@ 11, 2, 5 @} {@ 3 @} {@ 3 @} {@ 2 @} {@ 2 @} {@ 2, 13 @} {@ 2, 13 @} {@ 2 @} {@ 2 @} {@ 2, 13 @} {@ 2, 13 @} {@ 2, 3 @} {@ 2 @} {@ 2, 3, 5 @} {@ 2, 3, 5 @} {@ 2 @} {@ 2, 5 @} {@ 2 @} {@ 2, 7 @} {@ 37 @} {@ 37 @} {@ 37 @} {@ 37 @} {@ @} /* Discarding new[i] for i=52,...,58. */ /* Magma */ > ApCand(6,5); { -3, 0, 3 } > ApCand(6,11); { -6, -3, 0, 3, 6 } /* new[52] */ f:=PowerSeries(new[52],12); Write("Form52Coef5.txt",Coefficient(f,5)); Write("Form52Coef11.txt",Coefficient(f,11)); Write("Form52Pol.txt",Parent(Coefficient(f,5))); /* new[53] */ f:=PowerSeries(new[53],12); Write("Form53Coef5.txt",Coefficient(f,5)); Write("Form53Coef11.txt",Coefficient(f,11)); Write("Form53Pol.txt",Parent(Coefficient(f,5))); /* new[54] */ f:=PowerSeries(new[54],12); Write("Form54Coef5.txt",Coefficient(f,5)); Write("Form54Coef11.txt",Coefficient(f,11)); Write("Form54Pol.txt",Parent(Coefficient(f,5))); /* new[55] */ f:=PowerSeries(new[55],12); Write("Form55Coef5.txt",Coefficient(f,5)); Write("Form55Coef11.txt",Coefficient(f,11)); Write("Form55Pol.txt",Parent(Coefficient(f,5))); /* new[56] */ f:=PowerSeries(new[56],12); Write("Form56Coef5.txt",Coefficient(f,5)); Write("Form56Coef11.txt",Coefficient(f,11)); Write("Form56Pol.txt",Parent(Coefficient(f,5))); /* new[57] */ f:=PowerSeries(new[57],12); Write("Form57Coef5.txt",Coefficient(f,5)); Write("Form57Coef11.txt",Coefficient(f,11)); Write("Form57Pol.txt",Parent(Coefficient(f,5))); /* new[58] */ f:=PowerSeries(new[58],12); Write("Form58Coef5.txt",Coefficient(f,5)); Write("Form58Coef11.txt",Coefficient(f,11)); Write("Form58Pol.txt",Parent(Coefficient(f,5))); /* PARI/GP */ /* new[52] */ P=read("Form52Pol.txt"); coef5=read("Form52Coef5.txt"); coef11=read("Form52Coef11.txt"); P=subst(P,x,a); n5=norm(coef5*Mod(1,P))*norm(coef5^2*Mod(1,P)+9)*norm(coef5^2*Mod(1,P)+36); n11=norm(coef11*Mod(1,P))*norm(coef11^2*Mod(1,P)-9)*norm(coef11^2*Mod(1,P)-36)*norm(144-coef11^2*Mod(1,P)); factor(gcd(n5,n11)) %11 = [ 2 84] [13 8] /* new[53] */ P=read("Form53Pol.txt"); coef5=read("Form53Coef5.txt"); coef11=read("Form53Coef11.txt"); P=subst(P,x,a); n5=norm(coef5*Mod(1,P))*norm(coef5^2*Mod(1,P)+9)*norm(coef5^2*Mod(1,P)+36); n11=norm(coef11*Mod(1,P))*norm(coef11^2*Mod(1,P)-9)*norm(coef11^2*Mod(1,P)-36)*norm(144-coef11^2*Mod(1,P)); factor(gcd(n5,n11)) %18 = [ 2 36] [11 4] [13 8] /* new[54] */ P=read("Form54Pol.txt"); coef5=read("Form54Coef5.txt"); coef11=read("Form54Coef11.txt"); P=subst(P,x,a); n5=norm(coef5*Mod(1,P))*norm(coef5^2*Mod(1,P)+9)*norm(coef5^2*Mod(1,P)+36); n11=norm(coef11*Mod(1,P))*norm(coef11^2*Mod(1,P)-9)*norm(coef11^2*Mod(1,P)-36)*norm(144-coef11^2*Mod(1,P)); factor(gcd(n5,n11)) %25 = [2 132] /* new[55] */ P=read("Form55Pol.txt"); coef5=read("Form55Coef5.txt"); coef11=read("Form55Coef11.txt"); P=subst(P,x,a); n5=norm(coef5*Mod(1,P))*norm(coef5^2*Mod(1,P)+9)*norm(coef5^2*Mod(1,P)+36); n11=norm(coef11*Mod(1,P))*norm(coef11^2*Mod(1,P)-9)*norm(coef11^2*Mod(1,P)-36)*norm(144-coef11^2*Mod(1,P)); factor(gcd(n5,n11)) %32 = [3 40] /* new[56] */ P=read("Form56Pol.txt"); coef5=read("Form56Coef5.txt"); coef11=read("Form56Coef11.txt"); P=subst(P,x,a); n5=norm(coef5*Mod(1,P))*norm(coef5^2*Mod(1,P)+9)*norm(coef5^2*Mod(1,P)+36); n11=norm(coef11*Mod(1,P))*norm(coef11^2*Mod(1,P)-9)*norm(coef11^2*Mod(1,P)-36)*norm(144-coef11^2*Mod(1,P)); factor(gcd(n5,n11)) %47 = [3 40] /* new[57] */ P=read("Form57Pol.txt"); coef5=read("Form57Coef5.txt"); coef11=read("Form57Coef11.txt"); P=subst(P,x,a); n5=norm(coef5*Mod(1,P))*norm(coef5^2*Mod(1,P)+9)*norm(coef5^2*Mod(1,P)+36); n11=norm(coef11*Mod(1,P))*norm(coef11^2*Mod(1,P)-9)*norm(coef11^2*Mod(1,P)-36)*norm(144-coef11^2*Mod(1,P)); factor(gcd(n5,n11)) %65 = [ 3 60] [37 8] /* new[58] */ P=read("Form58Pol.txt"); coef5=read("Form58Coef5.txt"); coef11=read("Form58Coef11.txt"); P=subst(P,x,a); n5=norm(coef5*Mod(1,P))*norm(coef5^2*Mod(1,P)+9)*norm(coef5^2*Mod(1,P)+36); n11=norm(coef11*Mod(1,P))*norm(coef11^2*Mod(1,P)-9)*norm(coef11^2*Mod(1,P)-36)*norm(144-coef11^2*Mod(1,P)); gcd(n5,n11) %10 = 1 ============================================================================================================================================================== 🔸️d=7: Chi:= function(p) if KroneckerSymbol(-7,p) eq -1 then f:=1; else f:=2*order(KroneckerSymbol(p,3)*KroneckerSymbol(p,7)); end if; return f; end function; -------------------------------------------------------------------------------------------------------------------------------------------------------------- G:=DirichletGroup(2*3*7^2); eps:=Generators(G)[1]*Generators(G)[2]; M:=ModularSymbols(eps,2,1); S:=NewSubspace(CuspidalSubspace(M)); new:=NewformDecomposition(S); for i in [1..#new] do print(DiscardPlace(7,eps,Chi,new,i,13,23)); end for; Cannot discard the form with parameter: 1 [] {@ 2, 7 @} -------------------------------------------------------------------------------------------------------------------------------------------------------------- G:=DirichletGroup(2^2*3*7^2); eps:=Generators(G)[2]*Generators(G)[3]; M:=ModularSymbols(eps,2,1); S:=NewSubspace(CuspidalSubspace(M)); new:=NewformDecomposition(S); CM:=FormsWithCM(new); > [1] for i in [2..#new] do for> print(DiscardPlace(7,eps,Chi,new,i,2,20)); for> end for; {@ 2, 3 @} {@ 2, 3 @} {@ 2, 7 @} -------------------------------------------------------------------------------------------------------------------------------------------------------------- G:=DirichletGroup(2^2*3^3*7^2); eps:=Generators(G)[2]*Generators(G)[3]; M:=ModularSymbols(eps,2,1); S:=NewSubspace(CuspidalSubspace(M)); new:=NewformDecomposition(S); FormsWithCM(new); [ 1, 2, 3 ] for i in [4..#new] do for> DiscardPlace(7,eps,Chi,new,i,2,20); for> end for; {@ 5, 2, 3 @} {@ 3, 7 @} {@ 2, 7 @} {@ 2, 7 @} -------------------------------------------------------------------------------------------------------------------------------------------------------------- G:=DirichletGroup(2*3^3*7^2); eps:=Generators(G)[1]*Generators(G)[2]; M:=ModularSymbols(eps,2,1); S:=NewSubspace(CuspidalSubspace(M)); new:=NewformDecomposition(S); for i in [1..#new] do for> DiscardPlace(7,eps,Chi,new,i,2,13); for> end for; Cannot discard the form with parameter: 1 [] Cannot discard the form with parameter: 2 [] Cannot discard the form with parameter: 3 [] {@ 2, 3 @} {@ 2, 7 @} {@ 2, 7 @}